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MULTIPLIKATIVNA DEKOMPOZICIJA 
DEFORMACIONOG GRADIJENTA U MEHANICI 

KONTINUUMA: TERMOELASTIČNOST, 
ELASTOPLASTIČNOST I BIOMEHANIKA

Izvod

Primjena dekompozicije deformacionog gradijenta u konstitutivnoj 
teoriji ponašanja materijala je analizirana uz poseban naglasak na pro­
bleme velikih deformacija u termoelastičnosti, elastoplastičnosti i bio- 
mehanici. Konstitutivne jednačine izotropne termoelastičnosti su izve­
dene u opštem i u slučaju kvadratne zavisnosti deformacione energije 
of tenzora konačne elastične deformacije. Formulacija polikristalne i 
monokristalne teorije plastičnosti je data, uz posebnu pažnju posvećenu 
aditivnoj dekompoziciji izvoda napona i deformacije na bazi multi- 
plikativne dekompozicije elastoplastičnog deformacionog gradijenta. 
Analiza izotropnog rasta pseudo-elastičnih mekih tkiva pod uticajem 
napona je zatim prikazana. Evoluciona jednačina za relativno izduženje 
usljed porasta mase je diskotovana u kontekstu biomehaničke teorije 
izvodnog tipa.

1. INTRODUCTION

The objective of this article is to give an overview and comparative 
analysis of the application of the multiplicative decomposition of de­
formation gradient in constitutive theories of material response. This 
decomposition is based on the introduction of an intermediate configu­
ration by conceptual destressing of the deformed configuration to zero 
stress. A significance of such configuration in material modeling was 
indicated by Eckart (1948), Kroner (1960), and Sedov (1962), but its 
definite introduction in non-linear continuum mechanics is attributed to 
Stojanović et al. (1964) in the case of finite deformation thermoelastici­
ty, and to Lee (1969) in the case of finite deformation elastoplasticity. 
The decomposition was also extensively utilized in single crystal plasti­
city. More recently, following the work of Rodrigez et al. (1996), the 
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intermediate configuration and the multiplicative decomposition of de­
formation gradient found its use in the constitutive analysis of the 
stress-modulated growth of soft tissues in biomechanics. A survey of 
the application of the decomposition in these three areas of continuum 
mechanics is presented in this paper, mostly based on the author’s own 
involvement and contributions in this field.

The formulation of the constitutive theory of finite thermoelasticity 
is first described. The intermediate configuration is introduced by a 
conceptual isothermal destressing of the current configuration to zero 
stress. The total deformation gradient is then decomposed into the 
product of purely elastic and thermal parts. Stojanovic et al. (1964, 
1970) used this approach to study both non-polar and polar thermoelas­
tic materials. However, in contrast to the decomposition of elastoplastic 
deformation gradient, the decomposition of thermoelastic deformation 
gradient received less attention in the mechanics community, although 
there has been recently some revived interest shown in the work of 
Imam and Johnson (1998), and Vujošević and Lubarda (2001). The 
analysis from the latter contribution is followed in the presentation in 
Section 2. For simplicity, the considerations are restricted to elastically 
and thermally isotropic materials, although an extension of the analysis 
to transversely isotropic and orthotropic materials is indicated. Particu­
lar attention is given to quadratic dependence of the elastic strain 
energy on the finite elastic strain.

The fundamental aspects of the finite deformation elastoplasticity 
within the framework of the multiplicative decomposition are then 
presented. The intermediate configuration, again obtained from the 
deformed configuration by isothermal elastic destressing to zero stress, 
differs from the initial configuration by a residual (plastic) deformation, 
and from the current configuration by a reversible (elastic) deformation. 
The corresponding decomposition of the elastoplastic deformation gra­
dient into its elastic and plastic part was introduced by Lee (1969). 
Related early contributions include Backman (1964), Lee and Liu 
(1967), Fox (1968), Willis (1969), Mandel (1971,1973), and Kroner 
and Teodosiu (1973). The decomposition was extensively used in the 
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phenomenological theory of plasticity during past three decades (Lu­
barda, 2002). It was also employed in the single crystal plasticity, 
assuming that crystallographic slip is the only mechanism of plastic 
deformation. The plastic part of deformation gradient in this model 
is due to slip, while elastic part accounts for the lattice stretching 
and rotation; Asaro and Rice (1977), Hill and Havner (1982), Asaro 
(1983), Havner (1992). Essential features of the polycrystalline and 
single crystal elastoplastic constitutive formulations within the frame­
work of the multiplicative decomposition are presented in Section 3. 
The kinematic and kinetic aspects of the additive decompositions of 
the stress and strain rates into their elastic and plastic parts are given.

