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Abstract. Reliability of computation concerns itself with the computation
using a computing machine that is subjected to some noise. In this paper we
survey the key elements of the construction of a reliable Turing machine which,
with some moderate overhead, can perform arbitrarily large computations even
when its operation is subjected to noise.

Since the construction is surprisingly complex, the outline presented here
is suitable as an introduction for those who want to go to the depths of the
construction and a substitute for those who want to get a low resolution picture
of the construction with enough details to understand the core principles of it.

1. Introduction

This is an exposition paper for a complex hierarchical construction of the Turing
machine that, with some modest overhead can simulate any other Turing machine
G, even when it is subjected to some noise which causes errors of the head that
occur independently of each other with small probability. This construction was
first published by the author in [1] and then in [2].

Historically the first such construction of a one-dimensional array of cellular
automata that can perform arbitrarily large computations even though at each
step each automaton makes an error independently of each other with some small
probability is given in [3]. Clearly, in the case of the Turing machine faults do occur
only where the head and information far from it does not decay spontaneously.
However, even if only with small probability, occasionally a group of faults can
put the head into the middle of a large segment of the tape rewritten before in an
arbitrarily “malicious” way.

These constructions produce an infinite hierarchy of systems in which each layer
simulates the next layer, which in turn has the same code as the previous layer.

An intuitive recipe of such constructions is as follows: We first construct a
Turing machine M1 that can withstand isolated bursts of errors of size β that
are followed by an error-free time period of at least V beta steps. Clearly, for
this construction, we need to add some redundancy in space and computation,
and organize the simulation in a way that even after the burst, the state of the
simulation can be easily restored. For the general probabilistic noise, where errors
occur independently of each other with some probability ϵ, this program needs
the core modification which consists on ”forcing” that the machine, instead of
simulating the given machine G it actually simulates itself (by writing its code on
the tape and simulating it). This will create an array of Turing machines M1, M2,
. . .Mk, . . . in which M1 simulates machine M2 and can withstand bursts of size β1

separated by at least V1 error-free steps (aka level 1 noise). Machine M2 simulates
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machine M3 and can withstand larger bursts of size β2 and are separated by at least
V2 error-free steps (aka level 2 noise), and so on, machine Mk simulates machine
Mk+1 and can withstand large burst of size βk separated by Vk error-free steps (aka
level k noise). Each of these machines, writes its own code on the tape, and the
program of M1 is hardwired and cannot be corrupted by noise.

This is rather a simplistic description of the skeleton of the construction, and
unlike in one-dimensional array of cellular automata where each cell is active, the
simulation would work “right away”. In the case of Turing machine model of
computation, there are many problems that need to be addressed.

Recall, a Turing machine consists of an infinite array of constant sized cells
that we call the tape and the head which is positioned over such a cell. One
computational steps of a Turing machine consists of the following actions:

(1) Read the content a of the current cell and the content s of the registers of
the head.

(2) Using the transition function (aka the program), infer the next state s′, the
new content a′ of the current cell, and the direction d ∈ {−1,+1} where
the head should move.

(3) Write a′ on the current cell, update the state to s′, and move the head in
the direction d.

The head of the machine M1 is a part of the hardware. However, the heads of all
other machines M2, M3, . . . are actually “virtual” and not in hardware. They are
defined in the information stored on the tape of the machine it is simulated by and
henceforth, a large burst of errors can wipe out the information that defines the
head of the simulated machine. Clearly, loosing a head can never occur at the first
level (because the head is the part of the hardware). But this actually calls for
modifications of the program of the machine M1 to deal with this possibility and
even for generalizing the definition of the Turing machine to allow for the head to
vanish and appear. We will spell out other difficulties later in the sequel.

We will outline all the details of the construction and will also show the standard
way of “switching” from bursts to probabilistic noise, and give a general structure
of the proofs.

2. Intuitive explanations of the terminology

A standard definition of the Turing machine i

M = ⟨Γ,Σ, δ, q0, F ⟩
where

(1) Γ is the finite, non-empty set of states;
(2) Σ is a finite, non-empty set of tape alphabet symbols;
(3) q0 is the initial state;
(4) F is the set of final states;
(5) δM : (Q \ F )× Σ → Q× Σ× {L,R} is the transition function.

The set F of final states has the property that whenever M enters in a state in
F , it can only continue from there to another state in F without changing the tape.

