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DETERMINATION OF THE IMAGE FORCE ON A STRAIGHT
DISLOCATION IN A HALF-SPACE BY THE BARNETT
AND LOTHE FORMULA

Abstract

The Barnett and Lothe (1974) formula, expressed in terms of the prelogarithmic energy
factors, is used to derive the classical expressions for the image force exerted on a straight
dislocation by a free, slipping, or fixed boundary of an elastic and isotropic half-space. A
dual analysis is presented in which the image force expressions are derived by the evaluation
of the M integrals appearing in Rice’s (1985) version of the Barnett and Lothe formula. The
comparison with the classical derivations by Head (1953), Dundurs and Mura (1964), and
Dundurs (1969), based on the complete solutions of the considered boundary-value problems,
is discussed in each case.

Odredivanje dislokacione sile u poluprostoru koriséenjem
Barnett i Lothe-ove formule

ITzvod

Barnett i Lothe-ova (1974) formula, izrazena korig¢enjem predlogaritamskih energetskih
faktora, je primijenjena u izvodenju klasi¢nih izraza za dislokacionu silu usljed dejstva slo-
bodne, proklizavajuce ili fiksne konture elasti¢nog izotropnog poluprostora. Dualna analiza
je data u kojoj su izrazi za dislokacionu silu izvedeni evaluacijom M integrala koji se po-
javljuju u Rice-ovoj (1985) verziji Barnett i Lothe-ove formule. Uporedenje sa klasi¢nom
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analizom (Head, 1953; Dundurs and Mura, 1964; Dundurs, 1969), koja je zasnovana na
rjeSavanju cijelog problema grani¢ne vrijednosti, je dato za sve tri vrste grani¢nih uslova.

1 Introduction

Barnett and Lothe (1974) formulated an image force theorem for dislocations in anisotropic
bicrystals, according to which a straight dislocation with a Burgers vector {b1, ba, b3}, where
b is its screw component, residing at a distance h from the interface (Fig. 1a), is under an
energetic (image) force

fi=—(E®-E"¥)/h. (1.1)

In this formula, E* is the prelogarithmic energy factor for the same dislocation in an infinite
homogeneous medium elastically identical to the half-space in which the dislocation resides,
while E'? is the prelogarithmic energy factor of the same dislocation located at the interface
of the bicrystal under consideration (Fig. 1b). Barnett and Lothe (1974) also developed
a procedure which allows the calculation of E'? by numerical integration for any type of
elastic anisotropy.

For an isotropic medium with shear modulus p and Poisson’s ratio v, the prelogarithmic
energy factor £ is well-known (e.g., Barnett and Lothe, 1974; Hirth and Lothe, 1982) and
is given by

o HBEB) W
dr(l—v)  Ar’

because the elastic strain energy within the region of a large radius R > p around the

(1.2)

dislocation, outside the dislocation core of a small radius p, is then U>® = E*In(R/p).
From Rice’s (1985) analysis it folows that the image force can also be calculated by an
indirect evaluation of the J; integral, expressed in terms of the M integrals as

fr=Jy=—(M>-M'"P)/n. (1.3)

In this formula, M is the M integral around the dislocation in an infinite homogeneous
medium elastically identical to the half-space in which the dislocation resides, defined with
respect to the coordinate origin at the center of the dislocation, while M'? is the M integral
around the dislocation located at the interface of the bicrystal under consideration, defined
with respect to the coordinate origin at the center of such interface dislocation. This follows
because, if the circle around the dislocation is chosen to be large enough, the normal distance
h between the dislocation and the interface is not observed, and the dislocation is seen from
such large distances as an interface dislocation. The formula (1.3) neatly complements the
Barnett and Lothe formula (1.1), expressed in terms of the prelogarithmic energy factors, and
is equivalent to it because M> = E* and M'? = E', although details of the calculation
of M>® and E®, or M'1? and E'?, are mathematically and conceptually different. For
example, as shown in Appendix A, the M* integral is evaluated from
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(a) (b)

Figure 1: (a) A straight dislocation at a distance h from a free, sliding, or fixed boundary

(z1 = 0) of an isotropic half-space. (b) A boundary dislocation, obtained from part (a) in
the limit as h — 0. The polar coordinates with the origin at the center of the dislocation
are (r,0).

p(bi +b3) | pb3

dr(l—-v) 4An’ (1.4)

27
M= = / r*w™ df =
0
where w™ is the strain energy density for the dislocation in an infinite homogeneous medium,
and (r,6) are the polar coordinates with the origin at the center of the dislocation.

