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Abstract

Here, we derive second-order necessary conditions of optimality for an
abstract optimization problem with equality and inequality constraints
and constraints in the form of an inclusion into a given closed set. An
important feature is that our optimality conditions dispense with any
a priori normality assumptions, such as Robinson’s constraint qualifica-
tion, and remain informative even for abnormal points.
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1. Problem statement

Given a vector space X, a set C C X, mappings I}, : X — RM_F, :

X — R, and a function f: X — R!, we consider the following optimization
problem

(P) f(z) = min, zeC, F(z)<0, Fz)=0. (1)

Our main goal is to obtain first- and second-order necessary extremum
conditions for this problem under some assumptions about smoothness and
properties of the set C. Let us introduce the notation and assumptions needed
in what follows.

Let k = ki +kyand F = (I}, Fy) : X — Y = R*. We consider the so-called
finite topology in the vector space X. We denote by M the set of all finite-
dimensional linear subspaces M C X. A set is open in the finite topology if
and only if its intersection with any M € M is open in the unique Hausdorff
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vector topology of M'. We denote the finite topology by 7. If a space X is
infinite-dimensional, then, equipping it with the finite topology 7, does not,
in general, turn it into a topological vector space because the addition is, as a
rule, discontinuous. On the other hand, the finite topology is stronger than all
topologies that transform X into a vector topological space and, therefore, a
local minimum with respect to the finite topology is the weakest one amongst
all types of minima considered.

Fix a point g € X. We assume that functions f and F' are twice continu-
ously differentiable in a neighborhood of xy with respect to the finite topology
7. This means that, for an arbitrary M € M containing the point x, the
restrictions of f and I to M are twice continuously differentiable in a cer-
tain (depending on M) neighborhood of z. Therefore, there exist a linear
functional a € X* (X* is the space algebraically dual to X), a linear op-
erator A : X — Y, a bilinear form ¢ : X x X — R!, a bilinear mapping
Q: X x X — Y, and mappings ag : X — R!, and o : X — Y, such that,
Ve X

F(@) = Flao) + e = 20) + gale — a0l + gl ),

1
F(z) = F(zo) + A(r — 20) + 5@[53 - ffo]Q + a(zr — xo),
and, for an arbitrary M € M, such that v € M,

ap(r — o)
|2 — woll3,

| — o)

— 0, and 5
[l — @oll3,

— 0, as r — x,

where || - ||as is a finite-dimensional norm in M.
Here and in what follows, we denote a bilinear mapping B by Blz,x]

or Blz]>. The mappings a and ¢ are denoted, respectively, by a—f(xo) and
x
o2
a—];(xo). They are called the first- and second-order derivatives of f. A simi-
x
lar notation is used for the mapping F' and other functions.

Regarding the set C, we assume it is closed in the finite topology.

The first-order necessary conditions for problem (P) used below are based
on Mordukhovich’s normal cone to the set C' at xy € C. Take any linear
subspace M € M such that o € C N M. Let us introduce Mordukhovich’s
normal cone [6, 7] to the set C'N M at xg denoted by N (xq, C). For x € M,

!Note that any finite-dimensional vector space is equipped with a unique Hausdorff
vector topology.
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we put Wz, M NC) ={w e MNC : ||z —w|y = disty(z,C)}, where

disty(z,C) = gelgrgM{Hg — x|}, denotes the distance function.

Let coneA and clA denote, respectively, the conic hull and the closure of
the set A. Consider the upper semicontinuous hull of the set

cone(x — W(x,MNC)) = U{T(Cc — Wz, M N C))}

r>0

as r — xo,x € M:

Ma,0) = (Y| U cone(w— Wi, M0 )]
e>0 zeM
|lz—zollar<e

= lim sup cone(x — W (z, M NC)).
zeM
T—X0

We put
N(zo,C) = | J NY(z0,C).
MeM
Mordukhovich’s normal cone N(zgy,C) is the smallest and the most natural
one to derive necessary conditions of optimality, [6, 11, 9]. Indeed, N (z,C)
is upper semicontinuous in C' N M and, if x is the solution to the problem of

0
minimizing a smooth function f over a set C', then éi(:z:o) € —N(z0,C) (see

[6, 9]). Furthermore, N(z,C) is closed but may be nonconvex. At the same
time, the closure of its convex hull coincides with Clarke’s normal cone (see
[6, 9]).

