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Abstract

The theoretical borders of the uniqueness domains of the conte­
mporary hot-wire probes specified for simultaneous 3-D vorticity me­
asurement are analyzed, assuming the ideal sensors of infinite lengths. 
It is shown that 9-wire probes possessing 3 asymmetrical ”T” arrays, 
theoretically reaches the maximal possible uniqueness cone of 26.5° 
half-angle at the sensors geometrical angles of 45°. It is proven analyti­
cally that triple-orthogonal array possesses the largest uniqueness range 
among the triple- wire configurations, of 35.26° half-angle. However, 
adding the 4th sensor, to each of the 3 ”T” arrays of the 9-wire probe, 
what gives the 12-sensor probe, enlarges the uniqueness cone to the 
38.8° half-angle, for the infinite wires mounted at geometrical angles of 
45°. In contrast to the triple-sensor probes and vorticity configurations 
possessing such arrays, the uniqueness range of quadruple probes and 
adequate vorticity probes can be enlarged by decreasing the sensor * ** 
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geometrical angles. For the angle of 40°, the uniqueness cone half-angle 
reaches 41.8°, for ideal sensor. Optimizing the interpretation procedure 
slightly encrease the half angle of the uniqueness cone, for only 0.4°.

OBLAST JEDINSTVENOSTI 
TRODIMENZIONALNIH SONDI ZA MJERENJE 

VRTLOŽNOSTI - TEORIJSKE GRANICE

Izvod

Data je analiza teorijskih granica oblasti jedinstvenosti savremenih 
sondi za mjerenje tri komponente vrtložnosti, sa idealnim senzorom 
beskonačne dužine. Dokazano je da sonda sa 9 senzora odnosno tri 
T konfiguracije ima maksimalni konus jedinstvenosti 26.5°, sa uglom 
senzora od 45°. Trostruko ortogonalna konfiguracija ima najveći konus 
jedinstvenosti od 35.26° u poređenju sa ostalim konfiguracijama sa tri 
senzora. Međutim, dodavanjem četvrtog senzora na T konfiguracije 
sonde sa devet senzora, oblast jedinstvenosti se povećava na 38.8°, 
sa uglom senzora od 45°. Za razliku od sondi sa tri i devet senzora, 
oblast jedinstvenosti sondi sa četiri i dvanaest senzora se može povećati 
smanjenjem ugla senzora.

1. INTRODUCTION

A common approach in modeling the mechanism of hot-wire sensor 
cooling is based on the relation Ue = /(E), between the ” effective 
cooling velocity” Ue of the sensor by the surrounding flow, and the 
resulting output anemometer voltage drop E. Up to date, a variety 
of less or more accurate expressions for both the Ue and f(E) have 
been formulated, as can be seen in Bruun 1995, Vukoslavčević and 
Petrovic 2000, etc. However, the fourth-order polynomial

f(E) — clq + cij • E 4- a,2 • E% 4- #3 • E$ 4- U4 • E4. (1.1)

is generally accepted as the most accurate representation of f(E\ The 
effective cooling velocity is a complex function of the fluid velocity 
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vector and calibration constants. The most frequently used are the 
components {7, V and W, defined in the coordinate system fixed to the 
probe stem, (Fig. la,c) and the fluid velocity vector components that 
correspond to the local coordinate system of the sensor itself: normal 
component Un orthogonal to the wire and lying in the prongs plane, 
binormal component Ub orthogonal to the plane formed by the wire 
and its prongs, and the tangential component Ut collinear to the wire 
axis, Fig. lb, i.e.

ue = ffix(U, V, W) = floc{Un, Ub, Ut\ (1.2)

Obviously, components U, V, W and Uni Ub, Ut are related, because 
they represent the same fluid velocity vector in different coordinate 
systems Oxyz and Onbt, i.e.

UQ = U'i + V -j + W-k = Un-n0 + Ub-b0 + Uft0. (1.3)

The simplest example corresponds to the so-called ” normal single­
wire probe”, with a single sensor orthogonal according to the prongs 
direction in horizontal plane. For such probe, both of these two coordi­
nate systems are identical and, therefore, Un = U, Ub = V and Ut = W, 
Fig. la. However, for the wire inclined at geometrical angle a toward to 
the normal to the prongs direction, placed in an arbitrary plane forming 
an angle /3 toward the horizontal plane, these relations are functions of 
the parameters defining the wire orientation (see figs, lb, c).

The basic theoretical concept of hot-wire probe response assumes 
the infinite length of the probe sensors. Consequently, conductive heat 
transfer from hot-wire ends to the prongs can be neglected, as well as 
the prongs aerodynamic blockage that may result in the local accelera­
tion of the real flow in the sensor’s vicinity (i.e. within the probe sensing 
volume). It means that, for an infinitely long (ideal) wire, the effective 
cooling velocity Ue is equal to the component Un of the fluid velocity 
vector, orthogonal to the sensor’s longitudinal axis (see figs. la,b),

U2N = U2 + U^. (1.4)

Calculation of Un and, therefore, Ue also, is very simple in this case: 
the intensity Uq of the instantaneous fluid velocity vector Uq multiplied
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Fig. 1 A fluid velocity vector Uq represented in different Cartesian 
coordinate systems, assuming the probes aligned to the mean flow 
direction defined by z-axis: (a) a normal single-wire probe lying in 
the horizontal plane,/? giving U = Un,V = Ub and Ut = W; (b) a 
local system fixed to a wire inclined at geometrical angle a and placed 
in a plane forming an angle /? toward the horizontal plane and (c) a 
coordinate system fixed to the mean flow direction.
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Tails of fluid Uniqueness

