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BENDING OF STRUCTURAL ELEMENTS OF THE 
HELICAL SHELL SHAPE

A b s t r a c t

In this paper a derivation of differential equation in displacement for 
helical shell whose parametric equations of the middle surface are: x = 
^cos#2, y = 01sin^2, z = k02, 01,#2 = r,<p (r,<p polar coordinates), 
01 G(a, 6), 02(E(—oo,-|-oo) is given. The shell is clamped on helix = a 
and free on helix 02 = b. The uniform pressure acts upon the shell. 
The restricted theory of shells is employed as a starting point for all 
derivations because we cannot use results of the classical shell theory. 
The reason for this is that the mixed coefficient of the second funda­
mental form of the surface is B12 / 0 i.e. coordinate lines aren’t lines 
of curvature. We assume that the displacements in tangent plane of the 
middle surface Ui, U2 can be neglected in comparison with displacement 
along normal U3 and all derived kinematical measures aren’t functions 
of 02. In special cases, for k = 0 and k = 00 we obtain known equations 
for circular plate with hole and infinite length plate, respectively. The 
equation is solved numerically. These results are compared with those 
obtained bye FEA software code Pro/MECHANICA.
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SAVIJANJE KONSTRUKCIJSKIH ELEMENATA 
OBLIKA ZAVOJNE LJUSKE

Izvod

U ovom raduje dato izvođenje diferencijalne jednačine po pomjera- 
nju za zavojnu ljusku, čije su parametarske jednačine srednje površi: 
x — ć^cos#2, y = ć^sin#2, z = kd2, dv,d2 = r,(p (r,<p polarne 
koordinate), d1 € (a, &),02 E (—oo,+oo). Ljuska je ukliještena na za­
vojnici d1 = a i slobodna na zavojnici d2 = b. Jednoliko raspoređeni 
pritisak djeluje na ljusku. Resta teorija ljuski se koristi kao polazna 
tačka za sva izvođenja zato što nismo mogli koristiti rezultate klasične 
teorije ljuski. Razlog za ovo leži u činjenici da je mješoviti koeficijent 
druge fundamentalne forme površi B12 0, tj. koordinatne linije nisu
linije krivine. Predpostavili smo da se pomjeranja u tangentnoj ravni 
ui, U2 mogu zanemariti u poređenju sa pomjeranjem u pravcu normale 
U3 i da izvedene deformacijske veličine nisu funkcija od d2. U specijalnim 
slučajevima za k = 0 i k — 00 dobijamo poznate jednačine za kružnu 
ploču sa otvorom i ploču beskonačne dužine, respektivno. Diferenci­
jalna jednačina je riješena numerički. Ovako dobijeni rezultati su upo- 
ređeni sa podacima dobijenim korišćenjem programa za MKE 
Pro/MECHANICA.

1. INTRODUCTION

Structural elements of the helicoidal shell shape are met at continual 
transport devices - helical transporters, bulidnigs machines, particularly 
machines for cleansing of snow, mining machines and so on. In thes 
paper is given a derivation of the differential equation in displacement 
for the helicoidal shell.

2. THE GEOMETRIC CHARACTERISTICS OF THE 
HELICOIDAL SURFACE

The parametric equations of the middle surface of helicoidal shell 
which is investigated are

Xi = x = d1 cos d2, X2 = y = d1 sin d2, X3 — z = kd2, .
(1)
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where parameters 01,02 are equivalent to polar coordinates r, <p.
The covariant base vectors Aa are*

Ai — R i = cos#2i+ sin#2j + Ok, , .
A2 = R,2 = —sin ^2i + cos 6,2j + kk,

where R is position vector and comma denotes partial differentiation 
with respect to 9a- coordinate. The unit normal A3 to the surface is

A3 = ■■-1 X --= ———— [k sin #2i — k cos #2j + 0xk]. (3) 
|A,xA2| + k2]V2L JT J

The coeficients (covariant) of the first fundamental form in case of 
helicoidal surface are

An = Ai • Ai = 1,
A12 = A2i = Ai • A2 = 0, (4)

A22 — A2 • A2 = (^x)2 + k2.