We consider the second-order variations of the set C' at a point € C'in a
direction d (see |4, 10]). That is,

1
T2y (7, d) = {w € X : disty(x +ed+ §5Qw, C) =o(e?), e > O},
1
Ok (z,d) = {w € X : Hen}t | 0s.t. disty(z+end+ 56211}70) = o(si)},

where M € M is an arbitrary finite-dimensional linear subspace containing x
and d.

Sets T2y (z,d) and O%,,(x,d) are called inner and outer second order
tangent sets, respectively (see [4, 10]). It was pointed out in this reference
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that both these sets are closed, that T2, (z,d) C O2-y(7,d), and that
O%p(7,d) # 0 only if d € Tenp(x). Here, as usual,

Term(z) ={de M :3e, | 0, disty(z +e,d,C N M) =o0(c,)}

is the contingent (Bouligand) cone to the set C'N M at the point x. Also, if
the set C' is convex, then the inner tangent set T3.,,(z,d) is convex, but the
outer tangent set OZ,,(z,d) may be nonconvex, [4, 10]. We put

T (2, d)= | Tenu(x. d), Of(x,d)= | O%ny(z,d), Te(x)= ) Tonm(@)
MeM MeM MeM

It is evident that if the set C'is convex, then the inner tangent set T3(x,d) is
also convex. The computation of second-order tangent sets for positive cones
in some specific spaces may be found in [5].

Definition 1.1. A linear subspace T C X such that v +7 C C, Vo € C
is named invariant linear subspace (ILS) with respect to C.

For a given closed set C, an ILS, in general, is nonunique. Clearly, any
linear subspace of an ILS also is an invariant linear subspace. For example,
{0} is ILS relatively to any closed set C.

For any = € C, put Zo(x) = ﬂ r(C — x), where the intersection is taken

r#0
over all reals 7 € R, r # 0.

2. Main result

Consider the cone K := K(xz¢) defined by

K(zg) = {h € Te(xp) - <g£(x0),h> <0, @(af,‘o)h = 0,and

ox
OF,
;»J (xo)h < 0Vj such that F1,j(1’0) = 0}'

Here, F} ; are the coordinates of the vector function Fj. The cone K is, obvi-
ously nonempty (because it contains zero) and convex if the set C' is convex.
The cone K(xg) is called the critical cone of the problem (P) at the point z.

Let A = (Mo, A1, A2) with \g € R, A\ € R¥ and Ay € R*2, and consider
the (generalized) Lagrangian

Lz, A) = Aof (@) + (A1, Fi(2)) + (A2, Fao(x)).
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Let A = A(xg) denote the set of the generalized Lagrange multipliers A that
correspond to the point xy according to the Lagrange multiplier rule (also
known as Fritz John optimality conditions)(see [6, 7, 4]), i.e., such that

oL
%(xo, A) € =N(z0,C) @

)\0 Z 0,)\1 2 0, <)\1,F1(1‘0)> = 0, ‘)\’ =1.

In what follows, we assume, for convenience, that Fj(xo) = 0. This can
always be achieved by omitting the nonactive components of the inequality
constraints.

Take any linear subspace M C X and consider the set of all Lagrange
multipliers A € A for which there exists a linear subspace II C M (depending
on ) such that

codimy/JIT <k, TI C Ker a—F(azO) aQ—E(xO Nlz,z] >0, Vexell. (3)
- - Ox 02 = '

Here and in what follows, codim,; denotes the codimension relative to the
subspace M. We denote the set of such Lagrange multipliers by A(zq, M).
Each set A(xg, M) is obviously compact (but it may be empty).

For a given set T C X, we denote by o(-,T) its support function, i.e.,
o(z*,T)=sup{(z*,z) :x € T}, 2" € X",

Theorem 1.1. (Extremum principle) Let ¢ be a point of local mini-
mum with respect to the finite topology T of the problem under consideration.

Then, for each ILS T with respect to C, the set A(xo,Z) is nonempty, and,
moreover, for each h € K(xo) and any conver set T (h) C O%(zo, h),

max (%(1’0, A)[h, h] — 0(—2—5(1:0, A), T(h)>> > 0. (4)

Here, A, = convA(zo,Z) and conv denotes the conver hull of a set.