(a) (b)
Fig. 2 Fluid velocity vectors giving the same response of an infinite 
hot-wire, according to Willmarth 1985: (a) the axonometric view (b) 
the side view. Adapted from: Dobbeling, Lenze and Leuckel 1990.

by the cosine of angle i/> (see figs. la,b) formed by the vector Uq and 
the normal to the wire axis

U2e = U2 + U2 = U2n = (t/o • cosirf. (1.5)

Because of the cosine function included, expression (1.5) is usually 
designated as ” the cosine law”. It shows that an infinitely large number 
of different Un and Z7b(Z7o and ^) combinations exist, which give the 
same Ue. Directly, different fluid velocity vectors may generate the same 
hot-wire response. Therefore, each specific set of hot-wire anemometer 
output signals can give multiple solutions, i.e. ” measured” velocity 
components - the well-known ” uniqueness” or ”rectification” problem 
(Tutu and Chevray 1975). Its complexity grows up with increasing 
the number of sensors, making the analysis of multiple hot-wire probes 
directional response, which is in the focus of the present paper, to be 
a common problem related to experimental researching of turbulence.

An illustrative graphical representation of an ideal infinitely long 
hot-wire response to the possible fluid velocity vector directions, which 
follows the ”cosine law” (1.5), is given by Willmarth 1985, Fig. 2.
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Fig. 3 Fluid velocities giving the 
same signal of a finite-length (real) 
wire. Source: Dobbeling, Lenze 
and Leuckel 1990a.

He showed that infinite 
number of possible 
fluid velocity vectors 
of various magnitudes 
and directions give the 
same wire response. 
Their tips lay in the 
center of the sensor 
and the tails are on the 
cylinder of infinite length 
(Fig. 2a). In the case of 
two sensors, an infinite 
number of possible fluid 
velocity vectors, giving 
the same wire response, 
will be defined by the 
intersection curve of 
those two cylinders. 
Finally, in the case 
of three sensor probe, 
there could be up to 8 
intersection points.

In comparison to the ideal hot-wire, the cooling mechanism of a 
real finite-length sensor is very complex and has to be described by a 
formula that accounts for all 3 fluid velocity vector components. The 
empirical law of Jorgensen 1971

Ul = Ui + k2 • U2 + h2 ■ U2. (1.6)

still belongs to the topics in highly accurate description of hot-wire 
sensor cooling mechanism. Graphical illustration of (1.6) is an offline 
contraction of a rotational ellipsoid, Fig. 3, with half-axes a, 6, c giving 
k = c/b and h = cl a for the calibration constants in (1.6).

Although the response of a finite-length sensor is much more co­
mplex in comparison to the ideal wire, general conclusions relating the 
probe uniqueness range are similar. As it can be seen from (1.6) and Fig. 
3, an infinite number of fluid velocity vectors of different intensities and 
directions also exist for a real sensor, giving the same J7e. And, in full 
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analogue to the ideal wire, an infinite number of possible fluid velocity 
vectors with the same intensity, but of the various directions giving 
the same wire response, exist in the plane normal to the wire axis. 
It follows that basic analysis, providing general relationships between 
the 3-D probe uniqueness range and its geometry, can be successfully 
performed assuming infinite ideal sensors.

2. PRESENT SITUATION

To measure simultaneously the 3-D turbulent vorticity vectors, very 
accurate measurements of all 3 fluctuating components of the insta­
ntaneous fluid velocity vectors are needed, demanding at least the same 
number of hot-wires.

However, as it is expla­
ined in the previous

z X

Fig. 4 A sketch defining the uni­
queness cone.

”x chapter, hot-wire’s se­
nsitivity toward the 
fluid velocity direction 
is not unique, what 
limits the applicability of 
each vorticity-type and 
velocity-type 3-D probe 
to a certain angular 

where theirrange,
output signals enable 
unique determination of 
the fluid velocity vectors.

Geometrical shape of such angular range depends primarily on hot­
wires configuration and the applied signal interpretation procedure, 
but also on the manufacturing technology, magnitudes of the measured 
flow velocity vectors, etc.

However, this ” uniqueness domain” (also known as the ” uniqueness 
range”) is ordinarily described by a conical surface known as the ” uni­
queness cone”, Fig. 4, which half-angle e is a direct measure of a 
probe angular applicability. Theoretically, each specified probe can 
be applied only in the flow which turbulence level is small enough 
to guarantee that maximal angle 8 of the instantaneous fluid velocity
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vectors toward the probe axis is smaller than e. In practice, the problem 
is resolved by introducing the so-called ” threshold' involved in the 
signal interpretation procedure. This routine checks the instantaneous 
orientation of a measured fluid velocity vector, and rejects those falling 
out from the uniqueness cone, i.e. when 5 > e (for angles definitions 
see Fig. 4).

(c) (d)
Fig. 5 Typical "triple" hot-wire configurations: (a) a front view of” T” 
probe; (b) an axonometric view of ” T" configuration; (c) a front view 
of an orthogonal "Mercedes" - "M" geometry and (d) an axonometric 
view of " M" probe. Figs, (b) and (c) are adapted from Rosemann 
1989.

It is known that Jorgensen’s empirical formula, as well as the other 
most common hot-wire cooling equations, may not be very accurate 
representations of hot-wire probe response to the fluid velocity close to 
the the angular uniqueness range borders. Therefore, especially when 
an extremely accurate measurements of fluid velocity are needed, as 
for vorticity mesurements, the "acceptance cone" half-angle may be 
intentionally decreased in comparison to the analogue ” uniqueness co­
ne" half-angle. Unfortunately, involving the threshold in the interpre­
tation procedure of 3-D hot-wire probe output anemometer signals can
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not completely resolve the problem. Rejecting the data lying out from 
the uniqueness cone distorts the required information related to the 
flow of interest, especially the higher-order statistics. Therefore, the 
additional efforts have been made to enlarge the uniqueness domain of 
3-D triple-wire probes.

