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1 Introduction

An optimization problem is well-posed if its set of solutions attracts
all approximate solutions corresponding to small perturbations of the
given problem. This statement can be formalized in a different way.

According to Hadamard’s concepts of well-posedness, the optimiza-
tion problem inf{.J(u) : w € U} is well-posed if J : U — R has a unique
point of minimum on metric space U depending continuously on the
data J and U.

Zolezzi (s. 1], [8], [9]) considers the well-posedness of the problem
inf{J(u) : w € U}, by perturbations, defined by parameter p € L C P
and function (u,p) — F(u,p), (u,p) € (U, L), where P is a normed
space, L = {p € P : ||p— p«|| < r} is the closed ball of center p, and
positive radius r, and F(u,p.) = J(u).

According to Zolezzi’s definition, the problem inf{.J(u) : v € U}
is wellposed if V(p) := inf{F(u,p) : w € U} > —oo for every p €
L, its set of solutions U, = {u € U : J(u) = V(p«)} is nonempty,
and for every sequences (p,),p, € L and (u,),u, € U such that
F(un,pn) — V(pn) — V(p«), there exists an subsequence (uy,, ) which
converges to U.

The main interests of our investigations are related to Tikhonov’s
well-posedness.

Problem of minimization of function J on metric space U is said
to be well posed according to Tikhonov if the following conditions are
satisfied:

(i) Jo :=inf{J(u) :u € U} > —o0,

(i) Uy :={ueU: Ju)=J} #0,

(iii) for every sequence (uy) from U such that J(u,) — J,
AUy, up) := inf{d(up,u) : u € Uy} — 0 asn — oo

The sequence (u,) which satisfies the condition (iii) is said to be
minimizing for the minimization problem J(u) — inf, u € U.

In this paper, the function J is given by

J(u) = |[Au— f||* — inf,u € U, (1.1)
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where U C H is a closed convex set in a Hilbert space H, A: H — F
is a linear continuous operator from H to Hilbert space F, and f € F
is a fixed element.

The minimization problem of strongly convex function on convex
closed subset of Hilbert space is (Tikhonov) well-posed, as it is well
known. Function J in (1.1) is convex but it is not necessarily strongly
convex. Therefore, the existence of solution of (1.1) and well-posedness
of the same problem, are not trivial, even if the set U has very simple
structure.

We will investigate the existence and well-posedness of this prob-
lem, assuming that the set U is given by one linear and one quadratic
constraint:

U=U;NUs, Uy:={ue€ H:|Bu||<r}, Uy:={ue H:Cu<p}.
(1.2)
Here, B : H — G is a linear bounded operator from H to Hilbert
space G; Cu = (c,u) is a linear continuous functional defined on H;
r > 0 and 3 given real numbers.
Our purpose is to find some sufficient and/or necessary conditions
of existence and well-posedness of problem (1.1), (1.2).

Let us emphasize that all our results regarding well-posedness were
obtained under the assumption that all initial data is exactly known;
well-posedness related to inexact initial data will not be considered
here.

2. AUXILIARY RESULTS

Let us introduce the following notation: £(M)— the linear hull of
the set M C H, I— the identity operator, R(A) - the range of the
operator A, A(U) = {Au : v € U}, Ker A— the null-space of A,
M — the closure of the set M C H, L— the orthogonal complement
of the subspace L, P- the orthogonal projection operator from H to
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R(A*), @ the orthogonal projection operator on H to R(B*), P,

the orthogonal projection operator on F' to the closed and convex
set A(U), Bj - the restrictions of the operators B to the subspace
Ker AN KerC and A; - the restriction of the operator A to the
subspace Ker BN Ker C, Ap - the restriction of the operator A to
the subspace Ker B, and S = {u € H : ||Bu|| = r,{(c,u) = [} - the

intersection of the boundaries of the elipsoid U; and the half-space Us.