Remark 1. For the case C = X, theorem was obtained in [2]. If C is a
conver cone?, then, for h € C' + span{xy}, theorem was obtained in [1, 5].

2Note that if C' is a convex cone, then the tangent cone T (z) coincides with closure of
the set C'+ span{z} for each z € C.
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3. Proof of the extremum principle

The proof of theorem 1.1. is based on the removing the constraints Fy(z) <
0 and Fy(x) = 0 by using the penalty method. A central role in the proof is
played by the following assertion that allows us to pass to the limit.

Theorem 2.1. Let X be a Banach space and {I1,,} be a sequence of closed
linear subspaces of X such that codimll,, <k, Vn.
Then, there exists a closed linear subspace II C X such that

codimlII < k, II C Ls{IL,}.

Here and in what follows, Ls is the upper topological limit of a sequence of
sets3.

Theorem is proved in §1.7 of [2]. We need its following modification which
is, in fact, equivalent to the theorem 2.1.

Theorem 2.2. Let A, : X — R* be a sequence of continuous linear
operators which converges by the norm to a linear operator A.
Then, there exists a linear closed subspace I1 C X such that

codimll <k, TI CLs{KerA,}, IIC KerA.

Theorem 2.2. is proved by setting II,, = Ker A,, in theorem 2.1.

Proof. We divide the proof of theorem 1.1. into four stages. First, in
stage I, we prove that the set A, is nonempty for the case in which the space
X is assumed to be finite-dimensional.

Then, we show, by using the results obtained above, that, in the case where
X is finite-dimensional, for each h € K(zy), and w € O%(z, h), 3 X € A, such

that ,
0L oL
@(xm)‘)[hﬂ h] + <%($0,)\)7w> > 0. (5)
In stage III, we prove (5) in its full generality, i.e., we omit the assumption
dim X < co. Finally, in stage IV, we prove (4).
STAGE [. We assume that X is finite-dimensional. By using this assump-

tion, we define the inner product in X and transform it into an Euclidean

3Note that the upper topological limit of a sequence of sets {II,,} is the set of all limit
points of the sequences {z,} such that x,, € II,, Vn.
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space. Let us remove the constraints F} < 0, F5, = 0 in the problem under
consideration by the penalty method. For each positive integer i, we set

k1
fi@) = f@) +i( 3 (FL @)+ R@)]) + 2 — o,
j=1
where a™ = max{a,0}, and consider the following family of minimization

problems, called i-problems,
fl(x) - min7 S C, |$ — $0| S (5

Here, § > 0 is chosen in such a way that zg is a minimum for the initial
problem in a d-neighborhood of the point z, (recall that the space X is assumed
to be finite-dimensional at this stage, and, therefore, this ¢ does exist). The
solution to the i-problem is denoted by z;.

We prove that x; — x¢, as © — oo. Indeed, by taking into account that X
is finite-dimensional and, by extracting a subsequence (if necessary), we obtain
the convergence of the sequence {x;} to a certain z.

Now, we show that T = zy. Indeed, the fact fi(z;) < fi(zo) = f(x0), Vi,
implies that

EFLJ-(JJZ-) <0, Vj, and Fy(z;) — 0, as i — o0. (6)
This implies that Fi(z) < 0 and Fy(z) = 0. In addition, the first inequality in
(6) implies that f(z;) +|z; — o|* < f(z0), Vi, and, therefore, that f(Z)+ |z —
zo|* < f(xo) < f(T). Thus, T = .

For large i’s, which is our sole concern, we have |x; — 29| < 0 and, con-
sequently, the constraint |x — zy| < § is not active. In another words, the
i-problem is locally a finite-dimensional problem with the constraint x € C.
The first-order necessary condition (see |8|) for this problem gives

ofi
8:]; (x;) € =N(z;, C). (7)
Let us prove the second-order necessary condition for this problem
P fi
o2 (x;)[z,z] >0, Vrel (8)