Up-to-date, two main classic types of triple-wire probes, capable 
of simultaneous 3-D fluid velocity vectors measurement, have been 
designed: ”7” configuration (Fig. 5a,b) and ” orthogonal triple-sensor 
probe” (Fig. 5c,d), designated also as ” Mercedes” or ” M” type in the 
further text. Standard ” 7”-configured hot-wires are mounted at 45° 
toward the probe longitudinal axis (Fig. 5b). Two sensors lay in the 
same plane forming ” V” geometry, while the 3~rd is in the vertical 
plane. Vukoslavčević and Wallace 1983 showed that half-angle of 
uniqueness cone of ” T’ probe is 26.5° for the ideal probe possessing 
sensors of infinite length, and only 17.5° for their real miniature probe 
at velocity magnitude below 1 m/s. In spite of this problem, ” 7” 
configuration is still used as an array of the 9-wire vorticity probe, 
because of the simple design and signal interpretation procedure.

The ’’Mercedes” geometry (Fig. 5c,d) is the most commonly used 
triple-sensor probe. It contains 3 mutually orthogonal sensors lying 
in the planes that form 3 identical angles of 120°. Simple geometrical 
analysis shows that sensors are inclined at a = 54.74° toward the probe 
longitudinal axis, giving the geometrical wires angle of 35.26°.

An illustrative mathematical explanation of the uniqueness problem 
is given by Lekakis, Adrian and Jones 1989: The non-uniqueness of 
the solution of hot-wires response equations can not be totally elimina­
ted because the Jorgensen’s 1971 equations are invariant under cha­
nges of the sign of velocity vector. Hence, the ambiguity is at least 
two-fold, for any sensor arrangement and for any number of cylindrical 
sensors”. Also, if one wish to measure the turbulence fluctuations, hot­
wire sensors has to be out of the prongs wakes, as well as out of the 
wakes of other sensors. Therefore, with classic hot-wire technology, 
whatever the large number of sensors is used, the angular applicability 
of a stationary probe is limited to a hemisphere. Up-to-date, only 
Holzapfel, Lenze and Leuckel 1994 have reported the quintuple 
(5-wire) probe, which uniqueness domain maybe can reach this limit. 
Their belief is based on the fact that at least signals of the 3 sensors
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(from the total number of 5 wires placed in the planes that mutually 
forms angles of 72°) are out from the wakes of the other hot-wires and 

prongs within a hemi­
sphere. There were some

Fig. 6 ’’Plus” probe of Dobbeling, 
Lenze and Leuckel 1990a, similar 
to the arrays of the 12-wire vorticity 
probes.

attempts in the past, 
by Acrivellis 1980 
and Kawai, Shokr 
and Keffer 1983 for 
example, related to 
the application of the 
special non-orthogonal 
triple-wire configurations 
for studding the flows 
whose turbulence levels 
are higher than those 
in which the standard 
triple-orthogonal (Me­
rcedes) probes can be 
successfully applied. 
Analogue approach, for 
the crossed hot-wire
probes containing two 
sensors, was reported 
by Blanco-Marigota, 
Ballesteros-Tajadura 
and Santolaria 1998.

However, Lekakis, Adrian and Jones 1989 and Roseman, Sta­
ger and Kreplin 1996 reported that the uniqueness range of the triple 
hot-wire probes can not be extended beyond the uniqueness domain 
border of the triple-orthogonal (Mercedes) configuration, theoretically 
found to be 35.26°. Also, they have found that angular sensitivity 
of the triple probes decreases with increasing the wires angle toward 
the probes axis, what means that sharper probe provides the smaller 
uniqueness range and higher angular sensitivity toward fluid velocity 
and vice versa.

Therefore, at present level of standard hot-wires technology de­
velopment, it has become generally accepted that further enlargement
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of the uniqueness domain of 3-D hot-wire probes demands introduction 
of additional wires. ” Quadrate” configurations with 4 sensors, initially 
developed for the longitudinal vorticity measurement by Kovasznay 
1950 and finalized by Vukoslavčević and Wallace 1981, also enable 
simultaneous 3-D turbulent velocity vector measurements. However, 
the most common contemporary quadruple configuration, specified for 
3-D velocity measurement, is the so-called ”plus” probe sketched in 
Fig. 6. It is also applied as an array of the most sophisticated vorticity 
probes possessing 12-sensors.

3. THE OBJECTIVE

The ideal sensors, of indefinite lengths, and therefore without the 
prongs influence, provide the largest possible acceptability range for the 
multiple probe of each specific geometry. Thus, such kind of analysis 
should give the upper limits, i.e. the maximal possible boundaries of 
angular applicability of each specific hot-wire probe configuration.

Obviously, these boundaries can’t be reached by a real probe pos­
sessing finite hot-wires. Still, the goal of the probe designers should 
be to provide the uniqueness cone that is close as possible to these 
theoretical borders. This can be achieved by the optimal probe design, 
combined by the sophisticated signal interpretation procedure.

(a) (b) (c)
Fig.7 The 9-wire probe: (a) a side-view, (b) probe assembly and (c) 
a front view. Adapted from: Vukoslavčević, Wallace and Balint 
1990.
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Present analysis is focused to the upper limits of the uniqueness 
ranges of 2 probes specified for simultaneous 3-D measurement of the 
turbulent velocity, velocity gradient and vorticity vectors: the 9-sensor 
probe of Vukoslavčević, Wallace and Balint 1991 presented in
Fig. 7, and the 12-wire probe of Vukoslavčević and Wallace 1996, 
which photograph is presented in Fig. 8.