The operator A produces the following orthogonal decompositions
of the spaces H and F':

H=R(A*)® Ker A, F = R(A) ® Ker A™. (2.3)

Further, the next decomposition holds for any two closed subspaces L
and M, of a Hilbert space H :

(LNM)r =Lt 4+ M1, H=L*+ M1 & (LNM). (2.4)

Lemma 2.1 For the operators A, B and C the following decomposi-
tions are true:

H=RA*)®L((I—-P)c)DR(B})®(Ker ANKer BNKerC), (2.5)

H=RB*)DL(I-Q)c)®R(A})® (Ker ANKerC), (2.6)

Ker B= R(A}) @ (Ker AN Ker B), (2.7)

Proof. Using the decompositions (2.4) and (2.3) we obtain

H = (KerA)l & (KerC)t @ (Ker AnNKerC)
= R(A*)® L(c) D (Ker AN Ker(C)
= R(A*)® L((I —P)c)® (Ker AN Ker BN KerC).

Similarly, applying (2.3) to By : Ker AN Ker C — G we obtain

Ker ANKerC =R(B})® (Ker AN Ker BN Ker C).
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Hence, we have proved the equality (2.5); (2.6) can be proved in a
similar way.

The next lemma is related to normally solvable operators.

An operator A : H — F is said to be normally solvable if R(A) =
R(A). Let us remark that this is equivalent with R(A*) = R(A*). (s.

[5], pp. 153.)

Lemma 2.2 ([5], pp. 153) A bounded linear operator A : H — F is
normally solvable if and only if

p:=inf{||Au|| : v L Ker A,||ul| =1} > 0.
The immediate consequence of this Lemma is the following.

Lemma 2.3 (|5], pp. 153) If the linear operator A : H — F' is not
normally solvable, then there exists a sequence (pn) such that p, €
R(A*), |lpnll =1 and Ap, — 0 as n — occ.

The restriction of a normally solvable operator A : H — F to the
subspace R(A*) is invertible, so there exists M > 0 such that

(Vz € R(A")) ||l=]| < M| Az]|. (2.8)
If A(V) is a closed for a closed set V' C H, then the inverse image
AN AV)=Ker A+V

is closed set. If A is a normally solvable operator, then the converse
statement is also true: if Ker A+ V is a closed set, then the set A(V)
is also closed [2].

Now, it is easy to prove that for a normally solvable operator A
and for a closed subspace M C H of a finite codimension, we have
A(M) = A(M).

Namely, codim M < +oo, implies that dim M+ < +oco. Let us
denote the operator of orthogonal projection from H to M~ with 7.
It is easy to prove the equality M + Ker A = M + T(Ker A). From
T(Ker A) C M*, it follows that dim(T(Ker A) < 4+00. So, what we
have is that the set M + Ker A is closed. Normal solvability of the
operator A implies that A(M) = A(M).
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Lemma 2.4 Let L and M be closed subspaces of a space H. If
dimL < +o0, then A(M) = A(M) if and only if A(L N M) =

AL N M).

Proof. From codim L < +o0 it follows that there exist hq,...,h,
in H, such that L+ = L(hy, ..., hy,), i.e.

H=_L(h,...,hy) ® L.

As earlier, let us denote again the operator of orthogonal projection
of the space H onto M with T. Note

Mt @ L(hi,...,hy) = M*@ LI =T)hy,...,(I=T)h,).
Applying (2.4) we obtain

H =(M*®L(hy,....;hy)©MNL
=M+ e L((I—-T)hy,...,(I =T)h,)®&MNL.

This equality and decomposition H = M @ M~ imply that
M=°L(I-T)h,...,(I —=T)hy,)® (MNL). (2.9)

If AIMNL) = A(M N L) then, using (2.9), we obtain A(M) = A(M).
Now, assume that A(M) = A(M). It means that the restriction of
the operator A to the subspace M is a normally solvable operator.
From (2.9), we conclude that M N L is a closed subspace of a finite
codimension in the subspace M. Hence, A(LN M) is a closed subspace

of the space H.