Indeed, by virtue of the definition of ILS, we have

v, +erxeC, Vrel, Ve 9)
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Define the scalar function ¢ as follows ¢(g) = fi(x; + ex). This function
¢ is smooth and in virtue of (9) it attains the local minimum at ¢ = 0.
Consequently, ¢”(0) > 0. Calculating the second derivative of ¢ we obtain
¢"(0) = %1@ (x;)[x,x] > 0, which proves (8).
~ Now, we decode conditions (7), (8) in terms of the data of the problem. Let
M :74iFfj(I7i)|Ffj(lxi)|3: A = (A, AT, Ao = By (i) [ Fa(wi)]?, Mo =
(1+ ’)\1,1"2 + |>\2,z"2)7, AL = Aoidtis A2 = Ao, and A; = (Ao, A1y, Aoi)-

Then, conditions (7) and (8) take the form, respectively,

9L (26, 2) +100) € ~N(,,C), (10)

9L ) " 5 OF) ) 9 OF; 2 -

Gt Ml + 1200, (P ) P15 el + P P15 2?4 10)
>0, Vxel, st |z| <1 (11)

Here, 1(i) is a sequence converging to zero. By construction,
|Ail =1, Xoi >0, Ay >0, Vi (12)

By extracting a subsequence, we obtain a A = (Ao, A1, A2) such that A\, —
A, i — 00. By passing onto the limit in (10) and (12), and by using the upper
semicontinuity over the set C' of the set-valued mapping N (-, C'), we conclude
that A € A.

Let us prove the existence of a linear subspace II, satisfying (3). For this
purpose, we define linear operators A; : T — R¥ by the formula A,z = F'(x;)x.
By theorem 2.2, there exists a linear subspace II C 7 such that

1 C Ker F'(x), 1IC Ls{Ker A4;}, codimsII < k.

Take an arbitrary vector h € II. By the definition of the upper topological
limit, there exists a sequence {h;}, with h; € Z(\Ker F'(z;), such that, by
extracting a subsequence, we obtain h; — h as i — oo. By substituting x = h;
into (11) and by passing onto the limit we obtain (3). Therefore, A € A, and,
thus, A, # (.

STAGE II. As in the previous stage, we consider X to be finite-dimensional.
For convenience, we assume that f(zq) = 0. Fix an arbitrary vector h € K(z)
with |h| = 1 and take any w € O%(xo, h). Let us prove (5).

By the definition there exists a sequence {&,} | 0 such that

1
Tp = To + Enh + 5872‘71) +o(e2) € C, Ve, (13)
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Consider the function defined by

0 vy <1
7(X>_{ (x —1)* v§>1.

For every positive integer n, consider the following minimization problem with
the respect to the variables (x,y) € X x R%:

Minimize  f,(z,x)
subject to:  (z,x) € C x R,
Fi(x) — xFi(z,) <0,
Fy(x) — xFy(x,) =0,
0<x, and |z — z0|* < 6°. (14)

This problem is called the n—problem. Here, § > 0 is defined as above and
Falx,x) = f(x) = xf () +7(x) where f(z) = f(z) + |z — @o|"

For all n sufficiently large, we have |e,h+ %w| < §. Take any such n. There
exists a solution to the n-problem, because the point (z, x) defined by z = =,
and y = 1 satisfies all the constraints of this problem, the ball {z : |z| < d} is
compact, and

Y(x)x ' — oo as x — oo. (15)

We show that, among the solutions to the n—problem, there exists at
least one (Zy,, X») such that x, > 0. Indeed, let (Z,,X.) be a solution to
the n—problem. If y,, > 0 then we put &, = Z,,Xn = Xn. Suppose that
Xn = 0. Then Z,, is feasible in problem (P). If Z,, # x¢, then

fn(fn,O) = f(jn) + |3~7n - .’130|4 Z f([l?()) + |i'n - -730|4 > f({ﬁo) =0.

On the other hand, we should have f,(2,,0) < f.(Z,,1) = 0 = f(zo). This
contradiction proves that z,, = x(. In this case,

fn(jmf(n) = f(xO) =0,

and, therefore, the minimum value to the n—problem would be equal to
zero. Consequently, the point (Z,, X,) = (Z,,1) also yields a solution to the
n—problem because this point satisfies all the constraints of n—problem and
fu(Zn, 1) = 0. In addition, the last coordinate of this point is positive. There-
fore, for any n, there exists a solution to the n—problem (Z,, X,) such that
Xn > 0. In what follows, only such solutions will be considered.
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From (15), we conclude that the sequence {x,} is bounded, which, together
with fn(Z,, Xn) < 0, implies f(Z,) < const|f(x,)|. Since f(x,) — f(xg) =0
as n — 0o, we conclude that, for any limit point Z of the sequence {Z,}, we
have f(#) < 0, & € C, Fi(&) < 0, F5(#) = 0. However, since f(i) > 0, we
have that £ = xg and, thus, that =, — z¢ as n — oo.