Following the standard measuring principle of most contemporary 
vorticity hot-wire probes, which assumes the simultaneous 3-D fluid 

velocity measurement 
at 3 adjacent locations 
lying in the plane ortho­
gonal to the main flow 
direction, both the 9-wire 
and the 12-sensor probes 
consist of the 3 mutually 
identical arrays. As it 
can be seen in Figs. 
7 and 8, the numbers 
and configurations of 
hot-wire sensors included 
in each array of these 
vorticity probes are 
different: 3 wires of 
”T”-configuration and 4

Fig.8 The 12-sensor probe of Vuko- sensors of ”+” geometry, 
slavčević and Wallace 1996. respectively.

Each single array of these vorticity configurations also represents an 
independent probe for 3- D measurement of the fluctuating fluid veloci­
ty vectors, which uniqueness cone defines the applicability of the co­
mplete vorticity probe. Therefore, our analysis is concentrated to the 
probes specified to measure 3-D velocity vectors, primarily ”T” and 
”+” configurations, but also to the triple-orthogonal geometry array, 
included in the 9-wire vorticity probe of Honkan 1993.

A special algorithm was developed following the 9-wire and 12- 
sensor probes interpretation procedure of Vukoslavčević and Walla­
ce 1996 and its optimized variant, proposed by Petrović 1996.
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4. PHYSICAL BACKGROUND
99

(a) (b)
Fig. 9 A sketch of the coordinate system for: (a) ”T” and ”+” probe 
and (b) for Mercedes geometry.

The cooling mechanism of infinite hot-wires based on the ” cosine 
law” (1.5), gives the following formulas for the sensors of the ”T” and 
”+” geometry and coordinate system drawn in Fig. 9a:

U^ = U^ = (U-cosa-V-sina)2+ w2, (4.1)

U22 = U2N2 = (U-cosa — W -sina)2 + V2, (4.2)

U23 = U2nz = {U- cosa 4- V • sina)2 + W2, (4.3)

Ue4 = UN4 = (U -cosa + w -sina)2 + v2. (4.4)

By analogue, adequate expressions were developed for the triple ” Me- 
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rcedes" probe, Fig. 9b:

U2el = U2N1 = (U • cosa - V • sina)2 + W2, (4.5)

U22=zU^2={Ucosa+Vsinasin(3—Wsinacos/3)2+(<Vcosl3+Wsin(3)2 (4.6)

U23=U^3=(Ucosa+Vsinasin/3+Wsinacosfl)2+(Vcos/3 — Wsin/3)2 (4.7)

It is suitable to define the uniqueness domain border of a given 
hot-wire probe in the polar coordinate system, over the full range of 
0 — 360° of a polar angle 0 that is related to the ratio of the spanwise 
fluid velocity components

tan <9 = WfV. (4.8)

Keeping the 0 (i.e. the ratio W/V) constant, and increasing jaw angle 
99 of the fluid velocity vector, defined as

tg<p = Vs/U = W2 + W^/U, (4.9)

the maximal angle Vcr, which still guarantee the unique solution of 
hot-wire response equations can be found for each given angle 0. This 
VCR represents the border angle of the probe angular uniqueness do­
main, for the chosen 0. For the geometrically asymmetric probes, the 
angular uniqueness domain border, defined by vcr, is usually different 
in x — O — z plane (V = 0 <=> 0 = 90°, 270°) and x — O — y plane 
(IV = 0 O 0 = 0°,180°), and depends on the ratio of Wor angle 
0, according to expression (4.8). This way, a uniqueness domain, either 
symmetric or asymmetric, depending primarily on the possible probe 
geometrical asymmetry, can be defined for each specific hot-wire probe 
geometry.

However, it is more convenient in the experimental practice to use 
the so-called "uniqueness cone", defined by the half-angle £, sketched 
in Fig. 4, which is defined as the minimal value of <f>CR in the whole 
range of 0(0 — 360°). Therefore, the uniqueness cone is the conical 
surface of the largest possible half-angle £, that can be drawn within 
the more complex surface representing the angular uniqueness domain 
of hot-wire probe.
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5. ANALYTICAL SOLUTIONS FOR THE TRIPLE-WIRE 
CONFIGURATIONS

5.1 Analytical solutions for the ”T” probe

Rejecting one of the two available wires (no. 1 or no. 3) placed in 
the vertical plane of the ”+” probe, sketched in Fig. 9a, two triple­
wire ”T” configurations arise, which responses are described by the 
expressions (4.1), (4.2) and (4.4), or the formulas (4.2), (4.3) and 
(4.4). The analytical solutions presented in further text are formulated 
following Vukoslavčević and Wallace 1983, who showed that criti­
cal case for ”T” probe, possessing the lower sensor no. 3 in the vertical 
plane, arises at W = 0 and high positive V component.

Fig. 10: Functions F = F(V), for various V/U ratios. Source: Vuko­
slavčević and Wallace 1996.