The third area in which the multiplicative decomposition of defor­
mation gradient has been employed is biomechanics. In contrast to hard 
tissues, soft tissues such as blood vessels and tendons can experience 
large deformations. An important contribution to their stress-modula­
ted growth was recently made by Rodrigez et al. (1994). They introdu­
ced the decomposition of the corresponding deformation gradient into 
its elastic and growth parts, and applied it to evaluate the stress­
dependent growth of an aorta. Subsequent efforts include the work of 
Taber and Eggers (1996), Taber and Perucchio (2000), Chen and Hoger 
(2000), Klisch et al. (2001), Lubarda and Hoger (2001), and Hoger et al. 
(2001). An analysis of the stress-modulated growth of isotropic pseudo­
elastic soft tissues is presented in Section 4. The rate-type theory is 
constructed which incorporates an appealing structure of the evolution 
equation for the growth-induced stretch ratio. The concluding remarks 
are given in Section 5.

2. THERMOELASTICITY

In the constitutive theory of thermoelastic material response the 
intermediate configuration Be is introduced by isothermal elastic de­
stressing of the current configuration B (Fig. 1). If the isothermal elastic 
deformation gradient from Be to B is Fe, and the thermal deformation 
gradient from Bo to Be is F#, the total deformation gradient F is
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decomposed as

F = Fe • Fa . (2.1)

This decomposition was introduced in finite-strain thermoelasticity by 
Stojanovic et al. (op. cit), and further employed by Stojanović (1972) 
and Mićunovic (1974). For inhomogeneous deformation and temperatu­
re fields only F is a true deformation gradient. The mappings from 
Be to B and from Bo to Be, on the other hand, are generally not 
continuous one-to-one mappings, so that Fe and F# are defined as the 
point functions or local deformation gradients. The decomposition (2.1) 
is not unique because arbitrary rigid-body rotation can be superposed 
to Bq preserving it unstressed. However, we shall specify F# uniquely 
in each considered case, depending on the type of material anisotropy. 
For example, for an orthotropic material with the principal axes of 
orthotropy parallel to unit vectors m°, n°, and m° X n° in the configu­
ration Bq, we specify F$ by

Fa = + (/? - tf) m° ® m° + (7 - tf) n° ® n° . (2.2)

The stretch ratios due to thermal expansion in the directions m° and 
n° are /3 = (3(0) and 7 — 7(0), while i? = ^(0) is the stretch ratio 
in the direction m° X n°. The second-order unit tensor is denoted by 
I. A modification of the representation (2.2) to transversely isotropic 
materials is straightforward. The elastic Lagrangian strain and its rate 
can be expressed as

Ee = F/.(E-Ed).F^, (2.3)

Ee = F/-E-F;1-D«-Ee-L<,-Lj’ • Ee , (2.4)

where L# = Fg • F^1, and D# is its symmetric part. The elastic and 
thermal strains are defined by

Ee = |(FeTFe-l), E# = (Fj • F^ — l) . (2.5)
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Figure 1: The intermediate configuration Bq at nonuniform temperature 
0 is obtained from the deformed configuration B by isothermal destress­
ing to zero stress. The deformation gradient from initial to deformed 
configuration F is decomposed into elastic part Fe and thermal part 
Fa, such that F = Fe • F#.

The analysis will be restricted in the sequel to isotropic materials, 
for which the thermal part of the deformation gradient is

F0 = i?(0)I. (2.6)

The scalar is the thermal stretch ratio in any material directi­
on. In this case

Ee = ^(E-Efl), E, = |(t?2-1)I. (2.7)

It is noted that

I + 2E = i?2(I + 2Ee). (2.8)

Since the differential connection between the thermal stretch ratio and 
the coefficient of thermal expansion is
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the rate of elastic strain can be written as

®. = ^j [e-o(0)(i+2E)»]. (2.10)

2.1 Stress Response
Within the model of the multiplicative decomposition, the Helmholtz 
free energy can be split into two parts, such that

V’ = V’efEe, , (2.U)

where is an isotropic function of the elastic strain Ee and temperatu­
re 0. The time-rate of the free energy is

dEe e de de
(2.12)

Upon substitution of Eq. (2.10), there follows

] gV,= 1 * :E- 
t?2 <9Ee

[^še?(i + 2E)~^ d0
(2-13)

The comparison with the energy equation

^ = — T : E — T]0
Po

establishes the constitutive relations

Po We

I?2 3Ee ’

(2-14)

(2-15)

We n । -n? \’ = "aE, :,I + 2E-J-^ TiiT- <2-16’

In view of the relationship po = ^pe between the densities po in the 
configuration BQ and pe in the configuration Z3#, the stress response in
Eq. (2.15) can also be written as

T = t?Te, Te = pfl^. (2.17)
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An appealing feature of the thermoelastic constitutive formulation 
based on the multiplicative decomposition is that the function ^e(Ee, 0) 
can be taken as one of the well-known strain energy functions of iso­
thermal finite-strain elasticity, except that the coefficients of the strain­
dependent terms are functions of the temperature (Vujošević and Lu­
barda, 2002). For example, suppose that is a quadratic function of 
the elastic strain components, such that

Pe | A(0)(trEe)2 + /z(0) Ee : Ee , (2.18)

where A(0) and /i(0) are the temperature-dependent Lame moduli. It 
follows that

Te = Ae(0) : Ee , Ae(0) = A(0) I ® I + 2/i(0) II. (2.19)

