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O RASPODJELI ATOMA, MISFIT ENERGIJI I

PAIRLESOVOM NAPONU KRISTALNE

DISLOKACIJE

I z v o d

U radu je data analiza Pairlesovog napona za pokretanje dis-
lokacije u kristalnoj rešetki na bazi kombinovanog pristupa na nivou
atoma i na nivou elastičnih deformacija kontinuuma. Posebna pažnja
je posvećena sinusoidnoj relaciji izmedju smičućeg napona i atom-
skog misfita preko ravni klizanja, kao i relaciji izmedju širine jezgra
dislokacije i medjuatomskog rastojanja u pravcu normale na ravan kl-
izanja. Analiza je bazirana na pretpostavci da se radijus dislokacionog
jezgra periodično mijenja tokom klizanja dislokacije izmedju njenih
ravnotežnih položaja. Materijalni parametri u izvedenom izrazu za ot-
por klizanju su povezani sa odgovarajućim parametrima semi-diskretne
Pairles–Nabaro analize i korespondentnog sračunavanja misfit energije
koristeći dva različita pristupa.

1. INTRODUCTION

In the Peierls [1] model of a crystal dislocation the crystal is imag-
ined to be divided along the glide plane into two elastic half-spaces.
These are separated by the distance h, which is the normal distance
between the atomic planes across the glide plane, and are subjected to
surface displacements of the dislocation in an infinite elastic contin-
uum. The resulting shear stresses on the faces y = ±h/2 are balanced
by the nonlinear atomic interactions across the glide plane. If the
Frenkel sinusoidal force-displacement expression is adopted, the shear
stress is

τxy(x, 0) =
µb

2πh
sin

2πδ(x)
b

, (1.1)

where δ(x) is the slip discontinuity across the glide plane. The associ-
ated atomic disregistry across the glide plane is b/2− δ(x) (for x > 0;
the negative sign precedes the expression for x < 0). The length of
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the Burgers vector of the dislocation is b, and µ is the elastic shear
modulus. The atomistic effects and the lattice discreteness are thus
incorporated into the analysis approximately, by considering them to
be confined within a thin layer consisting of two atomic planes around
the glide plane y = 0. By equating (1.1) to the shear stress due to
an appropriate continuous distribution of infinitesimal Volterra dislo-
cations along the glide plane in an infinite elastic medium, it follows
that

δ(x) =
b

π
tan−1 x

ρ
, ρ =

h

2(1 − ν)
, (1.2)

where ν is the Poisson ration, and ρ = w/2 is the half-width of the
dislocation, which defines the region (−ρ, ρ) where δ(x) < b/4. This
model of a crystal dislocation was used by Peierls [1] and Nabarro [2]
to make the first estimates of the minimum external stress required to
move a dislocation in a perfect crystalline lattice (without thermal ag-
itation). This stress is called the Peierls–Nabarro stress or, in short,
the Peierls stress (τPS). Its determination is of significance for the
physical theories of plasticity and creep [3-5], dislocation-based plas-
ticity theory [6-10], fracture mechanics [11,12], strain relaxation in
thin films [13,14], etc. The Peierls–Nabarro expression for the critical
stress required to move an edge dislocation is

τPS =
2µ

1 − ν
exp

(
− 2π

1 − ν

h

b

)
. (1.3)

Due to the unrealistic sinusoidal interatomic force expression adopted
in the model, and an over-simplified calculation of the atomic misfit
energy in the glide plane, used to derive (1.3), the calculated values
for τPS are an order of magnitude or more higher than those experi-
mentally observed [15-17], or those calculated by the atomistic models
[18-20]. Consequently, continuing attempts were made to improve the
Peierls–Nabarro model and to better link the atomistic and contin-
uum models of crystal dislocations and their properties. Ohsawa [21]
introduced a dislocation into an array of nonlinear shear springs with
different potentials, and calculated the critical stress as the applied
stress beyond which no stable solution could be found. Bulatov and
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Kaxiras [22] constructed a variational approach which incorporates
the discrete nature of the lattice and which is particularly suitable
for narrow core dislocations. Joós and Duesbery [23] derived simple
closed form expressions for the misfit energy and lattice friction stress
for both wide and narrow dislocations, which showed improved agree-
ments with observations over the classical formulation. Miller et al.
[24] devised a non-local version of the Peierls–Nabarro model in which
the atomic level stresses in the slip plane depend in a non-local way
on the slip degrees of freedom. Lu [25] analyzed single vs. double
counting schemes (in which the misfit energies on either one or both
sides of the glide plane are summed), as well as the effect of sam-
pling scheme for different (facing or alternating) crystal lattices, in
which the atoms above and below the glide plane face each other, or
alternate across the glide plane. A two-dimensional extension of the
Peierls–Nabarro dislocation model for straight dislocations of a mixed
character was developed by Mryasov et al. [26] and Schoeck [27,28].
Joós and Zhou [29] presented a new analytical model for calculating
the stress required to move a straight dislocation and a kink in the
dislocation line. Other issues were also addressed in the literature re-
cently, but their discussion is beyond the present scope of this paper.
A recent review by Schoeck [30] can be consulted in this regard.