1° The first special case, W == 0(0 = 0°, 180°)
A ”T” probe possessing wires no. 1, 2 and 4 (Fig. 9a) described by 

the equations (4.1), (4.2) and (4.4), gives for W = 0:

U21 = (Ucosa — Vsina)2 = U2’(cos2a — kysin2a + ky • sin2a), (5.1)

U22 = U24 = (U • cosa}2 + V2 = U2 * (cos2a + k2v\ (5.2) 
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where ky — V/U = tan<p. Assuming {7 = 1, the expressions (5.1) and 
(5.2) give the following equation:

({7e2x - U22sin2a)- ky+U22sin(2a)- ky + ^U^ - U22)- cos2a = 0 (5.3)

Under assumption of U = 1, the function f(ky) (5.3) becomes 
f(V). It is of the 2~nd order for ky, what results in 2 possible (real 
or imaginary) roots for ky or V component. When the discriminant of 
(5-3)

D = (Z722sin2o)2 -4(1721 - U22sin2a) ■ kv + - U22) ■ cos2a (5.4)

equals to zero, the characteristic function (5.3) touches the abscissa, 
as shown in the Fig. 10, giving only one real root, ky — kycr. The 
uniqueness range is, therefore, defined by ky < kycr, or V < Vcr. 
There will be only one intersection of characteristic function f(V) 
inside that range, i.e. the only one real root. Above this range 2 real 
roots can appear. The expression (5.4) can be reduced, after simple 
transformation, to

D = U2.[Uh - U22(l + sin2 a)] (5.5)

After introducing the definitions of Uei and {7e2, according to (5.1) and 
(5.2), it is clear that borders of the uniqueness domain in this case are 
reached when

U2i = 0 kVcrl = ctga (5.6)

and

„ O •> (5.1),(5.2)
U2! — U22 ■ (1 + sin2a) = 0--------- » kvcr2 = -sin(2a)/2 (5.7)

for positive and negative V, respectively. The critical angle, defining 
the maximal spanwise velocity component with only one real root will 
be

./y-2 I |y2 /y2
tan^i.2 = Vlcr+JlcL = Vlcr = (5,8)

giving a value of <pcri = atan(cotana), for positive V and y>cr2 = 
atan([—sm(2a)/2], for negative V. For a = 45°, we have 92^1 = 45°
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and ipcr2 — —26.5°. The latter value agrees with Vukoslavčević and 
Wallace 1983, with the logical difference in the algebraic sign. They 
have reported +26.5°, because their ”T” probe, possessing the lower 
wire (i.e. sensors no. 2, 4 and 3 in Fig. 9a) was symmetrically oriented in 
comparison to our analyzed case, which assumes the ”T” configuration 
with the upper sensor in the vertical plane, containing hot-wires no. 1, 
2 and 4 according to Fig. 9a.

2° The second special case, V = ±W(0 = 45°, 135°, 225°, 315°)
In order to provide a referent ’’check points” for the results of our 

numerically simulated ”T” hot-wire responses of the ”T” probe, acco­
rding the different fluid velocity vectors, we have extended the analysis 
to additional cases. For the fluid velocity vector orientations giving V = 
W, the response equations (4.1), (4.2) and (4.4) of the ”T” geometry 
transform to the two second-order equations: 
U\ = C7?2 = (U • cosa — V • sina)2 4- V2 =

= U2 • (cos2a — ky • sin2a + ky • sin2 a + ky), (5-9)

C724 — (JJ . cosa + V • sina)2 + V2 =

= U2 • (cos2a + ky • sin2a + ky • sin2a + ky). (5.10)

These two equations give, after simple algebraic transformations, 
the following equation:
(sin2 a + 1) • (U^ - U24) • k^ + sin2a • (U^ + U24) • ky+

+(^1 - ^e4) • cos2a = 0. (5.11)

Thus, the problem is now focused to the solution of equation:

D = sin22a ■ (U2t+U24) -4 • (sin2a+1) • cos2a ■ - U24)2 = 0 (5.12)

which can be transformed, after introducing (5.9) and (5.10), to the 
fourth-order equation

D = [(sin2a + 1) • ky - cos2 a]2 = 0. (5.13)

It follows that the borders of the uniqueness domain in this case are 
reached at:

cosa
kvcrl,2 = ± , =• (5-14)

y sin^a + 1
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However, V = W, thus giving

&Vcrl,2 = (5.15)

Therefore, the critical angle of the fluid velocity vector toward the probe
axis is defined as

tan^ - —u— - ~~u~ ~ a/2 • cosa 
\J sin2 a + 1

• feycrl,2 — i

=> V’crio — ±atan
%/2 • cosa 

\/sin2a + 1
(5.16)

The same <pcr is obtained for V = — W. For the wire geometrical angle 
of interest, a = 45°, <pcr = ±39.2°.

3° The third special case, V — 0(0 = 90°, 270°)
In this special case, a fluid velocity vector lies in the Oxz plane of 

the probe coordinate system sketched in Fig. 9a. For the fluid velocity 
vector orientations, satisfying the V — 0, the response equations (4.1), 
(4.2) and (4.4) of the ”T” hot-wire configuration give the following 
formulas:

U2X = (U ■ cosa)2 + W2, (5.17)

{7e2 = (U • cosa — W ■ sina)2, (5.18)

^e4 = ’ cosa + ’ sina)2. (5.19)

Now, in contrast to the previous 2 special cases, 3 hot-wire response 
equations exist for evaluation of 2 unknown velocity components U and 
W(V = 0). Thus, it is possible to form 3 combinations consisting of 2 
equations, in order to calculate U and W. Combining the formula (5.17) 
for the vertical wire no. 1 with (5.18) or (5.19) (sensors no. 2 or no. 
4, Fig. 9a) gives the two sets of equations analogue to (5.1) and (5.2)) 
discussed in the case no. 1°. Critical values for these combinations are 
therefore identical as in the case no 1°. However, now we can use the 
outer (large) boundaries combining these 2 combinations (wires no. 1,
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4 and 1, 2, respectively Fig. 9a). They give 
kycri,2 = ±ctana => <pCri,2 = ±(90° - a), or