The temperature-dependent elastic moduli tensor is Ae(0), while II 
stands for the fourth-order unit tensor. Consequently, substituting Eqs. 
(2.10) and (2.19) into T = i?Te, the stress response becomes

J^[A(0)(trE)I + 2/z(0)E i 3 r i hH'wH1- <2'2o>
The temperature-dependent bulk modulus is k(0). This is an exact 
expression for the thermoelastic stress response associated with the 
quadratic representation of in terms of the finite elastic strain Ee. If 
the Lame moduli are taken to be temperature-independent, and if the 
approximation 19(0) « 1 + ao(0 — 0O) is made (ao being the coefficient 
of linear thermal expansion at 0 = 0^), Eq. (2.20) reduces to

T = Ao (tr E) I + 2/zo E - 3ao(0 - 0O)* O1 • (2.21)

When E and T are interpreted as the infinitesimal strain and the 
Cauchy stress, the equation coincides with the well-known Duhamel- 
Neumann expression of isotropic linear thermoelasticity (e.g., Boley 
and Weiner, 1960; Parkus, 1968; Nowacki, 1986).
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2.2 Entropy Expression
In the case of the quadratic strain energy representation (2.18), we have 
po = -i?3 Te : Ee/2, so that

Po
E,

3n2dtf _ 1 3= -1? -rrTe : Ee + -7?3
2 d0 2 Ee

(2.22)

i.e.,

44T:E4* 2-i)trTM4^):Ee- (2-23)
It can be readily verified that

4^ = +«(T + 3^«I), (2-24)
\ / E \ ' E

and

<193 /5Te\ . E
V I de /Ee • ’ = = [E- >(^2-l)l]

+a [T : E + | (1 + 7?2) trT] .

Inserting Eq. (2.25) into Eq. (2.23) gives

*>"(>)e =2aT:B + l«(2-<>I)trT 

' +HS)e:[BDA-

When this is substituted into Eq. (2.16), the entropy becomes

1 T / 1 f 1^2. 31?aKl_ * ) ; E--(t?2-1)I
2po L \ ^ / e j L

(2.25)

(2.26)

P.27)

Recalling the standard expression for the latent heat (e.g., Fung, 1965), 
we finally have

rl=^(hE + ydaKl} : [E-hi?2-l)ll (2.28)
z \ u po j [ z j at/

This is an exact expression for 77 within the approximation used for 
the elastic strain energy. It was originally derived by Vujošević and 



62 Vlado A. Lubarda

Lubarda, op. cit.. The second-order tensor of the latent heat Le can be 
calculated from Eq. (2.24) as

. - 1t-E —----- PPo \ <90 / E

1 / r)T \----- e # (^) -<*(T  + 3i?kI)
Po \ 90 J Ee

(2.29)

which gives

tE = — 0 ( a(T + 3i?Kl) 
Po I

1 dAe E-ip2-l)I (2.30)

If the elastic moduli are independent of temperature, and if the 
stress components are much smaller that the bulk modulus, the specific 
heat becomes Ie — 3i?a0Kl/po, while the entropy expression (2.28) 
reduces to

Q
trE-1(^-1)r] — — tian 

Po
dy>3 
dp ■

(2.31)

The function ipe can be selected according to experimental data for the 
specific heat ce- For example, if

= “I (1F + ~ K° ) ~ ’ 
\ Po /

(2.32)

equation (2.31) becomes

3 c°
tj = — aoKotrE+ (0 - 0o), (2.33)

Po ^o

which is in agreement with the result of the linearized classical theory 
of thermoelasticity.

2. ELASTOPLASTICITY

The intermediate configuration in finite-deformation elastoplastici­
ty, obtained from the current configuration by elastic destressing to 
zero stress (Fig. 2), differs from the initial configuration by a residual
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(plastic) deformation, and from the current configuration by a reversi­
ble (elastic) deformation. The corresponding multiplicative decompo­
sition of the elastoplastic deformation gradient into its elastic and 
plastic part, introduced by Lee (1969), reads

F = Fe • Fp . (3-1)

In the case when elastic destressing to zero stress is not physically 
achievable due to onset of reverse plastic deformation before the state of 
zero stress is reached, the intermediate configuration can be conceptual­
ly introduced by virtual destressing to zero stress, locking inelastic 
structural changes that would occur during the actual destressing. The 
deformation gradients Fe and Fp are not uniquely defined because 
intermediate unstressed configuration is not unique; arbitrary local 
material rotations can be superposed to intermediate configuration 
preserving it unstressed. In the applications, however, the decompositi­
on can be made unique by additional specifications dictated by the 
nature of the considered material model. For example, for elastically 
isotropic materials the stress response from B? to B does not depend on 
the rotation Re from the polar decomposition Fe = Ve • Re. Consequ­
ently, the intermediate configuration can in this case be specified uni­
quely by requiring that elastic unloading takes place without rotation.