In this paper we analyze the determination of the Peierls stress
studied from the combined atomistic and continuum elasticity points
of view. A particular attention is given to the study of the sinusoidal
relationship between the shear stress and atomic disregistry across
the glide plane, and the relationship between the dislocation width
or the dislocation core radius and the atomic plane separation across
the glide plane. The analysis is based on the assumption that the
dislocation core radius periodically varies during the glide of the dis-
location between its consecutive equilibrium lattice positions. The re-
sulting material parameters appearing in the expression for the lattice
friction stress are related to those of a semi-discrete Peierls–Nabarro
analysis and their calculation of the misfit energy based on a single
or double-counting scheme. The comparison with some related work
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and with experimental data for both wide and narrow dislocations is
also given.

2. PEIERLS DISLOCATION MODEL

An edge dislocation of idealized Volterra type can be introduced
in an infinite elastic medium by making a cut along the y-axis and by
horizontally displacing the two cut surfaces, relative to each other, by
the constant amount b. The Airy stress function for this plane strain
self-equilibrated state of stress is

ΦV = − µb

4π(1 − ν)
y ln(x2 + y2) , (2.4)

where the superscript V stands for the Volterra type dislocation. The
corresponding in-plane stress components are deduced from

σV
xx =

∂2ΦV

∂y2
, σV

yy =
∂2ΦV

∂x2
, τV

xy = −∂2ΦV

∂x∂y
. (2.5)

In particular, the shear stress is

τV
xy(x, y) =

µbx

2π(1 − ν)
x2 − y2

(x2 + y2)2
, (2.6)

so that, along the x-axis,

τV
xy(x, 0) =

µ

2π(1 − ν)
b

x
. (2.7)

This becomes infinitely large as x → 0, the order of singularity be-
ing 1/x. The singularity is physically due to excessive shearing of
the material produced at the center of dislocation x = y = 0 by the
displacement discontinuity b. To eliminate this singularity, it was pro-
posed in [31] that the displacement discontinuity b along the y-axis
is achieved gradually – by a linear increase over the distance ρ, as
sketched in Fig. 1a. (The consideration of a non-linear increase of
the displacement discontinuity over the distance ρ may also be of in-
terest, particularly in simulating a non-sinusoidal force-displacement
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(a) (b)

Figure 1: (a) A disclinated dislocation produced by a gradual displace-
ment discontinuity from 0 to b along the distance ρ. (b) A continuous
distribution of infinitesimal dislocations simulating a disclinated dis-
location from part (a).

relation along the glide plane, inherent to semi-discrete treatments of
the problem). The physical interpretation of ρ will be given in the
sequel, although it is anticipated from the outset that ρ is related to
the extent of the dislocation core – severely deformed region around
the center of the dislocation. The linear increase of the displacement
discontinuity along the distance ρ can be viewed as a part of the
disclination (wedge dislocation), so that the complete displacement
discontinuity along the y-axis can be figuratively referred to as be-
ing associated with a disclinated dislocation. More precisely, in the
context of the general dislocation theory, a variable displacement dis-
continuity in Fig. 1a represents a Somagliana type dislocation. In
any case, this type of dislocation can be modeled by a continuous
distribution of infinitesimal dislocations of constant density 1/ρ and,
thus, the specific Burgers vector b/ρ. This is sketched in Fig. 1b. By
superposition of the stress fields of infinitesimal dislocations, the total
shear stress along the x-axis is

τxy(x, 0) =
µb

2π(1 − ν)
x

x2 + ρ2
, (2.8)

which is plotted for several values of ρ in Fig. 3. If x � ρ, then
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τxy(x, 0) → τV
xy(x, 0). The shear stress is maximum at x = ±ρ, with

the magnitude

τmax
xy =

µ

4π(1 − ν)
b

ρ
. (2.9)

This maximum stress is only half the shear stress of the Volterra
dislocation at x = ρ, i.e.,

τmax
xy =

1
2

τV
xy(ρ, 0) . (2.10)

For example, if ρ = 2b and ν = 1/3, τmax
xy = 0.06µ. If ρ = h/2(1− ν),

���������������������

��� �	 �� �� �� � � � � 	 ��
����

���

�

Figure 2: The normalized shear stress along the x-axis according to
Eq. (2.8). The normalization factor is τo = µ/4π(1 − ν). The curves
correspond to ρ = b/2, b and 2b. The maximum stress in each case
occurs at x = ±ρ and is equal to τmax

xy = τob/ρ.

where h is the atomic interplanar separation across the slip plane
(introduced in the Peierls semi-discrete analysis of the crystal dislo-
cation), then τmax

xy = µb/2πh, the theoretical shear strength of the
crystal.

The shear stress (2.8), depicted in Fig. 2, has no singularity at
the center of the dislocation core and has the physically anticipated
behaviour away from the center, reproducing there the Volterra dislo-
cation. This shear stress can thus be reasonably adopted as the shear
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stress of the crystal dislocation, produced by a gradual slip disconti-
nuity along the slip plane y = 0. It is precisely the shear stress of the
Peierls dislocation model, provided that ρ is interpreted as one half
the width of the Peierls dislocation, ρ = w/2, w = h/(1− ν), where h

is the atomic interplanar distance across the glide plane [32,33].
Since the normal stresses at y = 0 and y = ρ for the dislocation

model of Fig. 1 are divergent, we adopt from that problem only
the shear stress distribution along the x-axis, and (in the spirit of
a semi-inverse method) search for the corresponding (Taylor-type)
dislocation having the slip discontinuity along the x-axis. Following
Eshelby’s [34] method, we therefore seek the continuous distribution
of infinitesimal dislocations of the specific Burgers vector β(x) along
the x-axis which reproduces the shear stress (2.8). This gives