Lemma 2.5 If IntU =0, U = {u € H : |Bu| <r,{c,u) < S}, then

() U=8=1{ueH: |Bul=rcu) =}
(ii) Ker B C KerC, where Cu = (c,u);
(i) (VueU)U =u+ Ker B.
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Proof. (i) If |Bv|| < r and v € U then there exists an open
set V(v) containing v, such that ||Bz| < r for every z € V(v). In
this case, taking into account that IntU = (), we can conclude that
(c,v) = (. But, then there exists a point xy € V(v) such that (¢, zg) <
(. This contradicts Int U = (. So, we have ||Bv| = r for every v € U.
Similarly, we can prove that (c,v) = ( for every v € U. Hence, U = S.

(ii) We will prove that (I — Q)c = 0, where @ is the orthogonal
projection onto R(B*). Assume the converse. Then a point v = u +
YI — Q)c,u € U =85, v <0, satisfies the conditions ||Bv| = r and
(c,v) < (. Since U = S, we have a contradiction. Hence, (I — Q)c =
0, i.e. ¢ € R(B*) L Ker B. It immediately implies the inclusion
Ker BC Ker(C.

(iii) Let = and u be arbitrary points from U = S. Then (¢, z —u) =

(e,x) —(c,u) = 0. Hence, x —u € Ker C. Since, U = S is a convex set,
it follows that | B(au + (1 — ax)|| = r for any « € [0, 1]. This implies
that (Bz, Bu) = r2. Thus we have ||B(z —u)|| = 7? —2r?+7r2 =0, i.e.
x —u € Ker B. So, we proved the inclusion U Cu+ Ker BN Ker C.
The converse inclusion is trivial. Now, (iii) follows from U = u +
Ker BN Ker C and (ii).

Lemma 2.6 If there exists u € S such that B*Bu € L(c) and [ < 0,
then IntU = (.

Proof. Suppose B*Bu = ac,a # 0. Multiplying this equality by
u, we obtain r? = ||Bul|?> = a(c,u) = af}. Since 3 < 0, it follows that
a < 0.

Assume that Int U # (). Then there exists v € U such that || Bv|| <
r and (c,v) < B. It now follows that (Bu, Bv) < ||Bul - ||Bv|| < r%.
We obtained the contradiction that proves Lemma.

3. RESULTS

3.1 Existence of solutions

It is clear that the problem (1.1), (1.2) has a solution if and only if the

projection P.(f) of f on A(U) belongs to A(U). Taking into account
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that P,(F) = A(U), we can conclude that the problem (1.1), (1.2) has
a solution for every f € F if and only if A(U) = A(U).

Note that convexity and continuity of the function J imply its
lower weakly semi-continuous. The set U is weakly closed, because it
is convex and closed. Now, it is easy to prove that if for any f € F
there exists at least one minimizing sequence (uy,), then, for such an
f, problem (1.1), (1.2) has a solution.

Namely, then there exist a subsequence (uy, ) of (u,) and a point
us € H, so that (uy, ) weakly converges to u,. Since the set U is weakly
closed, uy € U. This and lower semi-continuous of J imply

J(uy) <liminf J(uy,) = Js.
Hence, J(u.) = Jy, i.e. uy € U,.

Theorem 3.1 Suppose the following conditions hold:
(i) A is a normally solvable operator;
(11) B(Ker A) is closed subspace of G..

Then the problem (1.1), (1.2) has a solution for every f € F.

Proof. We will prove that for each f € F' there exists a bounded
minimizing sequence. Condition (ii) and Lemma 4 imply that the
operator Bj is normally solvable. Since the operator A is also normally
solvable, it follows that the equality (2.5) can be written as

H=R(A")® L((I — P)c) ® R(B}) @ (Ker AN Ker BN Ker C).

The elements of minimizing sequence (u,) can be decomposed in the
following way

Up = Pup + v, — P)c+ b} + by,
m € R b} € R(BY),b, € Ker AN Ker BN KerC.