Let us apply the necessary conditions obtained in the first stage to the
solution of the n—problem. According to the observation made above, we
can, for all sufficiently large n, choose a solution (&, x,) to the n—problem
such that all inequalities (14) are strict. Therefore, since we have to deal with
necessary conditions of local character, we shall ignore constraints (14). By
taking this into account, we may write the Lagrangian for the n—problem as

Lo(, 0 A) = Aofal, x) + (A1, Fi(@) = xFi(en)) + (g, Faz) — xFa(zn)).

By virtue of the results obtained at stage I, there exists a A\, and a linear
subspace II,, C 7 such that

Al =1 Xow >0, Ay >0, (16)
Ao f(@n) + (A, Fi(2n)) + (A2, F2(@n)) = Ao (Xa) 20, (17)
L., .

8x (zru Xn» /\n) € _N(mna O)) (18)

OF
C o

Hn~_ Ker e (@n), (19)
PL,, . . .

W(l‘m Xn» An)[&é] 2 0 \V/é € an COdlmIHn S k (20)

oL,
Note that (17) is equivalent to the equality v 0. In addition, we have
X

omitted the second order variation with respect to x in (20) because we do not
need it.

By extracting a subsequence, we obtain some unit vector A as the limit of
the sequence \,. By taking the limit as n — oo in (16) and (18), we conclude
that A € A (again, by using the upper semicontinuity of the set-valued mapping
N(-,(C)).

Let us prove that A € A,. By theorem 2.1, there exists a subspace Il C 7
such that codimzIT < k, IT C Ls{Il,}. Take an arbitrary b € II. There exists
a sequence {b,} such that, by extracting a subsequence, we obtain

b, € 11,,, Vn, and b, — b as n — oo.
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OF OF
By virtue of (19), we have a—(i’n)bn =0, Vn, and thus, a—(xo)b = 0. There-
x T

F
fore, IT C Ker gx(xo). 2

L
Similarly, from (20) we have that — (xo, A)[b,b] > 0, Vb € II, and thus

02
A€ A,
Let us return to inequality (17). We have that i € K implies that
OF, OF, of
—_— h < — h = - h)y <0.
<0, S2ah=0, (Ghm)n <0

Hence, by expanding the mapping F; at the point zy up to the terms of the
second-order, and by taking into account (13), we obtain
Fy(z,) = Fy(w,) — Fo(wo)
0F; 10%*F,

= %(3«"0)(%—36 0) + 5 5 B2 —— (@0)[(xn — x0)]* + 0| xn — 20]?)
0F, o OF, 1 8 Fy
= 5n%(5€0)h+ 5%7(1’0) Wt S g3 (l‘o)[h h] + o(e}).

Therefore,

O Falin)) = 523 Oams G ol + D, 5 2w} ) + 0(e2)

Analogously, for the mapping Fy, (by taking into account that

(A, %Zl(xo)m < 0) we obtain
O Fia)) < 2% (O G )l )+ O G2 ) )+ 0fe2)

0
Similarly, for the function f (by using the fact that <8f(x0), h) < 0), we obtain
x

s ) < 28 (G G a0l D + (s G ) ) + o).

By substituting these three relations into inequality (17), by dividing by &2,
and, then, by passing onto the limit as n — oo, we obtain (5). Thus, for each
w € O% (g, h), we proved (5).

STAGE III. We now prove (5) in its full generality (i.e., for dim X = o0).
Fix an arbitrary vector h € K(xg) and take any w € O%(xg,h). We denote
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by M the set of all finite-dimensional subspaces M € M such that h € M,
F'(xo)(M) = ImF'(x¢), and w € O%,,(xo, h). We take an arbitrary M € M
and consider the problem obtained from the initial problem by replacing X
by M. For this finite-dimensional problem, according to what was proved at
stage II, there exist Lagrange multipliers A\yy = (A};, M s, A2,ar) such that

)\(j)w 2 07 A1,M Z 07 ‘)\M| - 17

oL

87(5[07)\M) € —=NY(z,C),

0*L oL

w(ﬂfov Aur)[R)? + <%($0a A),w) >0,

0*L
and the index of the quadratic form @(10,)\1\4) on the subspace M N

Ker F'(xg) is not greater than codimz(ImF”(xy)).

