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Abstract

In this paper we consider a convex programminig problem in Hil-
bert space and establish one property of Lagrange multipliers. This
property can be applied for construction of one numerical algorithm of
minimization.
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O JEDNOM SVOJSTVU LAGRANZOVIH
MNOZITELJA

Izvod

U radu se razmatra zadatak konveksnog programiranja u Hilber-
tovom prostoru i utvrdjuju svosjstva Lagranzovih mnozitelja. To svoj-
svo moze biti koriéeno za konstrukciju numeric¢kog algoritma minimi-
zacije.
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0. Let H be a Hilbert space and let f : H — R. Wew shall examine
the following minimization problem:

f(z) > inf,ecU={z € H:—g(z) € K}. (1)

where K is a closed and convex cone in normed linear space X, whose
vertix is 0, and g : H —X. If we define the relation < on the space X
by

z<yifand onlyify — z € K,

then the set U can be written as
U=z€H:g(z)<0. (2)

Note that the cone K can be described by K = {z € X : 0 < z}. Its
dual cone K* = {A € X* : (Ve € K)(\,z) > 0} defines, in the similar
way, the relation < on the space X™.

For the problem (1), (2) Lagrangian L is defined by

L(z,\) = f(z) + (A, g(z)), z € H,XA € K*. (3)

In this paper we suppoose that some of the following conditions are
satisfied:

(I) f is convez on H;

(IT) g is convez on H;

(III) f s strong convez on H;

(IV) for every A € K*, XA # 0, function p(z) = (A, g(z)) is strong
convezr on H, :

(V) f,9 € CY(H);

(VI) there exists Z€ H such that —g(Z) € int K (Slater’s condition).

Our results and numerical algorithm which will be suggested, are
based on the following result (see [1 ]):

Theorem 1.Assume (I),(II) and (VI). Then z, is a solution of
problem (1), (2) if and only if there exists \* € K* such that

L(z, A*) = min{L(z,\*: z € H}; (4)

(*,9(zx)) = 0; - (5)
g(z.) 0. (6)



On one property of Langrange multipliers 19

If, in addition, the condition (V) be satisfied, then (4) can be replaced
by

L(20, X) = F/(2:) + (¢ ()N = 0. (7)

Our aim is to solve, exactly or approximately, problem (1). In what
follows we shall suggest one numerical procedure for solving it. The
basical idea of this procedure is to solve the equation (7) (or to solve the
minimization problem (4)) for different values of A and to search among
these values for A whichis satisfactory for (5) and (6). The some idea was
used in [3] and [4] for the construction of generalized moment method.
At the begin, we shall establish some properties of the solutions of (4).
Note that if the condition (III) (or (IV)) is satisfied, then problem (4)
has the unique solution for every A € K*, A # 0.

In the section 1. of this paper we prove that the mapping K* 5 A —
g(z(X)), where () denotes the solution of (4) for given ], is monotone
and continuous. In case when the space X is real line, the corresponding
theorem are proved in [3]. We describe here one numerical procedure
for solving (1),(2) in this case.

In the section 2. we consider the case when the functions f and g
are given by f(z) = ||Az — b||?,9(z) = (¢, z), where A € L(H; H;) is
a continuous linear operator on a Hilbert space H to a Hilbert space
H;; c € H and b € H;. We prove that, if A is normale solvable operator
then our problem has at least one solution. In this section we also show
how the numerical procedure described in first section can be used in
this case.

In the third section the numerical procedure is applied to a pro-
blem of minimization of terminal quadratic function on the solutions
of linear differential equations system.

1. In this section we establish some properties of Lagrange multi-
pliers.

Theorem 2.Let (A1) and z();) be some solutions of problem (4)
for A= X1 and A = X from K*. Then

(9(z(A1)) — g(2(X2)), A1 = A2) 2 0. {8)

If the functions f and g satisfay the conditions (I), (III) (or (II), (IV)),
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(V) and (VI) then problem (4) has the unique solution z()) for every
A € K*\ {0} and the mapping A — g(z())) is continuous.
Proof. The inequalitiy (8) follows from

F(z(M)) + (A, g9(2z(M))) < F(2(X2)) + (A1, 9(z(A2)),

F(z(A2)) + (A2, 9(2(A2))) < F2(M1)) + (Mi2g(2(A1)).

Namely, adding these inequalities we obtan (8).

Suppose now that the conditions (I), (III),(V) and (VI) are sati-
sfied. Then for every A € K* mapping z — f(z) + (), g(z)) is strong
convex on H and problem (4) has the unique solution z(A).