β(x) =
b

π

ρ

x2 + ρ2
, (2.11)

satisfying the normalization condition
∫ ∞

−∞
β(x) dx = b . (2.12)

The corresponding slip discontinuity along the x-axis, which is defined
as δ(x) = u(x, 0−) − u(x, 0+), where u = u(x, y) is the horizontal
component of the displacement field, is obtained from

δ(x) =
∫ x

0
β(ξ) dξ =

b

π
tan−1 x

ρ
. (2.13)

Note that δ(ρ) = b/4, while for the corresponding Volterra dislocation
δV(ρ) = b/2. The width of the crystal dislocation is, therefore, for-
mally defined as the distance w = 2ρ over which the displacement dis-
continuity across the slip plane is less than b/4 (Fig. 3) (and thus the
atomic disregistry, defined in the Peierls model as φ(x) = b/2 − δ(x),
is greater than b/4). Note also that in the presented derivation the
radius ρ (referred to in the sequel as the core radius) is a free (material
dependent) parameter that can be specified by the actual dislocation
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Figure 3: The slip discontinuity across the glide plane. The width of
the dislocation is defined as the region |x| ≤ ρ within which the slip
discontinuity is less than b/4.

spreading in the material, rather than being constrained by the rela-
tionship 2ρ = h/(1 − ν), as in the classical formulation of the Peierls
dislocation model. †

The Airy stress function for the crystal dislocation is obtained by
integrating the Airy stress function due to infinitesimal dislocations
along the x-axis. Thus, by using Eq. (2.4), we write

Φ = −
∫ ∞

−∞

µβ(ξ)dξ

4π(1 − ν)
y ln[(x − ξ)2 + y2] , (2.14)

which gives

Φ = − µb

4π(1 − ν)
y ln

[
x2 + (y ± ρ)2

]
. (2.15)

†If the gradient of the vertical displacement component, ∂v/∂x, is included in

the Peierls model [32], then 4ρ = (3− 2ν)h/(1− ν), which predicts (1.5− ν) times

larger core radius than in the case when ∂v/∂x is neglected. Both are, however,

usually underestimates of the dislocation spreading in the crystal, although the

dislocation width is indeed expected to be greater for crystals and slip systems

characterized by larger values of h and ν. More realistic, non-sinusoidal, inter-

atomic force expressions give rise to higher estimates of ρ.
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The corresponding in-plane stress components are

σxx = − µb

2π(1 − ν)

{
y ± 2ρ

x2 + (y ± ρ)2
+

2x2y

[x2 + (y ± ρ)2]2

}
, (2.16)

σyy = − µb

2π(1 − ν)

{
y

x2 + (y ± ρ)2
− 2x2y

[x2 + (y ± ρ)2]2

}
, (2.17)

τxy =
µb

2π(1 − ν)

{
x

x2 + (y ± ρ)2
− 2xy(y ± ρ)

[x2 + (y ± ρ)2]2

}
. (2.18)

The upper placed sign corresponds to y > 0, and the lower placed sign
to y < 0. Upon calculating the corresponding strains and integration,
the displacement components are found to be‡

u =
b

2π

(
tan−1 y ± ρ

x
∓ π

2
|x|
x

)
+

b

4π(1 − ν)
xy

x2 + (y ± ρ)2
, (2.19)

v = − b(1 − 2ν)
8π(1 − ν)

ln
x2 + (y ± ρ)2

b2
+

b

4π(1 − ν)
y(y ± ρ)

x2 + (y ± ρ)2
. (2.20)

In particular,

u(x, 0−) = −u(x, 0+) =
b

2π

(π

2
− tan−1 ρ

x

)
=

b

2π
tan−1 x

ρ
, (2.21)

and
δ(x) = u(x, 0−) − u(x, 0+) =

b

π
tan−1 x

ρ
. (2.22)

3. SINUSOIDAL FORCE VS. DISREGISTRY RELATIONSHIP

In view of the trigonometric identity

sin
2πδ(x)

b
= sin

(
2 tan−1 x

ρ

)
≡ 2ρx

ρ2 + x2
, (3.23)

we conclude, by comparing (2.8) and (3.23), that τ(x, 0) and δ(x) are
related by

τxy(x, 0) =
µ

4π(1 − ν)
b

ρ
sin

2πδ(x)
b

. (3.24)

‡In the Peierls–Nabarro model y is measured from the surface of each half-space,

a distance h/2 from the glide plane in the middle of the thin atomic layer between

the two half-spaces.
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Therefore, we deduce rather than assume the sinusoidal relationship
between the shear stress and the slip discontinuity along the glide
plane. Furthermore, if ρ = 0 in the above expression, then δ(x) =
(b/2)|x|/x (Volterra dislocation). The parameter h does not appear
explicitly in our continuum analysis, except that in a crystal dislo-
cation ρ is reasonably expected to depend on the glide system and
therefore on the glide plane spacing h.