By introducing the multiplicative decomposition of the deformation 
gradient (3.1), the velocity gradient becomes

L = Fe f;1 + Fe • (fp • Fp1) • f;1 . (3.2)

The rate of deformation D and the spin W are given by its symmetric 
and antisymmetric part, i.e.,

D=(Fe.Fe-x) + |Fe. (Fp-Fp1) •Fe-1'| , (3.3)

W=(Fe-Fe-1) + |Fe • (fp • Fp1) • f;1] . (3.4)

For later purposes, it is convenient to identify the spin tensor

o,p = [Fe • (fp • Fp1) . Fe-J]a. (3.5)
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Figure 2: The intermediate configuration Bp is obtained from the 
deformed configuration B by destressing to zero stress. The elastoplastic 
deformation gradient is decomposed into elastic and plastic parts, such 
that F = Fe • Fp.

3.3 Partition of Elastoplastic Rate of Deformation

Suppose that material is elastically isotropic in its initial configuration, 
and that plastic deformation does not affect its elastic properties. The 
elastic response is then independent of any rotation superposed to the 
intermediate configuration, and is given by

The elastic strain energy per unit unstressed volume, = PoV'e, an 
isotropic function of the Lagrangian strain Ee. Plastic deformation is 
assumed to be incompressible (detFe = detF), so that r = (detF)cr 
is the Kirchhoff stress (the Cauchy stress cr weighted by detF). By
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differentiating Eq. (3.6), we obtain

T - (Fe • F;1) • T - T • (Fe • Fe-1)7 = t : (Fe • F;1

The rectangular components of C are 

r _  j?e rpe e rpe rpe
zjkl - im jn QE gE kp lq ■ 

mn P<1

Equation (3.7) can be rewritten as

r-jFe-F;1) -r + r- (Fe-F;1) = £:(Fe-F“1) , (3.9)

where the new instantaneous moduli are given by

ć'ijkl — 4“ 4“ ^jk^il 4" T“il^jk 4“ ^jl^ik) • (3.10)

The elastic deformation gradient Fe is defined relative to interme­
diate configuration which changes during elastoplastic deformation. 
This causes two difficulties in the identification of elastic rate of de­
formation De (Lubarda and Shih, 1994). First, since Fe and Fp are 
specified only to within an arbitrary rotation, the velocity gradient 
Fe • F”1 and its symmetric and antisymmetric parts are not unique. 
Second, the deforming intermediate configuration also contributes to 
the elastic rate of deformation, which is not in general given only by 
( Fe • F"1) . To overcome these difficulties, a kinetic definition of elastic 

strain increment is used according to which De dt is a reversible part 
of the total strain increment D dt, recovered upon loading-unloading 
cycle of the Jaumann stress increment rdt. Thus,

De = £-1:r, r = r - W • r + r • W . (3.11)

The remaining part of the total rate of deformation,

Dp = D - De , (3.12)

is the plastic part, which gives the residual strain increment left upon 
the considered infinitesimal cycle of stress. If the material obeys the 
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Ilyushin’s postulate, so defined plastic rate of deformation is codirec- 
tional with the outward normal to a locally smooth yield surface in the 
Cauchy stress space (Hill, 1978).

Therefore, to identify in Eq. (3.9) the elastic strain rate in accord 
with the kinetic definition (3.11), we eliminate ^Fe • F^1) in terms of 

W and u?p and obtain

r = C : (Fe • F;1) - u>p • r + t • o>p . (3.13)
\ / s

Consequently, the elastic rate of deformation is given by

De = (Fe • Fe-X)s - r-1 : (Wp • T - r • Wp). (3.14)

The corresponding plastic rate of deformation is

Dp = [Fe • (fp • F;1) • Fe-X]g + r-1 : (u>p • T - r • o>p) . (3.15)

Since and r in (3.11) are independent of the superposed rotation 
to the intermediate configuration, Eq. (3.14) specifies De uniquely. In 
contrast, its constituents, (Fe-F"1) and the term associated with 

\ / s
the spin u?p, do depend on the choice of the intermediate configuration. 
Similar remarks apply to plastic rate of deformation Dp in its repre­
sentation (3.15).

The right hand side of (3.14) is in general the correct expression 
for the elastic rate of deformation, and not ^Fe • F”1^ alone. Only 

if the intermediate configuration (i.e., rotation Re during destressing 
program) is chosen such that the spin u>p = 0, the rate of deformation 
^Fe • F”1^ is exactly equal to De. Within the framework under dis­

cussion, this choice of the spin represents a geometric (kinematic) spe­
cification of the intermediate configuration. It is not a constitutive 
assumption and has no consequences on (3.14). We could just as well 
define an intermediate configuration by requiring that the spin ^Fe-F“^ 

vanishes identically. In this case, u?p = W. The end result is still 
equation (3.14), as can be checked by inspection. The described partiti­
on of D into its elastic and plastic parts within the framework of
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the multiplicative decomposition has been a topic of active research 
and debate for number of years; Freund (1970), Kratochvil (1973), 
Lubarda and Lee (1981), Nemat-Nasser (1982), Simo and Ortiz (1985), 
Loret (1983), Dafalias (1985, 1987), Lubarda and Shih (1994). The 
constitutive structure for the plastic part of the rate of deformation 
tensor is constructed by using the concept of the yield surface. This 
gives

Dp = df df\ o7T :r,ocr da J
(3.16)

h

where h is a scalar parameter of the deformation history, and f = 0 is 
the yield surface (e.g., Naghdi, 1990; Simo and Hughes, 1998). Details 
can be found in Lubarda (2002).