¥>cri,2 = ±45° for a = 45°. (5.20)

If the expressions (5.18) and (5.19) for the horizontal sensors no. 2 
and no. 4 (Fig. 9a) are combined, a typical ”V” hot-wire configuration 
arise. However, whatever combination of the sensors is used, the same 
results for the critical kycr (^1,2) values arise:

5.2 Analytical solutions for the ’’Mercedes” probe

Following Rosemann 1989 and Rosemann, Stager and Kre- 
plin 1996, among others, the most critical situations related to the 
angular uniqueness range of the ’’Mercedes” configuration (sketched in 
Fig. 9b) arise when the fluid velocity vector lies in the sensor’s plane. 
Therefore, the problem can be analyzed in any of 3 different angular 
planes that mutually form the 120° angles. We have chosen the vertical 
plane containing the wire no. 1 (see Fig. 9b) defined by W = 0, for 
the analysis. In this case, expressions describing the hot-wire cooling 
velocities, i.e. (4.5), (4.6) and (4.7), reduces to:

U2r = (U • cosa — V • sina)2 = U2(cosa — ky • sina)2 =

= U2(cos2a — ky • sin2a + ky • sina), (5.21)

and
f V V 3

U22 = U23 = (U - cosa + — • sina j + -V2 =

= U2 • (cos2a + — • sin2a + • sin2a + 7 • ky) . (5.22)
\ 2 4 4 /

Using the approach applied in the section 5.1, the following characteri­
stic equation arises after combining (5.21) and (5.22): 
(1 3 \
- • sin2 a ■ U2t + - • U2X — sin2 a ■ U22 j ■ ky+

/ Tj2 \
+sin2a + U22 • kv + cos2a(U^ - U22) = 0. (5.23)
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Again, the angular border of the uniqueness domain is reached when the 
discriminant of the characteristic equation ((5.23) in this case) equals 
zero:

D = U2el • [U2t - (3 • sin2a + 1) • U22] = 0. (5.24)

This condition is satisfied if one of these two factors is zero.
1° U2! cosa — sina • ky = 0 => kycri — ctga =>

=> ‘Peri = 90° - a (5.25)
2° Uei - (3 ■ sin2a + 1) • U22 = 0 (5.26)

After introducing definitions of the effective cooling velocities Uei 
and Ue2, (5.21) and (5.22) respectively, the latter formula transforms 
in the more practical form

527z2ct
ky • (sin2a + 1) + sin2a = 0 => kycr2 =----------- -— =>

1 + szn2a

^cr2 = OttM
sin2a \

1 + sin2 a J
(5-27)

For the sensor geometrical angle a — 35.26°, which defines the ortho­
gonal triple-wire (Mercedes) geometry, the uniqueness cone is limited by 
the smaller of these 2 values of <pCri,2( 45° and —35.26°, respectively), 
i.e. by (pcr2 = -35.26°. Negative algebraic sign of ipcr2 corresponds to 
lower part of the Mercedes probe, where V component is negative. The 
same critical value, originating from a quite different approach, was 
also reported by Dobbeling, Lenze and Leuckel 1990a.

5.3 The optimal choice of hot-wires geometrical angles relating the 
uniqueness cone

Following Vukoslavčević and Wallace 1983, the optimal hot­
wires geometrical angle a, which provides maximal half-angle e of the 
”T” probe uniqueness cone, was found by equaling the first derivative 
of (5.7) to zero:

j = 0 => cos (2 a) = 0 => &opt — 45°.
da (5.28)

It follows that 9-wire probe, possessing 3 arrays of 3 ”T” configured 
sensors mounted at 45° toward the probe axis provides the largest 
possible uniqueness cone for that configuration.
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Similarly, the uniqueness cone borders of the ” Mercedes” configu­
ration were analyzed. Equaling the first derivative of the expression 
(5.27) gives the optimal geometrical angle of the sensors:

d{ky} 1 — 3 • sin2a
da (1 + sin2a)2

V3 n
— 0 => sina =---- => olopt — 35.26.

3
(5.29)

For a = 35.26°, the second derivative of (5.27) is negative. Therefo­
re, for the ’’Mercedes” probe with ideal (infinite) sensors, at these wires 
angle provides the largest uniqueness cone of 35.26° half-angle.

Fig. 11 A sketch of the coordinate 
system fixed to a test-rig, and
a mechanism enabling angular probe 
calibration by <p and 0 angle variation.

It follows, from 
the theoretical point 
of view, that ”T” 
probe comparing to 
” Mercedes” probe 
consequently decre­
ases the uniqueness 
cone for about 
35.26° - 26.5° ~ 9°. 
However, ”T” probes 
are less exposed to 
the influence of the 
fluid velocity gradi­
ents, in a boundary 
layer for example, 
because of the smaller 
vertical dimension 
(Vukoslavčević and 
Petrovic 1997).

5.4 A proposal of a mechanism for testing the uniqueness ranges of 
3-D probes

Presented analytical approach can be tested experimentally in a 
calibration mechanism shown in Fig. 11. Varying the angles (p and 0, 
different flow realizations of Z7, V and W can be induced, according to 
the formulas:

U = Uq • cos<p, (5.30)
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V = Uq • sinp • cost), (5.31)

W = Uq • sinp • sinf). (5.32)

and effective cooling velocities measured. The uniqueness domain bo­
rder is determined by varying the angle p, for a given 6 or the ratio 
W/V, until the critical value p = defined by (5.8), is achieved.