An alternative derivation of the shear stress expressions (2.8) and
(3.24), entirely within the continuum elasticity framework, is as fol-
lows. We start with the assumption that the shear stress in the glide
plane is a sinusoidal function of the slip discontinuity along the glide
plane, i.e.,

τx,y(x, 0) = Aµ
b

ρ
sin

2πδ(x)
b

. (3.25)

If the slip discontinuity would be (b/2)|x|/x, this would reduce to the
Volterra dislocation (ρ = 0). Thus, we introduce the core radius ρ in
the denominator of the term b/ρ in front of the sinusoidal function, so
that τxy(x, 0) ∼ 0/0 for the Volterra dislocation. The shear modulus µ

and the Burgers vector b appear in front of the sinusoidal function by
the dimensional analysis. To determine the parameter A, we impose
the condition

τmax
xy (x, 0) = τxy(ρ, 0) . (3.26)

This can be viewed as the condition that specifies the core radius,
within the framework based on the shear stress expression (3.25).
Geometrically, the assumption (3.26) implies, from (3.25), that δ(ρ) =
b/4. To employ this condition, we apply the method of distributed
infinitesimal Volterra dislocations along the slip plane, and write

µ

2π(1 − ν)

∫ ∞

−∞

dδ(ξ)/dξ

x − ξ
dξ = Aµ

b

ρ
sin

2πδ(x)
b

. (3.27)

The solution of this integro-differential equation, for any non-zero A,
is

δ(x) =
b

π
tan−1

[
1

4πA(1 − ν)
x

ρ

]
. (3.28)
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To determine A, we now impose the condition

δ(ρ) =
b

4
⇒ A =

1
4π(1 − ν)

. (3.29)

The relationship between the shear stress and the slip displacement
along the glide plane (3.24) is obtained when (3.29) is substituted into
(3.25). The expression (2.8) follows from (3.25) and (3.28).

Introducing the disregistry immediately across the glide plane as
φo(x) = b/2 − δ(x), and observing that φo → 0 as x → ∞, (3.24)
simplifies at large x to

τxy(x, 0) =
µ

2(1 − ν)
φo

ρ
, x � ρ . (3.30)

4. ATOMIC DISREGISTRY ACROSS THE GLIDE PLANE

The horizontal displacements immediately above and below the
glide plane are opposite and equal to

u(x, 0−) = −u(x, 0+) =
b

2π

(π

2
− tan−1 ρ

x

)
=

b

2π
tan−1 x

ρ
, (4.31)

so that
δ(x) = u(x, 0−) − u(x, 0+) =

b

π
tan−1 x

ρ
. (4.32)

At large x we have

tan−1 x

ρ
=

π

2
− ρ

x
+

1
3

(ρ

x

)3
− · · · , (4.33)

and (4.32) reduces to

δ(x) ≈ b

2
− bρ

π

1
x

, x � ρ . (4.34)

The disregistry between geometric points immediately above and be-
low the glide plane y = 0 will be denoted by φo(x), Fig. 4. This is
defined by

φo(x) =
b

2
− δ(x) =

b

π
tan−1 ρ

x
. (4.35)
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Figure 4: The atomic disregistry φ(x) between the atoms on the planes
y = ±h/2. The disregistry between geometric points immediately
above and below the glide plane y = 0 is φo(x). Initially, the horizon-
tal distance between the corresponding pairs of atoms, or geometric
points, is b/2. If the slip discontinuity across the slip plane is δ(x),
then φo(x) = b/2 − δ(x).

Since
tan−1 ρ

x
=

ρ

x
− 1

3

(ρ

x

)3
+

1
5

(ρ

x

)5
− · · · , (4.36)

from (4.35) we obtain

φo(x) ≈ bρ

π

1
x

, x � ρ , (4.37)

which can also be recognized directly from (4.34).
Suppose that we have discretized the whole continuum by identify-

ing the atomic planes, two of which that are closest to the glide plane
y = 0 being depicted in Fig. 5. The white circles indicate the initial
positions of the atoms, and the black circles their positions after the
creation of the dislocation. The normal distance between the atomic
planes is h. The initial atomic disregistry across the glide plane, b/2,
is reduced by the creation of the dislocation to

φ(x) =
b

2
−

[
u

(
x,−h

2

)
− u

(
x +

b

2
,
h

2

)]
. (4.38)
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Figure 5: The atomic disregistry φ(x) between the atoms on the planes
y = ±h/2. The white circles indicate the initial positions of atoms,
and the black circles the positions of displaced atoms, after the cre-
ation of the dislocation.

Upon using (2.19), this is

φ(x) =
b

2π

(
tan−1 ρ + h/2

x
+ tan−1 ρ + h/2

x + b/2

)

+
bh

8π(1 − ν)

[
x

x2 + (ρ + h/2)2
+

x + b/2
(x + b/2)2 + (ρ + h/2)2

]
.

For large x, the so-defined disregistry becomes

φ(x) = φo(x) +
3 − 2ν

4π(1 − ν)
bh

x
, x � ρ . (4.39)

Geometrically, the difference between the disregistries φ(x) and φo(x)
is sketched in Fig. 5. The second term on the right-hand side of (4.39)
can be interpreted as the atomic disregistry between the atoms imag-
ined on the planes y = ±h/2, according to the Volterra dislocation
model, i.e.,

φV(x) =
b

2
−

[
uV

(
x,−h

2

)
− uV

(
x +

b

2
,
h

2

)]
=

3 − 2ν

4π(1 − ν)
bh

x
, x � ρ .

An additional interpretation of (4.39) can be given in terms of the
displacement gradient ∂u/∂y. Since
(

∂u

∂y

)

y=0

=
3 − 2ν

4π(1 − ν)
bx

x2 + ρ2
,

(
∂v

∂x

)

y=0

= − 1 − 2ν

4π(1 − ν)
bx

x2 + ρ2
,
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we have
(

∂u

∂y

)

y=0

=
3 − 2ν

4π(1 − ν)
b

x
,

(
∂v

∂x

)

y=0

= − 1 − 2ν

4π(1 − ν)
b

x
, x � ρ .