Let A belongs to K*. Using the differential form of the conditions
of convexity we obtain

0 < (Ag'(2(N)" = Ag'(2(X))",2(X) — 2(o)) =
(f'(2(0) = f'(2(2)) + (A = Xo)g'(2(X0)), 2(A) — 2(Xo)) <
~7ll2(A) = 2 I* + I = Xoll - [lg" (M)l - [l2(X) = z(Xo)]I.

Hence,

l2(X) — 2(30)]l < %nx ol - 19" (o).

It follows that A — A implies z(A) = z(X¢) and g(z(A)) = g(z(Xo))-
If the functions f and g satisfy the conditions (II), (IV), (V) and (VI),
then the funtion h : H — R defined by h(z) = (A, g(z)) is strong convex
on H for every A € K*\ {0}. Using again the differential form of this
condition, we obtain that, for A € K*\ {0}, there exists 8 = S(Ag) > 0
such that '

(VA€ KX\{0}) Bllz(\)—z(Xo)|I* < %”A*}\OH'”VC(A)—M)\O)“'”9'(”()\0))”-

We again have that A — A¢ implies z(A) — 2(Xo) and g(z(})) —
g(z(Xo)). O

If the space X is equal to R then these properties and some properti-
es proved in [2] can be efficiently used for finding satisfactory value for A
(and the corresponding solution (). Namely, then from Ag(z(A\)) =0
it follows A = 0 or g(z(A)) = 0. If A = 0, then the solution z = z(0) of
our problem (if it exists) is the solution of the problem of minimization
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f(z) — inf, z € H. If the function f is strong convex, this solution
exists and it is unique. In case when f and g satisfy the conditions (I)
and (III) the set U, of the solutions of our problem can be empty and
then g(z(A) — 400 when A — 0 [3]. If the set U, is nonempty, then
there exists the unique . € Uy, such that g(z.) = inf{g(z) : 2 € U.}
and limy_,0 g(2(A)) = g(z«) (see also [3])

Lagrange multiplier A can be understood then as a parameter of
regularization and the solutionof our problem for which g(z) is minimal
can be found like in the method of regularization. If the satisfactory
value for A is positive we have to solve the equation g(z())) = 0.
Then the mapping A — g(z(A)) is strict monotone or g(z()\)) = const
and g(z(X)) — inf{g(z() : ¢ € H} < 0 (see also [3]). In this case,
the satisfactory value for A can be found by half-section method. It is
important to note that it is not necessary to know in advance if the
satisfactory value for A is zero or positive.

2. Let H and F be Hilbert spaces and A € L(H,F),c€ Hbe F
and B € R. We shall applied the method, described in the first section,
on the following minimization problem:

fe)=llde =B, s € U={e € H:(c,a)<B}.  (9)

Theorem 3.If A is a normal solvable operator then the problem
(9) has at least one solution.

Proof. Notice that an operator A is normale solvable if the set
R(A) = {Az : z € H} is closed. Our proof will be based on the idea of
regularization. Let () be a positive sequance such that o, — 0 when
n — 0o. Denote the unique solution of the following problem

folz) = |4z = B||* + an||z||* — inf,z € U (10)

by z,,. It is easy to see that the sequence (Az,) is bounded. Prove the
boundens of the sequence (z,). It follows, by Kuhn-Tucker theorem,
that there exists a real sequence (7v,), v» > 0, such that

24% Az + Yne + 20z, = 2470, yo((c, zn) — B) = 0.

Let the set M = {n € N : v, = 0} be infinite. It is sufficient to consider
the case M = N. In this case we have that, for every n € N,

24% Az, + 20,2, = 2A7D,
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and z, belongs to R(A*). But, if A is normal solvable then A* is
also normal solvable. Consequently, the subspace R(A*) is closed. The

restriction of operator A on R(A*) has the inverse operator which is
bounded. Hence, there exists a constant m > 0 such that

ml|z,|| < ||Az,|| < ¢, for every n € N,

and the sequence (z,) is bounded.
If the set M is finite, we can suppose that M = (. It follows then
that for every n € N
: Yn=10y (ciz)=10;
But, the space H can be written as
H = R(A™) + Ker A.

Hence z,, = y,, + 2n, where y, € R(A*), z € Ker A.

The boundness of the sequence (y,) can be proved in the similar
way as a boundness of the sequence (z,) in the first part of this proof.
Let K, = {z € Ker A: {¢c,yn + 2) = (¢, z,) = B}. Denote by u, the
element from K,, which has the minimal norm. Then we have

lun|| < milc, 2n — yn)| < const.