Note that the sequence wy, = Puy,+7,(I — P)c+0b} is also minimizing.
Since Pu,, € R(A*), Aw,, = Au, = APu, and ||Au, — f|| — J. as
n — oo, it follows that the sequence (B (v, (I — P)c+10b})) is bounded.
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Then, the boundedness of the sequence (B(y,(I — P)c+ b)) follows
from
|B(Pun + (I = P)e+b,)|| = [[Bwn| <7

Hence, there exists a constant £ > 0 such that

IB(ya(I = P)e+b2)|| <k, n=1,2,...,. (3.10)

We will consider two possibilities.

(a) Suppose that the sequence (7;,) is bounded or (I — P)c =
0. Then the boundedness of the sequence (Bb}) follows from (3.10).
Applying (2.8) to the operator Bi, and taking into account that b} €
R(BY), we obtain that the sequence (b},) is also bounded. Hence, in the
case of (a), there exists a bounded minimizing sequence for problem
(1.1), (1.2).

(b) Now, suppose that the sequence (7,) is unbounded and (I —
P)c # 0. Let us prove the following relations:

(I — P)c=po + 20, (20,¢) #0, po € R(BY), 20 € Ker AN Ker B.
(3.11)
With respect to the operator By : Ker AN Ker C' — G, the spaces
Ker AN Ker C and G can be decomposed as follows

Ker AnNKerC = R(B])® Ker B, G = R(By) ® Ker Bj.

This implies that for B(I — P)c € G there exist pg € R(Bj) and
qo € Ker B, such that

B(I - P)e = Bpo + o
Since B(ynpo + b5) L qo, we have

IB(1(I = P)e+b,)[I* = [|B(ynpo +b5) + vmol®
= [ B(ympo + 0p) 11 + 72 llaol*.

The last equality and (3.11) imply go = 0. Then B((I — P)c—pg) = 0,
and consequently, there is z9 € Ker B, such that

(I — P)e=po + 2.
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Noting that pg € R(Bf) C Ker AN Ker C and (I — P)c € Ker A, we
infer

0=A( — P)c= A(py + z0) = Az,
i.e. 29 € Ker AN Ker B. If we take the scalar product of each side of
the equality (I — P)c = po + 2o with ¢, we will have
(e,z0) = (I = P)e||* # 0,
which proves (3.11). Now, we know that
B(ya(I = P)c+b},) = B(ympo + by,).

Therefore, from v,po + b}, € R(B7) and (3.10), and applying (2.8) to
the operator By, it follows that (y,po + b}) is a bounded sequence.
Observe the bounded sequence

* * * — (Puy, + +0b,c
Un = Pun+fynp0+bn+7n207 Where f}/n — B < n<c ZZ;QO n >

It is obvious that
Avy, = Awp, Buy, = Bwy, <C, Un> =0,

which makes (v,,) a bounded minimizing sequence. This completes the
proof.

Similarly, using orthogonal decomposition (2.6), we can prove the
following theorem.

Theorem 3.2 Suppose that:
(i) B is a normally solvable operator;
(11) A(Ker B) is a closed subspace of H;.

Then, for every f € F the problem (1.1), (1.2) has a solution.
Now, let us consider the case of 7 = ().

Theorem 3.3 Let IntU = (). Then the problem (1.1), (1.2) has a
solution for every f € F if and only if A(Ker B) is a closed subspace
of F.

Proof. Lemma 5 (iii) implies that for every u € U, we have
A(U) = Au+ A(Ker B) which proves the Theorem.
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3.2 Well-posedness

In this section,we will discuss the well-posedness of the problem (1.1),
(1.2). Note that if U, # (), then for every u, € U,

Ui = (uy + Ker A)NU.

From J(u) = J(v) + (J'(v),u — v) + ||A(u — v)||* and from optimality
criterion of the element w, € U, (s. [7], p. 161, Theorem 3) (Vu €
UNJ' (us),u — us) > 0, we have ||Au — Auy, ||2 < J(u) — J(uy).