Thus, (4.39) can be recast as

φ(x) = φo(x) + h

(
∂u

∂y

)

y=0

, x � ρ . (4.40)

5. SHEAR STRESS VS. ATOMIC DISREGISTRY

For the sake of comparison with the original Peierls–Nabarro dis-
location model, it is of interest to relate the shear stress τxy(x, 0) to
the atomic disregistry φ(x). A simple relationship is obtained for large
x � ρ. By substituting

φo(x) =
b

2
− δ(x) (5.41)

into (3.24), we obtain

τxy(x, 0) =
µ

4π(1 − ν)
b

ρ
sin

2πφo

b
≈ µ

4π(1 − ν)
b

ρ

2πφo(x)
b

, x � ρ .

After incorporating (4.39), this becomes

τxy(x, 0) =
µ

2(1 − ν)

[
φ(x)

ρ
− 3 − 2ν

4π(1 − ν)
bh

ρx

]
, x � ρ . (5.42)

But, at large x � ρ the dislocation has the features of the Volterra
dislocation, so that

τxy(x, 0) =
µ

2π(1 − ν)
b

x
⇒ 1

2π(1 − ν)
b

x
=

τxy(x, 0)
µ

, x � ρ .

When this is substituted into (5.42), there follows

φ(x)
h

=
[
3 − 2ν

2
+ 2(1 − ν)

ρ

h

]
τxy(x, 0)

µ
, x � ρ . (5.43)

This is a desired relationship between τxy(x, 0) and φ(x).

On Atomic Disregistry, Misfit Energy…



50
16 V.A. Lubarda

We can also establish the relationship between τxy(x, 0) and φo(x)
at large x. This follows by combining (4.39) and (5.42), with the end
result

τxy(x, 0) = µ
[
2(1 − ν)

ρ

h

] φo(x)
h

, x � ρ . (5.44)

In the Peierls–Nabarro model the two elastic half-spaces are sep-
arated by h, and one can require that τxy(x, 0) = µφo(x)/h at large x

(ignoring the strain contribution from ∂v/∂x). The dislocation core
radius is then, from (5.44), necessarily equal to ρ = h/2(1− ν). Since
we are not separating in our analysis the two elastic half-spaces by
the distance h, we do not have a strain measure φo/h in a thin layer
around the glide plane, and therefore our core radius is not necessarily
related to h by ρ = h/2(1 − ν).

An improved estimate of the core radius in the Peierls–Nabarro
model can be obtained as follows. If we assume that the elastic half-
spaces are separated by h, and that

(
∂u

∂y

)

y=0

=
φo(x)

h
=

bρ

πh

1
x

, x � ρ . (5.45)

On the other hand, from (2.19),
(

∂u

∂y

)

y=0

=
b(3 − 2ν)
4π(1 − ν)

1
x

, x � ρ . (5.46)

The comparison of (5.45) and (5.46) establishes the expression for the
core radius

ρ =
3 − 2ν

4(1 − ν)
h . (5.47)

6. PEIERLS STRESS

The elastic strain energy in an infinite medium within a large
radius R around the Peierls dislocation is

E =
µb2

4π(1 − ν)
ln

e1/2R

2ρ
. (6.48)

If a remote shear stress τ is applied, the dislocation will tend to glide
along its slip plane against the lattice friction stress due to interatomic
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Figure 6: The glide of an edge dislocation within the distance 0 ≤ ∆ ≤
b, indicating the change in atomic rearrangement around the center
of the dislocation. Three consecutive equilibrium configurations are
shown.

forces around the glide plane (Fig. 6). In [31] the assumption was
introduced that the radius of the dislocation core changes with the
glide distance ∆ according to

ρ(∆) =
1
2
(ρo + ρ∗) +

1
2
(ρo − ρ∗) cos

2π∆
b

, (6.49)

which is sketched in Fig. 7. This is motivated by the fact that the
atomic disregistry across the glide plane near the center of the dislo-
cation changes as the dislocation glides between its two consecutive
equilibrium configurations (Fig. 8). The corresponding potential en-
ergy is

Π(∆) = E(∆) −
∫ ∆

0
bτ(∆) d∆ . (6.50)

During the quasi-static displacement of the dislocation by an amount
∆, we have

dΠ
d∆

= 0 ⇒ τ(∆) =
1
b

dE

d∆
. (6.51)

Thus,

τ(∆) =
µ

4π(1 − ν)
ρo − ρ∗

ρ
sin

2π∆
b

. (6.52)
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(a) (b)

Figure 7: (a) A periodic variation of the core radius ρ with the disloca-
tion glide distance ∆, according to Eq. (6.49). (b) The corresponding
periodic energy variation according to Eq. (6.48), with the minimum
Eo = E(0) and maximum E∗ = E(b/2).