A configuration is a tuple
(q, h, x),

where q ∈ Γ is the state, h ∈ Z is the position of the head, and x ∈ ΣZ is the array
of all the cells, that is, it is the tape. The content of the cell at position p is x[p].
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FAULT TOLERANT 3

The work of the machine can be described as a sequence of configurations
C0, C1, . . . , where Ct is the configuration of the machine at time t. We are interested
in a particular sequence of configurations that have the following properties:

(1) q(0) = q0
(2) Nothing changes on the tape except possible where the head is: x(t+1)[n] =

x(t)[n] for all n ̸= h(t).
(3) On each step, the head does not jump for more than two positions: h(t +

1)− h(t) ∈ {−1, 0, 1}.
We will refer to this sequence as a history of machine M .

If the transition from one configuration to the next one in a history is not ob-
tained by applying the transition function, we say that a fault occurred at that
time.

2.1. Codes. Let Σ1 be the alphabet ofM1 and Σ2 the alphabet ofM2. A block code
is given by a positive integer Q – called the block size and a pair of two functions

ϕ∗ : Σ2 → ΣQ
1 , ϕ

∗ : ΣQ
1 → Σ2

with the property
ϕ∗(ϕ∗(x)) = x

.
Function ϕ∗ is the encoding function and we use it to encode one letter of M2

to a Q letter word of M1.
Function ϕ∗ is the decoding function and we use it to decode a Q letter word of

M1 to the corresponding letter of M2.
As an example, let us consider the repetition code. Suppose that Q ≥ 3β is

divisible by 3, Σ2 = Σ
Q/3
1 , ψ∗(x) = xxx. If y = y(1) . . . y(Q), then x = ψ∗(y) is

defined by x(i) = majority(y(i), y(i+Q/3), y(i+2Q/3)). For all β ≤ Q/3 Clearly,
this code can correct effects of a single burst of length β. If we repeat it 5 times,
then we can correct 2 such bursts.

3. Statement of the theorem

Let us consider any machine G which at time t writes a value y ̸= ∗ into the cell
at position 0.

For any given Turing machine G, there exists some constants α1, α2 > 0 such
that for any input size n there is a block code of size O((logn)α1) a fault bound ϵ
and a Turing machine M1 such that the following holds. Suppose that the machine
M1 starts working from the initial configuration (obtained by using the mentioned
block encoding) with the head in the position 0. Suppose that M1 runs and faults
occur independently of the previous one with probability ϵ.

Then at any time greater than t(log t)α2 log log log t, the tape symbol a of machine
M1 at position 0 will have the designated output field equal to y with probability
at least 1−O(ϵ).

Remark 3.1. As we can see, the machine uses very moderate space: the block code
is of size O((log n)α1).

The slowdown also is very moderate: if G halts in t steps, then M1 will stop in
t · g(t), where

g(t) = (log t)α2 log log log t,

which is a very slowly growing function.
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Later, when defining the noise, we will see that this tower of machines M1, M2,
. . . will not be high.

4. Machine M1

Let us consider two machines: M2 and M1. We want to define M1 that simu-
lates M2 even when it is subjected to noise that cause burst of no more than β1

consecutive faults to occur that are separated with at least V1 error-free steps.
We will first give the bare bones construction of M1 and then, in the subsec-

tions below, we will introduce difficulties and problems and upgrade our initial
construction accordingly.
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Figure 1. Encoding one cell of M2 onto a colony of M1. Each
cell of M1 has many fields

As depicted in Figure 1, we encode the content of a cell of machine M2 using a
repetition code onto Q consecutive cells of M1. This “group” of consecutive cells
that correspond to one cell of M2 is called a colony. Each cell of a colony has a
unique address ranging from 0 to Q − 1. The address is stored in the Addr field.
The encoded information from M2 is stored in the Info field.

The colony corresponding to the active cell is called the base colony.
To simulate one step of the machine M2, machine M1 first needs to sweep the

base colony and compute the majority of the Info to infer the content of the cell
of M2 and its state. Then, it consults the transition function of M2 and writes
the results in a Hold1 track. It does this three times, storing the results in Hold2
and Hold3 tracks. Then, it updates the Info field and the Drift field (where the
direction of M2 is stored) of each cell by computing the majority of the Hold fields
of the cell. It repeats this two times.