This implies Au,, — Au, as n — oo, for every minimizing sequence

If operator A is normally solvable, then, from (2.3) and (2.8) (for

operator P of orthogonal projection from H to R(A*)) we have
| P(upn — us)|| < m||AP(uy — uy)| = ||Aup — Auy|| — 0 as n — o0

i.e. Pu, — Pu, as n — oc.

Next theorem shows that the conditions of the Theorem 3.1 guar-
antee, not only the existence of solution, but also the wellposedness of
minimizing sequences of the problem (1.1), (1.2).

Theorem 3.4 Suppose that
(1) A is a normally solvable operator;

(1) B(Ker A) is closed subspace of G;.
Then the problem (1.1), (1.2) is well-posed for every f € F.

Proof. Theorem 3.1 implies thatU, # (). Just as in the proof of
Theorem 1, every minimizing sequence (u,) can be written as

Up = Pup +v(I — P)c+ bl + by,
T € R, b} € R(BY),b, € Ker AN Ker BN KerC.

Observe the minimizing sequence

wy, = Puy, + (I — P)e+ b,
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and note that (i) implies
Pu,, — Pu, as n — oc.

Let us consider two cases.

(a) Suppose that a sequence (7;,) is bounded or that (I — P)c # 0.
In each case we can assume 7y, — 7« € R as n — oo. Since b} +b, L ¢
we have

(Pus +v«(I — P)e,c) = lim (Puy, + v, (I — P)e,c¢) = lim (wy,¢) <

n—oo

The sequence v, = Pu, 4+ 7.(I — P)c+ b}, 4+ b, satisfies the inequality
(vn,c) < B.
(a1) If || Bu,|| < r, then v, € Uy, and therefore

d(up, Uy) < ||up—vp|| < ||Pup—Pus+(vn—7s)(I—P)e|| — 0, n — oc.

(a2) Now, assume that ||Buvy,|| > r. Then

r < |[[Bun|l < |[B(vn — wn)| + [ Bun||
< [|B(Pun = Pus + (= ) (I = P)e)|| + 7,

implies

lim ||Bvy,| =7 and lim ||Bw,| =1 (3.12)
n—oo n—oo

The operator B; (restriction of B on Ker AN Ker C) is normally
solvable. Hence the sequence (b)), b € R(B7) is bounded. We can
assume that (b)) converges weakly to bj € R(B]) as n — oco. Then,
the minimizing sequence (w,,) converges weakly to w, = Pu, + v4(I —
P)c+ b € U..

In scope of this case, we will consider two possibilities:

(ag1) If || Bwy]|| = r, then (3.12) together with

1B (b, = b5)II* = || B(wn—ws+ P~ Pup+ (=) (I~ P)e||?, (3.13)
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imply ||B(b;, — b3)|| — 0 as n — oo. From b}, — bj € R(B}), applying
(2.8) to Bu, it follows that (b};) converges (strongly) to b§ as n — oc.
Then w, — w, as n — oo, and therefore

d(tn, Us) < |lup — (Wi + by)|| = [Jwn — ws]| as n — oc.

(age) If ||Bwy|| < 7, then (3.12) and (3.13) imply
lim ||B(b —b5)||> = r* — || Bw.||* > 0.

For each n € N, there exists a number «,, > 0 such that ||B(w. +
an (b, — b3))||? = 2. Now, using the last two relations, it is easy to

prove lim, . a, = 1. Sequence
Tp = Wi+ an (b, —by) +bn = Py + v (I — P)c+anb), + (1 — o, )by + by,
satisfies the following conditions
Azy, = Awy, ||Bxy| =7, {(c,z) = (c,wy) < 5,
and so x, € U, for every n € N. Then

= [[Pun — Pus + (0 — %) (L = P)e+ (1 — an)(b), = b5)|| — 0

as n — o0o. Therefore, the problem (1.1), (1.2) is well-posed when (a)
occurs.