For the helicoidal surface, the covariant coeficients of the second 
fundamental form are

Bn = A3 • Aij = 0, 
k

B12 = B2i = A3 • Ai 2 = - ---------------- 7777, (5)
[(01)2 4-k2]1/2

B22 = A3 • A2,2 = 0,

since the mixed coeficients are

k k
Bx = 0, B2 =------------------- —, B2 =------------------- 777, B2 = 0. (6)

[(^1)2 + k2]3/2 [(^1)2 + k2]1/2

The necessary and sufficient conditions that coordinate curves on 
surface be lines of curvature are A12 = 0 and B12 = 0. As the second 
condition is not satisfied then the generators and the helices are not 
lines of curvature, so that we must use appropriate relations in invariant 
(tensor) form. These relations are given in [1],

All Greek indices have the range 1,2
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3. THE BASIC KINEMATIC MEASURES

The basic kinematic measures will be derived according to so - 
called restricted theory which is a special case of the general theory of 
Cosserat surface. In the general theory, to every point of the middle 
surface od shell besides position vector is assigned deformable vector 
called director which can be rotated and linear deformed independently 
on deformation in that point. The relations of the restricted theory 
can be derived by considering the first and second fundamental form 
for thmed configuration of shell. We can express the basic kinematic 
measure in form

ect/3 d“ Ba/3U3, (7)

Xa/3 [u3|a/3 d~ 4" BaU;,|a — Xa/3 — X/3a, (8)

where vertical bar denotes covariant derivative. We record here only the 
basic kinematic measures in physical components which are of interest 
in our analysis [2]

e<12> 2[(6>1)2+* 2]1/2 862 +2|. 8ffl («')2+ifc2“<2T W+it5"3 

2*  du<2> , 2W1 , <9% k3
X<n>- (el)2+F dgl + [(01)2+jS.2]2“<2>+5(W’“ [(0i)2+F]2“3

_ _ 2k du<r> 1 <92u3 01 du3
x<22>~~ [(0i)2+fc2]3/2 do2 + ot2+p d{o2y + (^)2+p

k2
[(^)2 + P]2

4. THE EQUATIONS OF EQUILIBRIUM

Taking into account the balance of linear momentum for shell are 
leading to the following equations

N“^|O - B!’N»3 + poF* 3 = 0, N“3|„-Bo/3N^ + p0F3 = 0. (10)



Bending of Structural Elements of the Helical Shell Shape 215 

The remaing equations of equilibrium are being obtained by considering 
the balance of moment of momentum. They are:

- Na3 = 0, ePa [Na/3 - B“M7/3] = 0. (11)

When the shell is loaded by uniform pressure along normal, that is 
PoF<3> — — p, and clamped on 01 = a, we assume that all static 
quantities do not depend on coordinate 02.

Now we introduce the different set of components of contact force. 
By considering the sixth equation of equilibrium written in form 
N^ — - [B^M7/3 — B^M7O:] (N^ is skew - symmetric part of N°^), 

2
contact force components can be expressed as

N^ = j^a/3 + (12)

where stands for certain symmetrical component. We assume that 
= 0 in order to obtain a determinate theory. By substituting N13 

and N23 from (ll)i,2 into (10) on account of (12), we obtain three 
equations. We only employ this one:

d2M<n> 201 dM<n> 01 dM<22>
(o^y + k2 de1 (e^y + k2 

2k2 2k
[pi)2 + F]2 <22>”(^)2 + F

de1

■N<12> = P
(13)

5. THE CONSTITUTIVE RELATIONS

The constitutive relations in restricted theory can be expressed as

1W = CHa^7<5e7<5, Ma/3 = -BHa/Mx7<h (14)

= 1 [a«7A/3<5 + A^A^7 + i/(2A^A75 - Aa7A^ - A^A^7)],
2 (15)

where C, B stand for extensional and flexural rigidity respectively. The 
physical sonstitutive equations for characteristic force and couples are