To track the progress of the simulations, the M1 contains the Sweep counter in
its head. Similarly, to distinguish exactly the position of the head of M1 it also
needs to store the Addr of the cell where the head of M1 is positioned. While doing
these steps of the simulation, a single fault that changes these two registers will
disturb the simulation. In order to restore the state of the simulation, we will write
the Sweep and the Addr at each cell of the colony. Now, if a fault occurs, a specific
healing procedure can reinstate the state of M1 and move on with the simulation
of machine M2.

The last stage of the simulation of one step of M2 is to transfer the head of
M2 in the colony determined by the Drift field: -1 for the left and 1 for the right
colony. Recall that the state of M2 is stored in the Info track of the base colony.
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needs to store the Addr of the cell where the head of M1 is positioned. While doing
these steps of the simulation, a single fault that changes these two registers will
disturb the simulation. In order to restore the state of the simulation, we will write
the Sweep and the Addr at each cell of the colony. Now, if a fault occurs, a specific
healing procedure can reinstate the state of M1 and move on with the simulation
of machine M2.

The last stage of the simulation of one step of M2 is to transfer the head of
M2 in the colony determined by the Drift field: -1 for the left and 1 for the right
colony. Recall that the state of M2 is stored in the Info track of the base colony.

FAULT TOLERANT 5

That information needs to be “planted” in the state portion of Info track of the
neighboring colony determined by Drift. This needs to be done again in a way that
guarantees reliability. For this, the head will sweep Info track of the base colony
and compute majority of the State and plant this information in the Hold1 track
of the designated neighboring colony. It repeats this another two times storing
the result in Hold2 and Hold3 tracks. Then, state information at each cell will be
computed by computing the majority of the Hold fields of each cell. This will be
repeated two times. This completes the transferring stage and one work period of

U = O(Q)

steps.
At every single step of M1 before the machine executes the above program, it

first checks if the Sweep value on the current cell is one less than the value of the
Sweep register in the head of the machine and that the Addr field on the head and on
the cell match. If they match, after the corresponding part of the above program is
executed, the M1 updates the Sweep value on the current cell and moves the head.
If they do not match, Alarm is called. This will initiate the healing procedure which
we will explain later.

The time diagram of the head movement in time during one work period assum-
ing no faults occur is depicted in Figure 2.

4.1. What a single burst can do? A single fault can change the content of
the head (aka the state) of M1. It can also change the content of the active cell.
Therefore, after a burst, the state and the cells that were visited by the head during
the burst have arbitrary content.

Intuitively, the entire simulation is devised in a way that it can be restored by
doing local repairs of the parts of the colony and retrieving of the normal state of
the machine before the burst occurred or before an island is encountered.

To see whether consistency – that is the basic tape pattern supporting simulation
– is broken somewhere, a very local precaution will be taken in each step: each step
will check whether the current cell-pair is allowed in a healthy configuration, which
we will elaborate later.

If not then a healing procedure will be called; we will also say that alarm will
be called. On the other hand, the rebuilding procedure will be called on some
indications that healing fails.

4.2. Zigging. Assume that the head is in the middle of the designated right neigh-
bor colony moving to the right during the transfer stage. A single fault occurs and
it only increments the Sweep number in the head of M1. The head now turns left
because it thinks that it is performing the next sweep. From the cell where the
fault occurred until the right end of the designated colony, we have wrong Sweep

number on the tape. Alarm will be called only when the head returns to this area,
possibly never.

Our goal is to put enough checks to prevent the machine to cause disproportion-
ate damage from a short burst of faults or a single fault. We want our machine to
return to the simulation as soon as possible.

To prevent this extensive damage to occur, we will introduce zigging : every Z
steps forward are accompanied by Z steps backward and forward, where Z is a
constant defined in the paper. It checks that Addr and Sweep registers of the head
correspond to those on the tape. If not, Alarm is called.
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Figure 2. Illustration of the head movement in one work period

4.3. Healing. The healing procedures Heal, RebuildHeal and the rebuilding pro-
cedure Rebuild look as if we assumed no noise or disorder.

Healing performs only local repairs of the structure: for a given (locally) ad-
missible configuration, it will attempt to compute a satisfying (locally) healthy
configuration. If it fails—having encountered an inadmissible configuration—then
the rebuilding procedure is called, which is designed to repair a larger interval.

Every healing operation starts with a survey zig around its starting point and
marks the surveyed area appropriately. If the survey finds some possible healing to
do then it performs one step of it, and returns. Otherwise the “attempt” fails and
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U = O(Q)

steps.
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the head (aka the state) of M1. It can also change the content of the active cell.
Therefore, after a burst, the state and the cells that were visited by the head during
the burst have arbitrary content.