(b) Now, assume the sequence (7,,) is unbounded and (I — P)c = 0.
Then, according to (3.11), we can write

Uy, = Puy, +ﬁ—|—bn + Ynzo and w, = Pu, +ﬁ+*ynzo,

where

b = ynpo + b, and (zo, ¢) # 0.

Take the sequence
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where

5 — (tun, €) — (Puy + b,¢)  (Pu, — Puy,c) .
" (0.) T g T

and note that lim,,—, (v, — 0, ) = 0. The numbers §,, have been chosen
in such way that (y,,c) < f.

(b1) If || Byn|| <, then y,, € U, and therefore
d(tn, Uy) < ||un — yn|| = [|Pun — Pux + (90 — 9n) 20| — 1 as n — oo.
(ba) If || Byy|| > r, then following the procedure of (az) we obtain
Jim |[By, || =, lim |[Bw,[| =7,
and
b weakly converges to by € R(B])as n — oc.

It follows that
Puy,+b weakly converges to Wy = bj+Pu, as n — oo, and | Bwy| < 7.

As in case of (az) we again need to consider two possibilities.

(bo1) If || Bwx|| = r, then, just like in (ag;), we can prove strong
convergence of the sequence b, to b as n — oo. Observe the sequence
Zn = Wy + by, + 0520 where

Un,s C> - <w_*7 C>

L
R B

n

Then (z,,c) < 3 and

(Puy, — Puy + b — b, ¢)

— 0 asn— oo.
<ZU’C>

5;;_'771:

Besides, Az, = Awy, ||Bz,|| = ||Bws| = r, such that z, € U,. Now
we have

A1ty U) < lun = zall = [P — Pus + 5 — 5 + (= d3)z0]) — 0
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as n — OoQ.

(ba2) Finally, let || Bwx|| < r. Similarly to (age) we can prove that
lim || B(b;, - b5)||* = r* — || Bwi||* > 0.
n—oo

The numbers a,,n = 1,2,... are set in such way that

| B(@ + an (b, — b5))||* = r* with lim a, = 1.

n
n—oo

Take the sequence
Sp = w_*+an(ﬁ_%> +bn +1n20 = Puy +an@+ (1 _Qn)%‘F by, +Mn20

where o o
(Un,c) = (Pus + anb + (1 — ay)b§, )

<Z07 C>

Tn =
Then (s, c) < and

(Pun — Pus + (1= o) (b5, — ), )

— 0 as n — oo.
<ZOvC>

M — Tn =
Besides, As,, = Awy, ||Bs,|| = ||Bws|| = r, so that s,, € U,. Therefore
A, Us) < im0l = | Ptn—Prts+(1—0) G—=F5) + (=) 20| — 0

as n — 00. This completes the proof.
The next theorem shows that if the first conditions of the previous
theorem is violated, then the problem (1.1), (1.2) will not be well-

posed anymore.

Theorem 3.5 Suppose

(i) R(A) # R(A);
(ii) Uy N IntUy # 0.

Then the problem (1.1), (1.2) is not well-posed.

Proof. The condition (i), according to Lemma 2.3, implies the
existence of a sequence (p,) such that

Dn € R(A*), Han =1, lim Ap, =0.
n—o00
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Since U, N Int Uy # (), we can infer that there is an element u, € U,
such that || Bux|| < . Choose an gy > 0 such that || B(u. £eopy)|| < 7
Consider the sequence (vy,):

A Uy + E0Pn, If (pn,c> <0
" Us — E0Pny  if (pp,c) >0

Hence, v, € U and sequence (v,,) is minimizing. Since U, = {u. +
Ker A)NU, it follows that for every v, € U, there exists z(v,) € Ker A
such that v, = us + z(v,). From

2
I

lon = vil|* = [fus £ €opn — us = 2(0a)[|° = €f + [lz(vs)[* > €F

it follows that the sequence (d(uy, Uy)) does not converge to 0 as n —
00. This completes the proof of Theorem.

Let us note that the conditions of the Theorem 3.2 do not guarantee
the well-posedness, because they do not eliminate the conditions of the

previous theorem.
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