6. FUNDAMENTALS OF THE NUMERICAL SIMULATION 
OF ”T” AND ”+” HOT-WIRE PROBE RESPONSES

To check the angular response of hot-wire probe, fluid velocity ve­
ctors of different orientations have been simulated. The unity magni­
tude of fluid velocity vector was assumed, Uq = 1, because it is not 
of interest in these theoretical analysis. The angles 0 and y>, which 
defines the ratios of simulated components U, V and W were varied 
in the ranges 0° - 360° and 0° - 60°, respectively. On the base of the 
components J7, V, W calculated according to (5.30-5.32), the effective 
cooling velocities Ue\, Ue2, Ue± that represents the response of the simu­
lated ideal ”T” probe (Fig. 9a) were evaluated according to expressions 
(4.1), (4.2) and (4.4).

After simple rearranging, (4.2) and (4.4) give, respectively:

^e2 ~ = ’ C0Sa ~ ' s^na> (6.1)

~V2 = U• cosa + W • sina. (6-2)

These expressions enable formulation of the longitudinal U and lateral 
W fluid velocity component as functions of the transversal V compo­
nent and effective cooling velocities for the sensors no. 2 and 4:

U = • (1/^-^ + #e24- V2) ,
2 • cosa \ V e- V e4 y (6-3)

<6-4>
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(c) (d)
Fig. 12: Functions F = F(V), for the ideal ”T” probe possessing infinite 
wires: (a) ip = -15.0°, (b) <p = -26.5° and (c) <p = -35.0° and (d) the 
orientation of a simulated probe of ”T” configuration.

After introducing the (6.3) and (6.4) in (4.1), the following function 
F(V) arises:

^(V) = U\ - [| - v’ + vt'i - V’)
- 2

— V sina

1
4 • sin2 a

This ’’characteristic” function can be used for the analysis of the 
uniqueness domain of hot-wire probe. In the regular situations, a set 
of 2 solutions usually exists. However, in the critical situation, just 
at the border of uniqueness domain, a single root exists only. This 
property of F(V) is used in order to find the angular domain of the 
probe applicability. Of course, after evaluating the adequate root of 
(6.5), i.e. the value of the transversal V fluid velocity component, the 
U and W component can be evaluated from (6.3) and (6.4).
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Fig. 12 presents the characteristic curves F = F(V) for different 
ratios V/U and W = 0. It clearly shows that the curve F = F(V) moves 
up and down, depending on the angle p of the induced fluid velocity 
vector toward the probe axis. At small angles of the fluid velocity, like 
p = —15° that belongs to the uniqueness domain, the curve F(V) has 
2 real roots, false V = —0.558 and true one V = —0.259 of the smaller 
absolute value. Increasing p moves the F(V) up. Thus, at the critical 
jaw angle p = —26.5°, just at the border of the uniqueness domain, 
F(V) touches the abscissa, giving a single root V = —0.447.

After this point, further increasing the p moves the curve F(V) 
down and two roots exist again. For example, at p = —35°, we have 
one true root V = —0.574 and a false V — —0.355. Unfortunately, out 
from the uniqueness domain, the root of the larger absolute value is 
true. Therefore, out from the uniqueness cone limited by half-angle e = 
26.5°, the signal interpretation procedure is not capable to make clear 
distinction between the true and false solutions of hot-wire response 
equations of ”T” probe. It means that each specific hot-wire probe has 
to be applied only within its uniqueness domain.

On the base of this property of F(V) function, i.e. searching for 
the values of p when the F(V) touches the abscissa, we have tested 
the simulated response of a ”T” probe and found the uniqueness range 
borders. Following Vukoslavčević and Wallace 1996, the ”+” probe 
was also analyzed, treating it like two joint ”T” configurations posses­
sing the wires no. 1, 2, 4 or 2, 3, 4 (see Fig. 9a).

7. BASIC RESULTS OF THE NUMERICAL SIMULATION OF 
”T” AND ”+” HOT-WIRE PROBE RESPONSES

The uniqueness domains and cones of the ”T” and ”±” probefe 
with infinite ideal wires oriented at 45° toward the probe axis are 
presented in Fig. 13. The first of them, ”± 45”, has the upper wire no. 
1 in the vertical plane, while the other, ”T45” has the lower wire no. 
3. These are identical probes, but symmetrically oriented. Therefore, 
their uniqueness domains are also mutually symmetrical according to 
abscissa. However, each of these two domains is asymmetrical by itself, 
according to abscissa, because of the geometrical asymmetry of ”T” 
configuration. Thus, on the side of existing hot-wire, the uniqueness 
domain reaches the larger jaw angle of p = 38.8°, while on the opposite
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Fig. 13: The uniqueness domains of two symmetrically oriented triple­
wire ”T” configured ideal probes.

side this angle is only 26.5°. For illustration, it can be mentioned that 
the larger value arises between 0 — ±55°, ±60° and smaller at 0 — 180°, 
for ± 45 probe (Fig. 13). For the T45 probe, situation is symmetrical 
according to abscissa. Obviously, the smaller ip value defines the half­
angle of uniqueness cone of these probes, i.e. e = 26.5°.

These results are in agreement with the finding of Vukoslavčević 
and Wallace 1983. They experimentally confirmed the asymmetry of 
the uniqueness domain in total, as we did here in much more details by 
numerical simulation. The basic idea of Vukoslavčević and Wallace 
1996 was to design a symmetrical probe by introducing the 4“t/l sensor 
to each of 3 arrays of the 9-wire probe. Consequently, the 12-sensor 
probe arose.