3.4 Analysis of Elastic Rate of Deformation
The elastic rate of deformation of elastically isotropic material can be 
expressed as

De=(Fe-Fe-1) = (Fe-F;1) +(Fe-np-Fe"1)s. (3.17)
\ / = v ' s

The Jaumann derivative of Fe is here defined by

Fe = Fe - np • Fe + Fe • np , (3.18)

which represents the rate of Fe observed in the coordinate systems that 
rotate with the spin ftp in both, current and intermediate configurati­
ons. The spin ftp is defined as the solution of the matrix equation

(Fe-F;1) + (Fe-Qp-F;1)a = W.
X / a

(3.19)

The proof proceeds by applying the Jaumann derivative with respect 
to spin flp to both sides of Eq. (3.6), which gives

/• \ /• \T / d2iS • \ m
~ (p.-F.-1)-t + T-(F..F-) + F=. : B.) Ff • (3.20)
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Since

Fe • Fe-X = De + W - Qp , (3.21)

the substitution into Eq. (3.20) yields

r = C : De, De = (Fe • F;1) . (3.22)

The two contributions to the elastic rate of deformation De in Eq. 
(3.17) both depend on the choice of intermediate configuration, i.e., 
on the elastic rotation Re of the destressing program, but their sum 
giving De does not. If elastic destressing is performed without rotation 
(Re = I), the spin J2p = J2p is the solution of

(ve-v;1) +(ve-n;-ve-1)a = w. (3.23)

This defines uniquely the spin in terms of W, Ve and Ve. The 
elastic rate of deformation (3.17) is in this case

The first term on the right-hand side represents the contribution to 
De from elastic stretching rate (Ve-V"1) , while the second term 

\ / S
depends on the spin and accounts for the effects of deforming and 
rotating intermediate configuration (Lubarda, 1991).

The representation of the elastic rate of deformation in Eq. (3.17) 
involves only kinematic quantities (Fe and Qp), while the representati­
on (3.14) involves both kinematic and kinetic quantities. Clearly,

(Fe • flp • Fe 1)g — —C 1 : (u?p • t — t • u>p). (3.25)

Note also that the elastic strain expression (3.17) can be recast in the 
form

De = |Fe-T-če-Fe-1, će = če-np-ce + Ce-np. (3.26) 

This expression, as well as (3.17), holds for the elastoplastic deformati­
on of elastically isotropic materials, regardless of whether the material 
hardens isotropically or anisotropically.
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3.5 Crystal Plasticity
69

In single crystals in which crystallographic slip is assumed to be the 
only mechanism of plastic deformation, the material flows through 
the lattice via dislocation motion, while the lattice itself, with the 
material embedded to it, undergoes elastic deformation and rotation. 
The discrete dislocation substructure is ignored, and plastic deformati­
on is considered to occur in the form of smooth shearing on the slip 
planes and in the slip directions. Such continuum slip model from 
the pioneering work of Taylor (1938) was employed in the analysis 
by Hill and Rice (1972), Mandel (1974), Asaro and Rice (1977), Hill 
and Havner (1982), Lubarda (1999), Lubarda and Benson (2001), and 
others. The deformation gradient is decomposed as

F = F*  Fp , (3.27)

where Fp is the part due to slip only, while F*  is due to lattice stretching 
and rotation. Denote the unit vector in the slip direction by s" and the 
unit normal to corresponding slip plane in the undeformed configurati­
on by , where a designates the slip system. The vector is embedd­
ed in the lattice, so that it becomes sa = F*  • s" in the deformed 
configuration. The normal to the slip plane in the deformed confi­
guration is defined by the reciprocal vector ma = m£ • F71, i.e.,

sa = F*  • s“, ma = • F;1 . (3.28)

The velocity gradient in the intermediate configuration is a consequence 
of the slip rates 7“ over n active slip systems, such that

n

Fp-Fp1 = E^So®mo- (3-29)
a=l

Using (3.28), the corresponding tensor in the deformed configuration 
is

n
F*  ■ (fp ■ F-1) • F;1 = 22 (P“ + Q“) r , (3.30)

a=l
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where the second-order tensors Pa and Qa are defined by (Asaro, 1983)

Pa = (sa ® ma)s, Qa = (sa ® ma)a . (3.31)