The maximum value of this shear stress, with respect to ∆, is the
shear stress required to move the dislocation in a perfect crystalline
lattice by amount b. This is called the Peierls stress; the opposite
stress is the maximum lattice friction stress. Therefore,

τPS =
µ

4(1 − ν)
ρo − ρ∗√

ρoρ∗
=

µ

4(1 − ν)

(√
ρo

ρ∗
−

√
ρ∗
ρo

)
. (6.53)

The experimental evidence indicate that dislocations in softer met-
als are characterized by a wider dislocation core and a lower lattice
friction stress. An atomic disregistry across the slip plane for a wide
and a narrow dislocation is schematically shown in Fig. 9. We ex-
pect that the relative change of the dislocation width is far more
pronounced for a narrow than for a wide dislocation, because the
displacement of the center of the dislocation within the distance b/2
notably disturbs the narrow core, whose size is only about b. For
wide dislocations, the outermost atoms at the boundary of the core
are barely affected by the slight motion of the center of the dislocation,
and thus the width of the dislocation is almost unchanged in that case.
Furthermore, the uniform elastic shear strain due to external stress,
γ = τ/µ, increases the atomic disregistry across the glide plane by γh,
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�� �
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Figure 8: A schematic representation of atomic disregistry around the
center of the dislocation in its two consecutive equilibrium configura-
tions. Indicated is the change of the width of the dislocation (w∗ vs.
wo).

which contributes to the decrease of the width w = 2ρ within which
the atomic disregistry is greater than b/4. For soft metals τ is small
portion of µ and thus the contribution from γ to the change of the
dislocation width is small, but for hard covalently bonded crystals τ

can be much higher, which significantly affects the dislocation width.
In view of this, an exponential function, which rapidly decreases with
ρo, suggests itself to describe the relative change of the dislocation
width,§ and we propose that

ρ∗
ρo

= 1 − c exp (−kπρo/b) , (6.54)

where c and k are the appropriate parameters, possibly dependent on
Poisson’s ratio and the temperature. Their values are constrained by
the condition that the second term on the right-hand side of (6.54) is

§An alternative, albeit less appealing, expression for the relative change of

the dislocation width is in terms of an inverse power of the dislocation width,

m(b/wo)
n, where m and n are appropriate parameters. It can be shown that for

wide dislocations this assumption leads to τPS ∼ µ(b/wo)
n, which is an expression

of the type suggested in [35] on the basis of one-dimensional Frenkel–Kantorova

dislocation model; see also [36,37].
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(a) (b)

Figure 9: A schematic representation of atomic disregistry for a wide
(a) and narrow (b) dislocation. The width is formally defined as the
distance over which the atomic disregistry across the slip plane is
greater than b/4.

small comparing to one, for both wide and narrow dislocations. The
factor of π is included in the argument of the exponential function for
convenience; alternatively it could be absorbed in the parameter k.
Thus, with a good approximation, we can write
√

ρ∗
ρo

= 1− c

2
exp (−kπρo/b) ,

√
ρo

ρ∗
= 1+

c

2
exp (−kπρo/b) . (6.55)

When this is substituted into Eq. (6.52), we obtain the following
expression for the Peierls stress

τPS =
µ

4(1 − ν)
c exp (−kπρo/b) . (6.56)

Knowing that the Peierls–Nabarro formula (k = 4), based on a double-
counting scheme to calculate the misfit energy around the glide plane,
significantly underestimates the lattice friction stress for realistic val-
ues of the core radius, although it overestimates the lattice friction
stress if ρ is constrained to be h/2(1− ν), and knowing that a single-
counting scheme (described in the Appendix) decreases the parameter
k by a factor of 2, we adopt the value k = 2. This greatly increases
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τPS. Theoretical elaborations in [38] also support this choice of k. As-
suming that the narrowest dislocations have the core radius ρ0 ≈ b/2
(and thus the width w ≈ b), and assuming that the upper bound for
the lattice friction stress is of the order of 0.1µ, we specify c = 4.

If ν = 1/3 and ρ0 = 2b, the Peierls stress is τPS = 5.25 × 10−6 µ,
while for a narrow dislocation with ρo = b/2 and ν = 1/5, τPS =
5.4×10−2 µ. The experimental values at low temperature for τPS in a
closed-packed Cu is about 5 × 10−6 µ, while in a covalent Si is about
0.1µ. The lower values of the parameter k increase the lattice friction
stress. For example, if the value k = 1.75 is selected (which may be
more suitable at a lower temperature), then τPS = 8×10−2 µ for ρo =
b/2 and ν = 1/5 (Si). The effects of temperature on the Peierls stress
were discussed in [39,40]. The temperature driven vibrations of atoms
lead to uncertainty in their positions, which affects the dislocation size
and the core structure, and thus the lattice friction stress.

7. CONCLUSIONS

We have presented in this paper the solution for the crystalline
dislocation without assuming in advance the sinusoidal relationship
between the shear stress across the glide plane and the correspond-
ing slip discontinuity. This was accomplished by using a semi-inverse
method based on an auxiliary elasticity problem of a disclinated dis-
location. In the presented analysis the core radius ρ is a free material
dependent parameter, specified by the actual dislocation spreading in
a crystalline lattice, rather than being constrained by the relation-
ship 2ρ = h/(1 − ν), as in the classical formulation of the Peierls
dislocation model. Upon introducing the assumption that the core
radius depends on the glide distance of the dislocation between its
consecutive equilibrium configurations, we derived an expression for
the Peierls stress. The elastic strain energy of the whole crystal was
used, rather than the localized misfit energy across the glide plane,
as in the Peierls–Nabarro model. An expression for the Peierls stress
is constructed based on a proposed periodic variation of the disloca-
tion width between its two equilibrium configurations. The material
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parameters appearing in the expression for the lattice friction resis-
tance are related to those of a semi-discrete Peierls–Nabarro analysis
and the corresponding calculation of the misfit energy based on either
single or double-counting scheme. An encouraging agreement with
experimental data for both wide and narrow dislocations is obtained.