The new symmetrical geometry enabled them to develop the pro­
cedure that chooses the better one, between the 2 sensors lying in a 
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vertical plane, for each instantaneous orientation of the non-stationary 
fluid velocity vector. Consequently, the 4-wire array was treated as 2 
triple-sensor probes: ”T45” and ”± 45” resolving the problem related 
to their geometrical asymmetry that causes the asymmetry of their 
uniqueness ranges.

Fig. 14: The uniqueness cone of the ”+” configured infinite sensors, 
altered in the vertical plane only, following the basic procedure for the 
twelve wire probe.

Presented results of our analysis show that this idea was correct. 
In the ideal case related to infinite sensors, illustrated in Fig. 14, the 
introduction of the 4~th wire and involving the new interpretation 
procedure, enlarges the uniqueness cone from 26.5° in the case of ”T” 
configuration with 3 wires, to 38.8° in the case of quadruple 
configuration (Fig. 6).

As can be seen in figs. 13 and 14, the angular boundaries of qua­
druple configurations are symmetrical and, therefore, significantly over 
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the boundaries of ”T” geometry on the side of missing sensor. Consequ­
ently, this advanced property enlarged the uniqueness cone of 4-wire 
configurations. As it was expected, the angle 38.8° is also over the 
analytically found value of 35.26° for the half-angle of the uniqueness 
cone of the orthogonal triple-wire (”Mercedes”} probe drawn in figs. 
5c,d. To increase the accuracy of turbulent velocity field measurement, 
Petrovic 1996 have optimized the procedure for signal interpretation 
of quadruple hot-wire probes.

Fig. 15: The uniqueness cone of the ideal ”+” configurations possessing 
wires mounted at geometrical angles of 45° and 40°, altered in both the 
vertical and horizontal plane.

Among other advanced properties, his algorithm selects not only 
the better one between the 2 sensors placed in a vertical plane, as 
Vukoslavčević and Wallace 1996 did, but chooses the 3 best sensors 
from the 4 available, including both the vertical and horizontal wires. 
Using his approach, 4 differently oriented ”T” probes can be combined,
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giving uniqueness cone of 39.2° half-angle, for the probe possessing 
^wires of 45° geometrical angle. The uniqueness domain of such probe 
is drawn by thin solid line in Fig. 15. The resulting half-angle of the 
uniqueness cone is enlarged for only 0.4°(39.2° — 38.8°), comparing to 
the basic procedure. Having in mind the expected negative influences 
of the end-wire cooling by cold prongs as well as of the aerodynamic 
blockage effect of prongs, this profit may be significantly decreased in 
the case of a real quadruple probe.

With intention to enlarge the uniqueness cone, some quadruple pro­
be designers, like Samet and Einav 1987 for example, have mounted 
the sensors at geometrical angle of 40°. Consequently, the sensitivity of 
such configurations was insignificantly decreased in comparison to the 
sensitivity that can be achieved at 45°. Following this idea, we have 
simulated the response of the ideal ”T” and ”+” probes (possessing 
infinite hot-wires) mounted at different geometrical angles. As it can be 
seen from the Fig. 15, the uniqueness domain of ”+” probe possessing 
wires mounted at 40° is enlarged in comparison to configuration defined 
by wire angles of 45°. The difference between their uniqueness cones is 
evident: 42.35° toward 39.2° half-angle, if approach of Petrovic 1996 
is used for the signal interpretation. However, if the basic interpretation 
procedure is used, these angles are 41.8° and 38.8°, respectively. Thus, 
decreasing the wire angle for 5° enlarges the uniqueness cone for about 
3° in the ideal case, i.e. for infinite sensors.

This property is an important advantage of the quadruple probes in 
comparison to triple configurations, which angular domain of applica­
bility can not be enlarged by increasing the wire angle over 35.26° for 
”Mercedes” configuration and over 45° for ”T” probes. However, these 
conclusions are based on the idealized problem, what means that the 
uniqueness cone enlarging will be smaller in the practice, i.e. for the 
real probes. Still, the presented results are useful, because they provides 
the clear trends for further possible improving the design of quadruple 
probes.

8. CONCLUSIONS

The proposed approach is very convenient to define the asymmetry 
of the uniqueness domain, as a function of the ratio W/V, of different 
types of multi-sensor probes. The minimum value of the angle
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determined for each specific polar angle 0 in the whole range 0° — 360°, 
defines the uniqueness cone half-angle £, for a given type of the probe. 
Results reported by other authors, has been confirmed in the case of 
triple wire probes. A detailed analysis of the 4-sensor probe, based on 
the choice of 3 optimal out of 4 available sensors is presented. Altering 
only 2 vertical or horizontal sensor, mounted at geometrical angle of 
45°, the angular range is increased for 38.8° — 26.5° = 12.3° comparing 
to the ”T” probe, and 38.8° — 35.26° = 3.5° according to the triple 
orthogonal probe. Using the optimized approach in selecting the best 
sensor combination, the uniqueness range is additionally increased for 
only 0.4°, again for the wire geometrical angle of 45°. The proposed 
approach is also convenient to analyze the influence of the wire incli­
nation angle on uniqueness range. Reducing this angle from 45° to 40° 
increases the minimal angle of uniqueness cone for 41.8° — 38.8° = 3° 
only in the case of 4-sensor probe, confirming the approach of Samet 
and Einav 1987, who have designed their probe using the wire angle 
of 40°, although without any explanation. In the case of triple sensor 
probe the effect of reducing the inclination angle is opposite. Presented 
results have to be experimentally verified and corrected to real values 
that can be achieved in the practice. In the real situation the range will 
be affected by many additional parameters, at first place by the probe 
size and velocity magnitude. However, we believe that presented results 
still provide a clear guideline in the probe design at current borders of 
existing technology.
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