We apply in this paper the Barnett and Lothe formula to determine the image force on a
straight dislocation in a half-space with either traction-free (011 = 012 = 013 = 0), slipping
(ug =0, 012 = 013 = 0), or fixed (u1 = ug = ug = 0) boundary (Fig. 1a). Toward this
goal, and with the appropriately interpreted (1.1) and (1.3) in the case of a half-space rather
than a bicrystal configuration, it is sufficient to determine E'? or M for each boundary
condition. In the evaluation of M2 the integral is evaluated along a semicircle around
the boundary dislocation, because the contribution to M integral from the edge 1 = 0
identically vanishes for all three considered boundary conditions. It will be shown that for
a slipping and fixed boundary, the M integral can be determined from (Fig. 1b)

/2
M2 = / r2w'?d, (1.5)
—7/2
with w'/? designating the corresponding strain energy density. For a traction-free boundary,

M2 =0, because w'l? = 0, trivially. For a slipping boundary of a half-space, the complete
elasticity solution can be derived by a simple superposition of the infinite-medium elastic
fields of the dislocation under consideration and its properly defined image dislocation. The
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elastic stress field needed for the evaluation of w'/? in the case of a fixed boundary of a
half-space is derived from the corresponding Airy stress function, as shown in Appendix
B. Appendix A contains a necessary background for the derivation of Rice’s version of the
Barnett and Lothe formula.

The presented analysis will be related to the liming cases of the classical analyzes by
Head (1953), Dundurs and Mura (1964), and Dundurs (1969), which are based on the
complete solutions of the considered boundary-value problems, and the use of the Peach—
Koehler (1950) dislocation force expression, or the negative gradient of the strain energy
with respect to the dislocation position. This comparative analysis is appealing from both
the conceptual and the methodological point of view.

2 Traction-free boundary

When the dislocation is located at a traction-free boundary of a half-space, it has exited the
material and no strain energy remains in a half-space. Thus, U/ vanishes and so do E*?
and M2, Consequently from (1.1) and (1.3), the image force exerted on a dislocation at a
distance h from a free boundary of a half-space is

B M™ p(biAb3) pby
h  h  Arh(l1—v) 4rzh’

fi= (2.1)
regardless of the orientation of the edge component of the Burgers vector. It can also be
easily shown that the radial component of the dislocation force toward the tip of a wedge of
any angle is also equal to E*°/h (Asaro, 1975; Rice, 1985).

The expression on the right-hand side of (2.1) was originally derived for an edge dislo-
cation be Head (1953). It can also be deduced from the general results by Dundurs and
Mura (1964), and Dundurs (1969) for a straight dislocation near perfect interface between
two half-spaces with different elastic constants, by taking the shear modulus of a half-space
in which the dislocation does not reside to be equal to zero. The expression for the strain
energy of a straight dislocation (including its screw component) near a bimaterial interface
is given by eq. (8) of Lubarda (1997). When us — 0, this expression reduces to

L

U= (1 —v)

2h 1

By taking the negative gradient of U with respect to h, we recover the right-hand side of
(2.1). Furthermore, it follows that —pdU/0p = M, as given in (1.4).

2.1 Direct evaluation of J;

It is appealing to compare the indirect evaluation of the .J; integral, via the M integrals
appearing in (1.3), with the direct evaluation of the J; integral. By taking a closed contour to
consist, of the segment (—R, R) along a free boundary and a semicircle of radius R, centered
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at O (5a), it follows that, in the limit as R — oo, the non-vanishing contribution to .J;
integral comes only from the stresses along the boundary z; = 0, such that

1 o0 o0
Ji=——|(1- V)/ 035(0, 79) day —|—2/ 035(0,19) daa | . (2.3)

21 0 0
The stress components o99(0, 22) and o32(0,z2) along a free surface z; = 0 can be deter-
mined solely in terms of the infinite-medium stresses, without solving the entire boundary-
value problem, by employing some general results from the two-dimensional elasticity (Kien-

zler and Duan, 1987; Lin, Honein and Herrmann, 1989; Lubarda, 2015,2016). This gives
0'22(0, $2) = 2[058(0, 372) — (Tﬁ)(o7 3?2)] s 0'32(0,.1’2) = 2(7??;(0,.%2) . (24)

Using the well known expressions for the infinite-medium dislocation stresses 075 (e.g., Hirth
and Lothe, 1982), it follows that

4,uhx2 blh — bgCEQ
m(l—v) (h? +a23)?’
The substitution of (2.5) into (2.3) and integration reproduces (2.1).

s
T h?+a3’

0'22(07 .’ﬂg) = (732(0,.%’2) = — (25)

3 Slipping boundary

Figure 3a shows a straight dislocation with a Burgers vector {b1,bs, b3} at a distance h from
a slipping boundary of a half-space, which prevents normal displacement (u; =0, o1; # 0),
but allows tangential displacements (uz # 0, ug # 0, 012 = 013 = 0). The dislocation is
created by the displacement discontinuity along the x; axis from z; = h to infinity. The
complete elastic solution for this problem can be obtained by placing in an infinite medium
an image dislocation with a Burgers vector {by,—by, —bs} at point (x; = —h, 29 = 0,
Fig. 3a), because the two dislocations together produce neither shear stress nor horizontal
displacement along the plane 21 = 0 in an infinite medium (013 = 013 = 0,u; = 0).