Hence, the sequence (u,) is bounded and it follows that the sequence
(z1), !, = ©p + Uy, is bounded also. Besides, (¢, z;) = 8, Az, = Az,
and z!, is a solution of problem (10). It means that 2, = @, and the
sequence (,) is bounded. From the boundness of the sequence (z,) it
follows that it contains a subsequence (z,, ) which weakly converges to
z, € U. Using continuity and convexity of the function f, we conclude
that f(z,,) — f(z.). But, then f,, (z,,) = f(2.) also. By these facts
and by theorem of regularization [2], it follows that z, is the solution
of (9) with the smallest norme. O

Observe that our functions f(z) = ||Az — b||*> and g(z) = (c, z) are
not strong convex and the corresponding equation (7)

A*Az + de= A*D (7

need not have any solution for A = 0. Moreover, if ¢ does not belong
to R(A*) then this equation has not any solution. For this reason we
shall solve the regularized equation

A*Az + az + de= A™D (101
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where « is positive but closed to zero. We shall consider this equation
with the conditions

X((c,2) = B) =0,X > 0,(c,2) < B.
This is connected with the following minimization problem
|Az — b||* + o||z||* = inf,z € U. (11)

If we denote its unique solution by z, and the solution of (9) with the
smallest norm by 2., then [2]

2o — z4|| < const-a. (12)

Approximation Z, of the solution z, can be found by method described
before. From the estimate (12) it follows that z, — #. when a — 0
and we can accept Z, as a approximation for z,,.

Problem of the choise of value for the parametar of regularization c
was considered in [3]. It was supposed there that instead of the operator
A and the vector b are known only their approximations. These results
can be applied to our problem also.

3. In order to ilustrate our method we shall consider the following
optimal control problem:

f(z) =|y(T,z) — z|> = inf, 2 € U = {z € L}[0,T]: (c,z) < B}. (13)
Here y(-, z) is the solution of Cauchy problem
y' = P()y(t) + Q(t)z(t) + 9(¢),0 <t < T, (14)

y(0) = %o ‘ (15)

We suppose that P = P() = (pij(-)Jnxns @ = Q() = (g5(-))oxr, 9 =

g(-) = (9i(*))n are given matrices whose elements belong to L [0, T].

We also suppose that the finite moment T > 0, the begining and desired

states yo,z € R™ are given. Then, for every ¢ € L}[0, T, there exists

the unique absolutely continuous function y = y(-) defined on the whole

[0, T] so that y(0) = yo and (14) holds almost everywhere in (0, T).
The problem (13)-(15) can be writen as

f(z) = ||Az - b||* — inf, z € U = {z € L}[0,T]: {c, z) < B}
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where A : H = L4[0,T] — R" is given by

Az =y(T,2,9=0,y0 = 0)

and
b=z—-y(T,z2=0,9,y0)-

Hence, problem (13)-(15) is a special case of the problem (9). Operator
A is normal solvable and this problem has at least one solution. If
we denote the unique solution of equation (10’) (for fixed a > 0 and
A > 0) by z4(A), then azq(X)+ Ac belongs to R(A*). But, the subspace
R(A*) = {A*z : = € R"} is finitedimensional and it is generated by
vectors h; = A*e;, where {e; : ¢ =1,...,n} is a base of the space R".
Operator A* : R™ — L4[0,T] is defined by

(A*9) () = QT(e("), ¢'(t) = —=PT(t)e(t), 0 <t<T, ¢(T) =g € R™.

Hence, 24(A) can be written as
A n
za(A) = "&’Z&hi- (16)
=1

From (10’) and (16) we obtain that the real numbers §; must satisfy
the following equation

n , N
> &(A"A+al)h; = A" — EA*AC.

=1

Multiplying this equation by h;,j =1,...,n, we have

n

Z&((Ahi, Ahj) + a(h;, hj)) =\ Ahj) = §<AC, Ah), j=1,...,n.

=1
We have just obtained the system of linear equations and we have to
solve it for different value of A and search A which is satisfactory for
(11). It means that we have to solve many different linear systems.
But, all this sistems (for fixed «) have the same matrice and only the
right side is changable. Morever, the changes in the right side are very
simple. In our numerical experiment we was computing vectors h; and
scalar products in L} using the simpliest Euler’s method for solving
corresponding systems of differential equation and Simpson’s rule for
computation corresponding integrals.
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