The set of such vectors Ay, is denoted by A,(M, h,w). According to the
discussion above this set is nonempty and it is easy to see that it is closed for
any M € M. Moreover, for arbitrary My, ..., M, € M, we obviously have

n

(VAa(Mi how) 2 Ag(My + ..+ My, how) # 0.

i=1

Consequently, the system of sets A,(M,h,w), M € M, is centered. There-
fore, by the compactness of the unit sphere in R¥*!  the intersection
ﬂ Ao(M, h,w) is not empty.

MeM
We take an arbitrary vector A € ﬂ Ao(M, h,w). Obviously, the relations
MeM
2
A€ A and %(aco,)\)[hf + <%(a@0, A, w) >0

0x? oz

hold for this vector. Now, to show that A € A,, it suffices to prove the existence
of a subspace II satisfying (3).

Indeed, the maximum dimension of a subspaces in Z N Ker F'(z) on
2

which the quadratic form —— (o, A) is negative definite does not exceed

(k—dim (ImF”(xo))). This assertion is implied by the fact that A € Ay (M, h, w)
for any finite-dimensional subspace M € M. The existence of a subspace 1l
that satisfies (3) now follows from the following lemma (Lemma 3.1 from Ch.1
in [2]):
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Lemma 3.1. Let g be a finite quadratic form defined on a vector space
X. The index of q is equal to the codimension of the subspace of minimum
codimension on which this form is nonnegative definite.

Thus, (5) is proved.

STAGE IV. Let us prove (4). Fix an arbitrary vector h € K(zg), and
take any convex set 7(h) C O%(zg,h). Note that, if 7(h) = 0, then
o(-,7(h)) = —oo, and (4) holds trivially. Therefore, we assume that the
set 7 (h) is nonempty. By virtue of the results obtained in Stage III, relation
(5) holds for each w € T (h), and, thus, we may write the following inequality

inf max <g£(x0, ) [, h] + <a£(x0, A, w>> > 0.

weT (h) AeAq \ Ox2 ox

Since the set 7 (h) C X is convex, the set A, C R*"! is convex and compact,
2

0°L oL
and the function @(xo, A)[h, h] + (a—x(:po, A),w) is bilinear with respect to

the variables w € X and A\ € R, we may use proposition A (see Appendix
below) to conclude that the inequality above holds when the left hand side is
replaced by

max inf (W(xo,)\)[h, h] + (aﬁ(wo,)\)ﬂ@) )

XeMq weT(h) \ Ox? ox

and, thus,

max (?ﬁ(mo,/\)[h,h] + inf <<g§(azo,/\),w)>> >0,

>\EAa ’lUET(h)

This and the arbitrariness of i imply (4). The theorem is proved.

4. Appendix

Given a finite-dimensional Euclidean space Z (say Z = R™), a convex
compact set Z C Z, a vector a € Z, a convex subset 7 C X, and a linear
mapping A : X — Z.

Proposition A. Let it be

inf max(Aw +a,z) > 0. (21)

weT ZGZ
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Then
max inf (Aw +a,z) > 0. (22)

ZEZ weT

Proof. If 0 € Z, then (22) obviously holds. Therefore, suppose that
0 & Z. Then, it is easy to see that coneZ is closed. Here, we use the fact
that the set Z is compact. We consider a set W = AT + a. Evidently, this
set T is convex, and, from (21), we conclude that W ()int(coneZ)? = 0.
Hence, we can separate the sets W and int(coneZ)O. This means that there
exists a vector Z € Z such that zZ # 0, Z € (coneZ)®, (z,2) > 0, Vz € W.
But (coneZ)® = coneZ because (coneZ) is closed. Hence, Z € coneZ. Take
2 € Z, such that zp = aZ, o > 0. Then, (Aw + a,z) > 0, Vw € 7. The

proposition is proved.
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