The considerations in this paper were restricted to a single edge
dislocation in a perfect crystal. The extension of the analysis to a dis-
location of mixed edge-screw character will be reported elsewhere [41].
The structure of the dislocation core and the width of the dislocation
is affected by the interaction of the dislocation with other dislocations
or crystalline defects, free surfaces, and grain boundaries. For exam-
ple, it is well-known that dislocation core broadens as two opposite
dislocations approach each other; an incipient dislocation ahead of the
crack tip has a broader core than an isolated dislocation away from
the crack tip; the curvature of the dislocation line, kinking of the dis-
location, dissociation of the dislocation into partial dislocations, the
stacking fault energy, and the non-planar dislocation configurations
also have obvious effects on the dislocation core structure and the
resulting Peierls stress. Atomistic simulations of some of these phe-
nomena have already been performed and reported in the literature
[42-44]. The extension of the analysis is also of interest for the study
of nanocrystalline, grain boundary abundant materials [45], in which
some crystals are so small that dislocations in them may not be fully
formed and where the dislocation core interactions, among themselves
and with the nearby grain boundaries, represent an essential aspect
of the overall deformation process.

Acknowledgments
Research support from the Montenegrin Academy of Sciences and

Arts and the NSF Grant No. CMS-0555280 is kindly acknowledged.

REFERENCES

[1] Peierls, R. (1940), Proc. Phys. Soc. 52, 34.
[2] Nabarro, F.R.N. (1947), Proc. Phys. Soc. 59, 256.

Vlado A. Lubarda



57
On Atomic Disregistry and Misfit Energy 23

[3] Cottrell, A.H. (1961), Dislocations and Plastic Flow in Crystals,
Oxford University Press, London.

[4] Havner, K.S. (1992), Finite Plastic Deformation of Crystalline
Solids, Cambridge University Press, Cambridge.

[5] Asaro, R.J. and Lubarda, V.A. (2006), Mechanics of Solids and
Materials, Cambridge University Press, Cambridge.

[6] Lubarda, V.A., Blume, J.A., and Needleman, A. (1993), Acta
Metall. Mater. 41, 625.

[7] Needleman, A. and Van der Giessen, E. (2001), Mater. Sci. Engng.
A 309, 1.

[8] Zbib, H.M., de la Rubia, T.D., and Bulatov, V.V. (2002), J. Eng.
Mater. Tech. 124, 78.

[9] Deshpande, V.S., Needleman, A., and Van der Giessen, E. (2003),
J. Mech. Phys. Solids 51, 2057.

[10] Lubarda, V.A. (2006), Int. J. Solids Struct. 43, 3444.

[11] Rice, J.R. (1992), J. Mech. Phys. Solids 40, 239.

[12] Rice, J.R. and Beltz, G.E. (1994), J. Mech. Phys. Solids 42, 333.

[13] Beltz, G.E. and Freund, L.B. (1994), Phil. Mag. A 69, 183.

[14] Freund, L.B. and Suresh, S. (2003), Thin Film Materials: Stress,
Defect Formation and Surface Evolution, Cambridge University
Press, New York.

[15] Hirth, J.P. and Lothe, J. (1982), Theory of Dislocations (2nd ed.),
John Wiley & Sons, New York.

[16] Wang, J.N. (1996), Mater. Sci. Engng. A 206, 259.

[17] Nabarro, F.R.N. (1997), Phil. Mag. A 75, 703.

[18] Zhou, S.J., Carlsson, A.E., and Thomson, R. (1994), Phys. Rev.
B 49, 6451.

[19] Pasianot, R.C. and Moreno-Gobbi, A. (2004), Phys. Stat. Sol. B
241, 1261.

[20] Anglade, P.M., Jomard, G., Robert, G., and Zerah, G. (2005), J.
Phys. Cond. Matter. 17, 2003.

On Atomic Disregistry, Misfit Energy…



58
24 V.A. Lubarda

[21] Ohsawa, K., Koizumi, H., Kirchner, O.K., and Suzuki, T. (1994),
Phil. Mag. A 69, 171.

[22] Bulatov, V.V. and Kaxiras, E. (1997), Phys. Rev. Lett. 78, 4221.
[23] Joós, B. and Duesbery, M.S. (1997), Phil. Mag. A 81, 1329.
[24] Miller, R., Phillips, R., Beltz, G., and Ortiz, M. (1998), J. Mech.

Phys. Solids 46, 1845.
[25] Lu, G., Kioussis, N., Bulatov, V.V., and Kaxiras, E. (2000), Phil.

Mag. Lett. 80, 675.
[26] Mryasov, O.N., Gornostyrev, Y.N., and Freeman, A.J. (1998),