Upon decomposing the lattice velocity gradient L*  into its symmetric 
and anti-symmetric parts, the lattice rate of deformation D*  and the 
lattice spin W*,  we obtain

n n
D = D, + J2Pa7a, W = W. + J2Q“7a. (3.32)

a=l a=l

Since slip is an isochoric deformation process, the elastic strain 
energy per unit initial volume can be written as = ^(E*).  The 
function e is expressed in the coordinate system that has fixed orien­
tation relative to the lattice orientation in 13 o and 2?p. It is assumed that 
elastic properties of the crystal are not affected by crystallographic slip. 
The symmetric Piola-Kirchhoff stress tensor with respect to the lattice 
deformation is then

(3.33)

The stress tensor T*  is related to the Kirchhoff stress r by

T, = f;1 ■ T • F7t . (3.34)

The plastic incompressibility is assumed (detF*  = detF). The rate of 
the Piola-Kirchhoff stress T*  can be expressed in terms of the convected 
rate of the Kirchhoff stress as

I*  = F71 • T • F~t r = r-L*r-r-  L J . (3.35)

It can be readily verified that
n

r = T + '£(QaT-T-Q«)7«. (3.36)
a=l

On the other hand, taking the time derivative in Eq. (3.33), there 
follows

• - ♦ -
T. = A*  : E. , A, = — - . (3.37)



71Multiplicative Decomposition of Deformation Gradient

Substituting the first of (3.35) into Eq. (3.37), we deduce

t = £ : D*  , £ = F. F, A. F^ F^. (3.38)

If the Jaumann rate corotational with the lattice spin W*  is used, Eq. 
(3.38) can be recast in the form

r = C : D*  . (3.39)

The relationship between the corresponding elastic moduli tensors is 
specified by an equation such as (3.10). Along elastic branch of the 
response (elastic unloading from elastoplastic state), the total and 
lattice velocity gradients coincide, so that L*  = L and r = r.

The rate-type constitutive framework for elastoplastic loading of 
the single crystal is obtained by substituting Eq. (3.36) into Eq. (3.39). 
The result is

n
r = £ :D-^Ca7a, (3.40)

a=l

where

Ca = r : Pa + (Qa • T - T • Qa). (3.41)

The elastic part of the stress rate r is defined by

(r)e = £ : D , (3.42)

since only the remaining part of the stress rate depends on the slip 
rates This is the plastic part

(r)p = -£c“7“. (3.43)
a=l

For rate-independent materials it is commonly assumed that plastic 
flow occurs on the slip system when the resolved shear stress (Schmid 
stress) on that system reaches the critical value, i.e., ra = r“, where 
ra = pa . T _ s . r . m jhe raf-e of change of the critical value of the 
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resolved shear stress on a given slip system is defined by the hardening 
law

no
= (3.44)

/3=1

where N is the total number of all available slip systems, and no is the 
number of critical (potentially active) slip systems, for which ra = r“. 
It can be shown that

n

7“ = E^C^:D’ (3.45)
0=1

where n < no is the number of active slip systems, and

g«0 = hap + Ca : P'3 . (3.46)

It is assumed that the inverse matrix whose components are designated 
by g~& exists. Substituting into Eq. (3.43) and combining with Eq. 
(3.42) then gives the elastoplastic constitutive equation

(n n \

r - EE^1 c“ 0 cj : D• (3-47)
a=l /3=1 /

4. BIOMECHANICS

The analysis of the stress-modulated growth of living tissues, bones, 
and other biomaterials has been an important research topic in bio­
mechanics during past several decades. Early work includes a study of 
the relationship between the mechanical loads and uniform growth by 
Hsu (1968), and a study of the mass deposition and resorption processes 
in a living bone (hard tissue) by Cowin and Hegedus (1976). The latter 
work provided a set of governing equations of the so-called adaptive 
elasticity theory, in which an elastic material adopts its structure to 
applied loading. Fundamental contribution was further made by Skalak 
et al. (1982) in their analytical description of the volumetrically distri­
buted mass growth, and the mass growth by deposition or resorption
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on the surface. The origin and the role of residual stresses in biological 
tissues have been examined both analytically and experimentally by 
many researchers. The review papers by Humphrey (1995) and Taber 
(1995) contain an extensive list of references. In contrast to hard tissues, 
which undergo only small deformations, soft tissues such as blood 
vessels and tendons can experience large deformations. An important 
contribution to the general study of finite volumetric growth in soft 
elastic tissues was made by Rodrigez, Roger, and McCulloch (1994), 
who introduced the multiplicative decomposition of the corresponding 
deformation gradient into its elastic and growth parts. Subsequent work 
includes the studies by Taber and Eggers (1996), Taber and Perucchio 
(2000), Chen and Roger (2000), Klisch, Van Dyke, and Roger (2001), 
and Lubarda and Roger (2001).

The deformation gradient is due to the mass growth and deformati­
on by externally applied and the growth-induced stress. The intermedi­
ate configuration is obtained by instantaneous elastic destressing of the 
current configuration to zero stress (Fig. 3), so that

F = Fe-Fg. (4.1)

This decomposition, formally analogous to previously considered the­
rmoelastic and elastoplastic decompositions, was first introduced in 
biomechanics by Rodrigez, Roger, and McCulloch (1994). The modi­
fication of the decomposition to account for the residually stressed 
reference configuration was introduced by Roger, Van Dyke, and Lu­
barda (2001).