Intuitively, the entire simulation is devised in a way that it can be restored by
doing local repairs of the parts of the colony and retrieving of the normal state of
the machine before the burst occurred or before an island is encountered.

To see whether consistency – that is the basic tape pattern supporting simulation
– is broken somewhere, a very local precaution will be taken in each step: each step
will check whether the current cell-pair is allowed in a healthy configuration, which
we will elaborate later.

If not then a healing procedure will be called; we will also say that alarm will
be called. On the other hand, the rebuilding procedure will be called on some
indications that healing fails.

4.2. Zigging. Assume that the head is in the middle of the designated right neigh-
bor colony moving to the right during the transfer stage. A single fault occurs and
it only increments the Sweep number in the head of M1. The head now turns left
because it thinks that it is performing the next sweep. From the cell where the
fault occurred until the right end of the designated colony, we have wrong Sweep

number on the tape. Alarm will be called only when the head returns to this area,
possibly never.

Our goal is to put enough checks to prevent the machine to cause disproportion-
ate damage from a short burst of faults or a single fault. We want our machine to
return to the simulation as soon as possible.

To prevent this extensive damage to occur, we will introduce zigging : every Z
steps forward are accompanied by Z steps backward and forward, where Z is a
constant defined in the paper. It checks that Addr and Sweep registers of the head
correspond to those on the tape. If not, Alarm is called.
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4.3. Healing. The healing procedures Heal, RebuildHeal and the rebuilding pro-
cedure Rebuild look as if we assumed no noise or disorder.

Healing performs only local repairs of the structure: for a given (locally) ad-
missible configuration, it will attempt to compute a satisfying (locally) healthy
configuration. If it fails—having encountered an inadmissible configuration—then
the rebuilding procedure is called, which is designed to repair a larger interval.

Every healing operation starts with a survey zig around its starting point and
marks the surveyed area appropriately. If the survey finds some possible healing to
do then it performs one step of it, and returns. Otherwise the “attempt” fails and
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in this case, it will build a rebuilding an interval which is larger and is defined with
the help of a new field special field.

Using majority, it heals the fields defining the state of the simulation (say Addr,
Sweep, Drift, etc.), and not of the simulated machine.

4.4. Problems caused by big bursts. In the next two subsections we will con-
sider some challenges that we need to deal with and are caused by big bursts.

4.4.1. Conceptual issues. Consider a big burst which have dislocated two neighbor-
ing colonies that correspond to two cells of M2. The colonies are removed from each
other and the space in between is filled with < Q empty cells. Actually this means
that two cells have some gaps in between. Clearly, this cannot happen according
to our definition of the Turing machine and therefore we need to generalize the
definition to allow for this possibility.

Consider a large burst of faults that spans multiple colonies.
By changing the content of the Info tracks, it can create more than one heads

of M2 in each colony, or erase the head completely. This is also something which
we will need to address on a conceptual level.

A big burst can also erase completely the colony structure. From the point of
view of the machine M2, this means that a cell of M2 can be completely removed.
Again, the plain definition of the Turing machine does not allow this.

Finally, when two cells of M2 are misaligned and have a gap in between, the
need to remove a cell is accompanied with the need to create one.

We will take into account all these by adopting the notion of a generalized Turing
machine.

4.4.2. Entrapment. Suppose that a large burst (spanning multiple colonies) occurs
creating some intervals I1, I2, . . . , In consisting of several colonies of machine M1,
and each interval containing a simulated head whereas the neighboring intervals
have no relations to each other with respect to simulation. A burst can send the
head from one interval to the next one, and from the next one to the previous one
forever causing head entrapment.

4.4.3. What heals the effects of big bursts? We reiterate that a big burst essentially
may ruin intervals of cells spanning multiple colonies. Our healing procedure is
very local and essentially spans a tiny fraction of a colony. The goal is to repair
the simulation structure and carry on the simulation. Why is this so? Also, what
heals these big intervals?

The answers to these two questions are related: A big island (of size β2 – spanning
multiple colonies of M1) is essentially a small island of M2. But M2 is a simulated
machine and it exists only on the tape as a part of the information saved in the
colonies. For this reason we need to establish the simulation of M2 by M1 as soon
as possible. If it is not possible, this will be achieved by the Rebuild procedure.
Colonies corresponding to (possibly misaligned) cells of M2 may be created. What
part of M2 is it simulating now over this new cell? Depending on the content of
the colony, most probably M2 is executing some healing procedure.