N<12> = C(1 - ,
M<11> = — B x<ll> + yX<22>. i 
M<22> = — B X<22> + I/X<11> •

(16)
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6. THE DIFFRENTIAL EQUATION OF BENDING OF 
HELICOIDAL SHELL

As we consider only bending of the shell we supose that the dis­
placements u<i>, u<2> are small in comparison to u<3> which is in fact 
well known assumption made in the theory of shallow shells. Helicoidal 
shell is just a shallow one because of its small Gaussian curvature 
for r >> 0. By (9) and (16), after neglecting d/d<p, we can establish 
relations between force, couples and displacement U3. By substituting 
these relations into (13), after lenghty but simple tion, we finally obtain 
the differential equation of bending of helicoidal shell

d4us 2r d3U3 r2+k2(z/ —1) d2Us r[r2+k2(3z/+4)] dti3 
dr4 ”l~r2+k2 dr3 (r2 + k2)2 dr2 (r2 + k2)3 dr

r n (17)
2k2(t/-|-l)(3k2-8r2) f 24(1 - z/)k2 ( p

+ (r2 + k2)4 + h2(r2 + k2)2 U3 + B = °’ 

where h is shell thicknes. In special case, for k =0, we have equation

d4U3 2 d3U3 1 d2U3 1 dus p 
dr4 r dr3 r2 dr2 r3 dr B

or (18)
ldf d Fl d / du3\l p

r dr I dr [r dr \ dr / J B

which is well known differential equation of bending of circular plate 
(with hole) under axial symmetric pressure. In other special case, for 
k —> 00, we obtain

d4u3/dr4 = -p/B (19)

which represent the differential equation of bending of infinite plate 
into cilindrical surface [3].

At the end of this chapter we must define boundary conditions. We 
need four boundary conditions as the differential equation is of fourth 
order. On the helix r =a they depend on displacement since on the 
helix r=b they depend on couple and force. As the displacements u<ce> 
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have been neglected, the boundary conditions are
- on the helix r=a: u3 =0 u3, <9u3/5z/0 =o (<9u3/<9z/o); (18)
- on the helix
- r=b: 0G = M;\oMp3 =o ^(M^) - d/dso^Mg^oZ'    ], (19) 
where by index zero before appropriate quantity is denoted its values at 
boundary curve in undeformed state. The terms in boundary conditions 
have following meanings: QUa are the components of the outward unit 
normal to the boundary courve; d/dv®, d/ds® denote the directional 
derivatives along the normal and the tangent; oG,o P3 represent couple 
and force along normal to the boundary curve.

7***

In our case, the boundary curves are helices. Then the unit normal 
is qu = Ai, the derivative with respect to j/q coincides to derivative 
with respect to r, the derivative with respect to sq is proportional 
to derivative with respect to <^(dso = vb2 + k2d^) so that it can be 
omitted. The helix r=a is clamped therefore qu3 = 0 and o(du3/dr) = 0. 
The helix r = b is free and so 0G = 0 and qP3 = 0. The boundary 
conditions can be expressed as follow:

- on the helix r=a: u3 - 0, —= 0;
dr

- on the helix r=b: M  = 0, MU + M?,1 = 0 
or after substituting:

11

d2u3 vr duz A?2(i/+1
dr2 + r2 + k2 dr (r2 + k2')2 3 ’

d3u3 r d2ua 1 du3 4&2(z/ + l) 
dr3 ”1” r2 + k2 dr2 r2 + k2 dr (r2 + &2)3 3 

7. THE NUMERICAL SOLUTION

The equations (17) cannot be solved in a closed form, so that
we have to find out the solution numerically. For concrete values of 
quantities B = 1.172 [Nmm], p = 0.15 [N/mm2], v = 0.3, a = 130
[mm], b = 200 [mm], H = 140 [mm], k = H/27r,h = 4 [mm] maximum 
value of the function u3 is for r = b and it equals to -0.4105 [mm]. 
We compared this result with one obtained by FEA software code
Pro/MECHANICA. It is modelled helicoidal shell with 3 spirals and the 
same parameters as previous. The points on the helix r — b sufficiently



218 Sreten Savićević, Vaso Đogović

distant from the generators 9? = ±3tf have the same value of displace­
ment U3 equals to -0.4124 [mm].

The obtained and verified results in the paper give the opportunity 
for automatic design of structural elements of the helicoidal shell shape.
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