If the mass of an infinitesimal volume element in the initial confi­
guration is dm° = p°dV°, the mass of the corresponding element in 
the configurations Bg and B is

dm = pg dVg = p dV . (4-2)
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Figure 3: Schematic representation of the multiplicative decomposition 
of deformation gradient into its elastic and growth parts. The mass of 
an infinitesimal volume element in BQ is dm°, while the corresponding 
mass in B% and B is dm.

Since

dm = dm°+ r^drdV°, (4.3)

Jo

where r® is the time rate of mass growth per unit initial volume, and

dVg = JgdV°, 

we have

Pg /g ~ P +

In addition,

Pg *̂g  ~ P J»

Jg = detFg, (4.4)

f^dr. (4.5)

Jo

pg = pje, (4.6)

because dV = JedVg and J = where Je — det Fe.
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Consider an isothermal deformation and growth process. Denote the 
set of structural tensors that describe the state of elastic anisotropy in 
both the initial and intermediate configurations by S°. For simplicity, 
we assume that the state of elastic anisotropy remains unaltered during 
the growth and deformation. The elastic strain energy per unit current 
mass is then given by an isotropic function of the elastic strain Ee and 
the tensors S°, i.e., V’e = (Ee, S°, p°). It follows that

T = Fe-
d(PgV'e)

<?Ee
T d(p°ipe) T

'F'=2F-''F- (4.7)

4.6 Partition of the Rate of Deformation
The velocity gradient is

L = Fe f;1 + Fe • (f8 • F-1) • p;1. (4-8)

The symmetric and antisymmetric parts of the second term on the 
right-hand side will be conveniently denoted by

dg= [fc -(Fg-F”1)-F;1]*  . (4.9)

u>g=[Fe-(Fg-F-1).Fe-1]a. (4.10)

The elastic part of the rate of deformation tensor is defined by a kinetic 
relation

De = r;1 : r , t = t- W- t + t- W. (4.11)

The remaining part of the rate of deformation will be referred to as the 
growth part, such that

D — De + Dg . (4-12)

To derive an expression for Dg, we differentiate Eq. (4.7) and obtain

/. \ /. \T
r = (Fe • F;1 J • T + r • (Fe • F^J 

+Fe-(Ae:Ee) .F^+f^r°,
(4-13)
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where

' 9E. 0 ffB, ace 0 dC, ’

and

dr _ p ^(PgV’e) pT _ 9 p ^(PgV’e) pT
dpi e‘ d^edpi e *' dc^dpi' e‘

The structural tensors S° remain constant during the differentiation. 
Equivalently, Eq. (4.13) can be written as

r = £e : (Fe • F;x)g - Wg • T + T • u,g + r° . (4.16)

The rectangular components of the elastic moduli tensor £e are defined 
by Eq. (3.10). Since

Fe-F;1) = D — dg , 
/ s (4-17)

equation (4.16) can be rewritten as

r;1: t = d - dg - r;1 U>g • T - T • U>g -
At _o\ 
dz>° s/‘ (4-18)

According tom Eq. (4.11), the left-hand side is the elastic part of the 
rate of deformation tensor, so that the growth part is given by

Dg = dg + £e 1 : I u>g r - r • u>g
dr
-----T 
dpi

(4-19)o g
4.7 Isotropic Mass Growth
For isotropic materials, which remain isotropic during the mass growth 
and deformation, the elastic strain energy is an isotropic function of 
the elastic deformation tensor Ce, thus the function of its principal 
invariants,

V>e = V’e (Ce, P°) = V’e (4?, HC, Hie, Pg) • (4.20)
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The principal invariants are

Zc = trCe, ZZC = i[tr(C2)-(trCe)2], ZZZc = detCe. (4.21)

Consequently, the Kirchhoff stress is from Eq. (4.7)

r = 2 (c21 + c0 Be + ci B2) , (4.22)

where Be = F • is the left Cauchy-Green deformation tensor. The 
scalar coefficients are here

co

Cl

_ a(p^e)

- die
_ a(p^e)

- dllc

r d(P^e) -Ic-diTT'
, C2 = IIIc

OIIIc •
(4-23)

If the mass growth occurs isotropically, the growth part of the 
deformation gradient is

Fg — I > (4.24)

where is the isotropic stretch ratio due to volumetric mass growth. 
It readily follows that the velocity gradient in the intermediate confi­
guration is

Fg-F-X = /I. (4.25)

The velocity gradient in the configuration B is accordingly

L = Fe-Fe-1 + /l. (4.26)

Since u>g = 0, the growth part of the rate of deformation tensor becomes

which follows from Eq. (4.19). The rectangular components of the 
elastic moduli tensor £e can be found in Lubarda and Roger (20Q1).