4.5. Self-simulation and universality. A tricky issue is “forced self-simulation”.
Each machine Mk can be implemented on a universal machine using as inputs the
pair (p, k) where p is the common program and k is the level. Eventually, p will
just be hard-wired into the definition of M1, and therefore faults cannot corrupt it.
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While creating p for machine M1, we want to make it simulate a machine M2 that
has the same program p. The method to achieve this has been applied already in
some of the cellular automata and tiling papers cited, and is related to the proof
of Kleene’s fixed-point theorem (also called the recursion theorem).

Forced self-simulation can give rise to an infinite sequence of simulations, achiev-
ing the needed robustness. Let us point out that fixing the program of self-
simulation does not prevent universality. A special track (which in the paper is
called Payload) is set aside for simulating the given arbitrary machine G. If this
simulation of G does not finish in a certain number of steps, a built-in mechanism
will lift its tape content to the Payload field of the simulated cell-pair, allowing it
to be continued in a colony-pair of the next level (with the corresponding higher
reliability).

5. Noise

The main theorem of the paper talks about faults that occur independently of
each other with probability ϵ whereas our treatise and construction are talks about
big and small bursts. How can we “switch” from combinatorial noise (bursts) to
probabilistic noise?

The set of faults in the noise model of the theorem is a set of points in time.
It turns out more convenient to use an equivalent model: an ϵ-bounded space-time
set of points. Let us make this statement more formal.

We want to deal with bursts (rectangles of space-time containing Noise) that are
bigger in size and sparser in frequency. To derive such combinatorial constraints
from the our probabilistic model we stratify Noise as follows.

We will have two series of parameters: B1 < B2 < · · · and S1 < S2 < · · ·, where
Bk is the size of cells of Mk as represented on the tape of M1, and Sk is a (somewhat
increased) bound on the time needed to simulate one step of Mk.

For some constants β, γ > 1, a burst of noise of type (a, b) is a space-time set
that is coverable by a rectangle of size a × b. For an integer k > 0 it is of level k
when it is of type β(Bk, Sk). It is isolated if it is essentially alone in a rectangle of
size γ(Bk+1 × Sk+1) First we remove such isolated bursts of level 1, then of level 2
from the remaining set, and so on. It is shown in the paper that with not too fast
increasing sequences Bk, Sk, with probability 1, this infinite sequence of operations
completely erases Noise: thus each fault belongs to a burst of “level” k for some k.

As stated before, machine Mk will concentrate only on correcting isolated bursts
of level k and on restoring the framework allowing Mk+1 to do its job. It can
ignore the lower-level bursts and will need to work correctly only in the absence of
higher-level bursts.

The rest of treatise on this matter is simple and is well treated in the paper and
even some earlier publications on these topics. Arguments and statements given
there allow a doubly exponentially increasing sequence Uk, resulting in relatively
few simulation levels as a function of the computation time, which is important for
establishing the time estimate of the time overhead given in the theorem: if the
given machine G halts in t steps, then we can read its result from the designated
cell (by construction) after

t(log t)α2 log log log t

steps.
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that two cells have some gaps in between. Clearly, this cannot happen according
to our definition of the Turing machine and therefore we need to generalize the
definition to allow for this possibility.
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view of the machine M2, this means that a cell of M2 can be completely removed.
Again, the plain definition of the Turing machine does not allow this.
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need to remove a cell is accompanied with the need to create one.
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and each interval containing a simulated head whereas the neighboring intervals
have no relations to each other with respect to simulation. A burst can send the
head from one interval to the next one, and from the next one to the previous one
forever causing head entrapment.

4.4.3. What heals the effects of big bursts? We reiterate that a big burst essentially
may ruin intervals of cells spanning multiple colonies. Our healing procedure is
very local and essentially spans a tiny fraction of a colony. The goal is to repair
the simulation structure and carry on the simulation. Why is this so? Also, what
heals these big intervals?

The answers to these two questions are related: A big island (of size β2 – spanning
multiple colonies of M1) is essentially a small island of M2. But M2 is a simulated
machine and it exists only on the tape as a part of the information saved in the
colonies. For this reason we need to establish the simulation of M2 by M1 as soon
as possible. If it is not possible, this will be achieved by the Rebuild procedure.
Colonies corresponding to (possibly misaligned) cells of M2 may be created. What
part of M2 is it simulating now over this new cell? Depending on the content of
the colony, most probably M2 is executing some healing procedure.