Phys. Rev. B 58, 11927.
[27] Schoeck, G. (2001), Comp. Mater. Sci. 21, 124.
[28] Schoeck, G. (2001), Acta Mater. 49, 1179.
[29] Joós, B. and Zhou, J. (2001), Phys. Rev. Lett. 78, 266.
[30] Schoeck, G. (2005), Mater. Sci. Engng. A 400-401, 7.
[31] Lubarda, V.A. and Markenscoff, X. (2006), Arch. Appl. Mech.,

in press.
[32] Nabarro, F.R.N. (1967), Theory of Crystal Dislocations, Oxford

University Press, Oxford.
[33] Christian, J.W. and Vitek, V. (1970), Rep. Prog. Phys. 33, 307.
[34] Eshelby, J.D. (1949), Phil. Mag. 40, 903.
[35] Indenbom, V.L. and Orlov, A.N. (1962), Usp. Fiz. Nauk 76, 557.
[36] Hobart, R. (1965), J. Appl. Phys. 36, 1944.
[37] Nabarro, F.R.N. (1989), Mater. Sci. Engng. A 113, 315.
[38] Huntington, H.B. (1955), Proc. Phys. Soc. Lond. B 68, 1043.
[39] Kuhlmann-Wisdorf, D. (1960), Phys. Rev. 120, 773.
[40] Seeger, A. (2002), Z. Metallkd. 93, 760.
[41] Lubarda, V.A. and Markenscoff, X. (2006), Appl. Phys. Lett., in

press.
[42] Teodosiu, C. (1982), Elastic Models of Crystal Defects, Springer-

Verlag, Berlin.
[43] Tadmor, E.B., Ortiz, M., and Phillips, R. (1996), Phil. Mag. A

73, 1529.

Vlado A. Lubarda



59
On Atomic Disregistry and Misfit Energy 25

[44] Wang, G.F., Strachan, A., Cagin, T., and Goddard, W.A. (2004),
Modelling Simul. Mater. Sci. Eng. 12, S371.

[45] Asaro, R.J. and Suresh, S. (2005), Acta Mater. 53, 3369.

APPENDIX: MISFIT ENERGY BASED ON A

SINGLE-COUNTING SCHEME

In the Peierls–Nabarro analysis, ignoring the strain contribution
from the gradient of the vertical component of the displacement,
∂v/∂x, the shear strain in the thin layer between two adjacent atomic
planes across the glide plane (y = 0, x > 0) is

γ(x, 0) =
b/2 − δ(x)

h
, dγ = −1

h
dδ(x) . (A.1)

The misfit energy within the area h∆x is

∆W

h∆x
=

∫ γ

0
τ(x, 0) dγ(x, 0) = −

∫ δ(x)

b/2
τ(x, 0)

1
h

dδ(x) . (A.2)

Upon multiplying by h, and by using the expression (3.24), we obtain

∆W

∆x
= − µb

4π(1 − ν)
1
ρ

∫ δ(x)

b/2
sin

2πδ(x)
b

dδ(x) . (A.3)

The substitution of Eq. (2.13) for δ(x), and integration, gives

∆W

∆x
=

µb2

4π2(1 − ν)
1
ρ

cos2
(

tan−1 x

ρ

)
≡ µb2

4π2(1 − ν)
ρ

ρ2 + x2
. (A.4)

The continuum approximation of the total misfit energy is

D =
µb2

4π2(1 − ν)

∫ ∞

−∞

ρdx

ρ2 + x2
=

µb2

4π(1 − ν)
. (A.5)

In a semi-discrete method of Peierls and Nabarro, the misfit energy
per length ∆x = b, around the dislocation at x = nb within the atomic
plane just above the slip plane is, from (A.4),

∆W =
µb3

4π2(1 − ν)
ρ

ρ2 + n2b2
. (A.6)
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If the dislocation center has moved by αb (0 ≤ α ≤ 1), then according
to the so-called single-counting scheme, in which all atoms above the
slip plane moved by αb, the strain energy of the displaced configura-
tion is

W (α) =
µbρ

4π2(1 − ν)

∞∑
n=−∞

1
(ρ/b)2 + (n + α)2

. (A.7)

Upon the summation, this becomes

W (α) =
µb2

4π(1 − ν)
sinh(2πρ/b)

cosh(2πρ/b) − cos(2πα)
. (A.8)

It can be easily verified that for all ρ greater than about b/2, W is
very nearly equal to

W (α) =
µb2

4π(1 − ν)
[1 + 2 exp(−2πρ/b) cos(2πα)] , (A.9)

which is the Peierls–Nabarro expression corresponding to a single-
counting scheme, with the periodicity of W (α) being equal to 1. The
energy

WP = W (0) − W (1/2) = 4D exp(−2πρ/b) (A.10)

is called the Peierls energy. In a double-counting scheme, the argu-
ment −2πρ/b is replaced by −4πρ/b, and the periodicity of W (α) is
equal to 1/2. The Peierls energy in this case is WP = 4D exp(−4πρ/b).

Returning to the exact expression (A.8), the lattice friction stress
is defined by

τLF = − 1
b2

∂W

∂α
=

µ

2(1 − ν)
sinh(2πρ/b) sin(2πα)[

cosh(2πρ/b) − cos(2πα)
]2 . (A.11)

Its maximum value is obtained from
∂τLF

∂α
= 0 ⇒ cos(2πα) ≈ 2

cosh(2πρ/b)
. (A.12)

Consequently, the Peierls stress, based on a single-counting scheme,
is

τPS = τmax
LF =

µ

2(1 − ν)
sinh(2πρ/b)

sinh2(2πρ/b) − 1
. (A.13)
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Two consecutive approximations of this are

τPS ≈ µ

2(1 − ν)
1

sinh(2πρ/b)
≈ µ

1 − ν
exp(−2πρ/b) . (A.14)

The last expression is sufficiently accurate approximation of (A.13) for
any ρ > b/2. Thus, the coefficient k = 2 in the exponential argument
of Eq. (6.54) is supported by the Peierls–Nabarro model based on a
single-counting scheme to calculate the misfit energy across the glide
plane. By combining (A.10) and (A.14), we find that τPS = πWP/b2.
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