Various forms of the strain energy function were proposed in the 
literature for different biological materials. The articles by Holzapfel,
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Gasser, and Ogden (2000), and Sacks (2000) contain a number of 
pertinent references. Following Fung’s (1973,1995) proposal for vascu­
lar soft tissues modeled as incompressible elastic materials, the follow­
ing structure of the elastic strain energy per unit initial volume is 
adopted

Pg V'e = | ao [exp(Q) - Q - 1] (4.28)

Here, Q and q are the polynomials in the invariants of Ce which include 
terms up to the fourth order in elastic stretch ratios, i.e.,

Q = (Ic - 3) + a2 (IIC - 3) + a3 (Ic - 3)2 , (4.29)

q = fa (Ic - 3) + fa (IIC - 3) + fa (Ie - 3)2 . (4.30)

The incompressibility constraint is I lie — 1 = 0, and the pressure p 
plays the role of the Lagrangian multiplier. The a’s and /3’s are the 
material parameters. In order that the intermediate configuration is 
unstressed, we require that /?i — 2 /32 = Jp-

4.8 Evolution Equation for Stretch Ratio

The constitutive formulation is completed by specifying an appropriate 
evolution equation for the stretch ratio i?g. In the particular, but for the 
tissue mechanics important special case, when the growth takes place 
in a density preserving manner (pg = p°), we have from Eq. (4.25)

tr ■F; ') =3 7 = 7 ■ (4-3i)

Thus, recalling that rg/p = p^ the rate of the mass growth = 
dp°/dt can be expressed in terms of the rate of stretch i?g as

= (4.32)
Vg
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Upon integration of Eq. (4.32), using the initial conditions 7?° = 1 and 
= p°, we obtain

Pg = P°^- (4.33)

We propose as an evolution equation for the stretch ratio i?g the 
following expression

i?s = A(^g,trTe). (4.34)

The tensor Te is the symmetric Piola-Kirchhoff stress with respect to 
intermediate configuration 13 g where the stretch ratio i?g is defined. For 
isotropic mass growth, only spherical part of this tensor is assumed to 
affect the change of the stretch ratio. This can be expressed in terms 
of the Cauchy stress a and the elastic deformation as

trTe = Je B”1 : <r . (4.35)

The simplest evolution of the stretch ratio incorporates a linear de­
pendence on the stress, such that

i?g = ^(^)trTe. (4.36)

This implies that the growth-equilibrium stress is equal to zero (i.e., 
i?g = 0 when trTe = 0). The coefficient k# may be constant, or 
dependent on 7?g. For example, k# may take one value during the 
development of the tissue, and another value during the normal matu­
rity. Yet another value may be characteristic for abnormal conditions, 
such as occur in thickening of blood vessels under hypertension. Other 
evolution equations were also suggested in the literature, motivated by 
the possibilities of growth and resorption. The most well-known is the 
evolution equation for the mass growth in terms of a nonlinear function 
of stress, which includes three growth-equilibrium states of stress (Fung, 
1990). The material parameters in these expressions should be specified 
in accordance with experimental data obtained for the particular tissue. 
This is clearly an essential aspect.of the future research. Appealing tests 
include those with a transmural radial cut through the blood vessel, 
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which relieves the residual stresses due to differential growth of its 
inner and outer layers. The opening angle then provides a convenient 
measure of the circumferential residual strain, as discussed by Liu and 
Fung (1988,1989), Humphrey (1995), Taber and Eggers (1996), and 
others.

5. CONCLUSIONS

The application of the multiplicative decomposition of the defor­
mation gradient in non-linear continuum mechanics is reviewed. The 
essential features of the resulting constitutive formulations in thermo­
elasticity, elastoplasticity, and biomechanics are given. In thermoelasti­
city and phenomenological polycrystalline plasticity the use of the de­
composition may be considered as optional, since the respective con­
stitutive formulations can proceed with or without it (e.g., Truesdell 
and Noll, 1965), although some results derived on the basis of the­
rmoelastic decomposition appear to be more suitable for direct incor­
poration of experimental data for temperature dependent elastic modu­
li, thermal expansion, and specific heats (Vujošević and Lubarda, 2002). 
Also, various kinematic and kinetic aspects in the analysis of the par­
tition of the stress and strain rates in phenomenological elastoplasticity 
are more transparent when addressed in the framework of the de­
composition. This is particularly the case when large elastic defor­
mations accompany plastic deformations, as occurs under explosive and 
dynamic loadings (Clifton, 1983). Furthermore, there was an important 
application of the decomposition in damage-elastoplasticity (Lubarda, 
1994; Lubarda and Krajcinovic, 1995), where plastic deformation si­
gnificantly affects the initial elastic properties of the material. In single 
crystal plasticity the multiplicative decomposition was commonly adop­
ted as the most sound basis for the constitutive analysis of slip-induced 
large elastoplastic deformations (Havner, 1992; Lubarda, 2002). The 
application of the decomposition in the analysis of the stress-modulated 
growth of pseudo-elastic soft tissues in biomechanics, such as blood 
vessels and tendons, is more recent and least explored (Rodrigez et al., 
1995). The extent of the decomposition’s utility for such problems, in 
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spite of some early promising results (Klisch et al., 2001; Lubarda and 
Hoger, 2001), remains to be seen.
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