4.5. Self-simulation and universality. A tricky issue is “forced self-simulation”.
Each machine Mk can be implemented on a universal machine using as inputs the
pair (p, k) where p is the common program and k is the level. Eventually, p will
just be hard-wired into the definition of M1, and therefore faults cannot corrupt it.
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While creating p for machine M1, we want to make it simulate a machine M2 that
has the same program p. The method to achieve this has been applied already in
some of the cellular automata and tiling papers cited, and is related to the proof
of Kleene’s fixed-point theorem (also called the recursion theorem).

Forced self-simulation can give rise to an infinite sequence of simulations, achiev-
ing the needed robustness. Let us point out that fixing the program of self-
simulation does not prevent universality. A special track (which in the paper is
called Payload) is set aside for simulating the given arbitrary machine G. If this
simulation of G does not finish in a certain number of steps, a built-in mechanism
will lift its tape content to the Payload field of the simulated cell-pair, allowing it
to be continued in a colony-pair of the next level (with the corresponding higher
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The main theorem of the paper talks about faults that occur independently of
each other with probability ϵ whereas our treatise and construction are talks about
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The set of faults in the noise model of the theorem is a set of points in time.
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set of points. Let us make this statement more formal.
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that is coverable by a rectangle of size a × b. For an integer k > 0 it is of level k
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from the remaining set, and so on. It is shown in the paper that with not too fast
increasing sequences Bk, Sk, with probability 1, this infinite sequence of operations
completely erases Noise: thus each fault belongs to a burst of “level” k for some k.

As stated before, machine Mk will concentrate only on correcting isolated bursts
of level k and on restoring the framework allowing Mk+1 to do its job. It can
ignore the lower-level bursts and will need to work correctly only in the absence of
higher-level bursts.

The rest of treatise on this matter is simple and is well treated in the paper and
even some earlier publications on these topics. Arguments and statements given
there allow a doubly exponentially increasing sequence Uk, resulting in relatively
few simulation levels as a function of the computation time, which is important for
establishing the time estimate of the time overhead given in the theorem: if the
given machine G halts in t steps, then we can read its result from the designated
cell (by construction) after

t(log t)α2 log log log t
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6. A roadmap of the proof

Recall that a big burst may cause cells of (simulated) machine M2 to have space
in between, or cells be dislocated, or a head to disappear or many of them to be
created. For this reason and for the sake of proof, we need to define the generalized
Turing machine. Then, we need to define the history of such a machine.

6.1. Healthy configuration. The definition of a healthy configuration is given
by describing the conditions that a configuration must have. These conditions are
given in axioms (H1) through (H5). To begin with, as we have explained before, we
cannot count that the tape consists of a single interval of contiguous cells. No cell
in these intervals should be marked by Rebuild marks and if removed from each
other, they can contain a bridge of cells in between. In a healthy interval, the Drift
marks on the cell always point to the front, that is a cell from where simulation
can be carried out. Also, it is natural to require that all the Drift marks in the
colonies in a healthy interval containing the head should point to the base colony.
Other conditions establish the so called D-zone, an interval of Z/2± 1 cells at the
front or ahead of it which contains the head or is adjacent to it and contain zigging
marks.

6.2. Simulation. Healing. A trajectory is a history in which transitions are done
according to the transition function.

To validate the construction it is necessary to prove that the decoding map which
is defined and used in the construction takes a trajectory to a trajectory.

Healthy configuration is an ultimate goal. We relax this definition with the
notion of “almost healthy” or admissible configuration.

Informally, an admissible configuration may differ from a healthy one in a small
number of intervals we will call “islands”. Even a healthy configuration may con-
tain some intervals called “stains”: places in which the Info track differs from a
codeword. These pose no obstacle to the simulation, and if they are small and few
then will be eliminated by it, via the error-correcting code.

We introduce also the notion of annotation which interprets parts of a history,
“covering up” small segments that are not quite healthy and leaves other parts
uninterpreted.

A central and novel part of the argument is the annotation game. There are two
players: the annotator and the range extender and they are not adversaries, but
rather collaborators. A range of the annotation is a subset of Z× [0, t). Essentially,
the range extender is challenging the annotator to extend its reach. It is actually
proven in the paper that the annotator can always respond to the challenge.
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