If h = 0 in Fig. 3a, the dislocation resides at the boundary z; = 0, Fig. 2b. The
image dislocation in an infinite medium then merges with the actual dislocation to produce
a dislocation with a Burgers vector {2b1,0,0}. Physically, a slipping boundary cannot
support the screw component of the dislocation, nor the edge component parallel to the
boundary. The strain energy in a half-space shown in Fig. 3b, stored in the region between
a semicircular core of radius p and a large semicircle of radius R, is thus one-half of the
strain energy in an infinite medium due to dislocation of a Burgers vector 2b;, stored in the
region between the circles of radii p and R, i.e.,

1 L R
U =_Ug, Usp =—+—(2b1)*In—. 3.1
2 21)1 I 2b1 47_(_(1 _ V) ( 1) n p ( )
The work done by the tractions on the corresponding displacements over the core semicircle
of radius p and a remote semicircle of radius R cancel each other (W, = —Wpg), which was

used in arriving at (3.1). Thus,
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Figure 2: (a) A straight dislocation with a Burgers vector {b1,be, b3} at a distance h from
the sliding boundary of an isotropic half-space. (b) A boundary dislocation, obtained from
part (a) in the limit as h — 0. The elastic strain energy is calculated in the region between
a semicircular core of small radius p and a large semicircle of radius R.

(a) (b)

Figure 3: (a) The solution to the problem in Fig. 2a is obtained by superimposing the
infinite-medium elastic fields of the actual dislocation with a Burgers vector {b1, ba, b3} and
an image dislocation with a Burgers vector {b1, —bg, —b3}, placed at point (21 = —h, 2 = 0.
(b) In the limit as h — 0, the image dislocation in Fig. 3a merges with the actual dislocation
to produce a dislocation with a Burgers vector {2b1,0,0}.
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2
gl ® g # (3.2)
o’ 2r(1—v)
The substitution of E* from (1.2) and E'? from (3.2) into the Barnett and Lothe formula
(1.1) therefore gives
B

fi= 4rh(l1—v) 4rh’

(3.3)

The dislocation is in equilibrium for any h > p if b7 = b3 + (1 — v)b3. For example, a pure
edge dislocation is in equilibrium if its Burgers vector is oriented so that b; = +b,.

3.1 M integral derivation

We only need to evaluate M'1? and use (1.3). The M2 integral is simply equal to one-half
of the M for the dislocation of the Burgers vector 2b; in an infinite medium. Thus, by
using (1.4),

1(201)? pbi

1
T 24n(l-v) 2e(1-v) (34)

7r/2 1
M2 = / r?wt?df = = Mg
—m/2 2 '

The substitution of M from (1.4) and M2 from (3.4) into (1.3) reproduces the dislocation
force expression (3.3).

3.2 Comparison with other derivations

The expression (3.3) can be easily verified by using the Peach-Koehler (1950) expression

J1 = 021b1 + Ga2ba + G23bs . (3.5)
The stress components ¢;; at the dislocation position x; = h are equal to those produced
in an infinite medium by the image dislocation {b1, —bs, —b3} at &y = —h. These are
~ ,U/bl 1 ~ /LbQ 1 N ,U,bg 1
_ - - _ - === 3.6
T v 2 2T Tam(l-v)2n "B T 2r 2n (3:6)

The substitution of (3.6) into (3.5) reproduces (3.3).

Alternatively, (3.3) can be derived as the negative gradient of the strain energy with
respect to a dislocation position, which is the approach frequently used by Dundurs (1969),
among others. Thus,

ou 1R
f1 =—, U== / (0’21b1 + 099by + 0'231)3)12:0 dxq + p T Wg. (37)
oh 2 ), "

The terms W, and Wg (independent of ) account for the work done by tractions on
the corresponding displacements over the core circle and a remote semicircle. The stress
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components along the z; axis in Fig. 3a are the sums of the contributions from the actual
and image dislocation in an infinite medium, i.e.,

by 1 1 J1b3 1 1
_ i _ - 3.8
(021,022) 2(1—v) <$1—h x1_|_h>’ 023 2r \my—h x1+h)’ (38)

so that

2 2
U—M(lu_y)<b%1nfm)+b§1n2:>+ib;’ln2;l+Wp+WR. (3.9)
Using (3.9) in (3.7) reproduces (3.3). Also, (3.3) can be deduced from the analysis of
edge dislocation near an inclusion with a slipping interface by Dundurs and Gangadharan
(1969), by letting the radius of a rigid inclusion to be much greater than the distance of the
dislocation from the interface; their expression (17) and (18) then specify the edge dislocation
contribution to the image force. The screw dislocation contribution is the same as in the
case of a traction-free boundary. For an analysis of dislocation interaction with interfaces
whose properties are in between slipping and fixed interface properties, see the analyses by
Shilkrot and Srolovitz (1998), and Fan and Wang (2003).

The total strain energy in a half-space with a slipping boundary (Fig. 3a), stored within
a semicircle of large radius R with the center at O, outside a circular core of small radius p,
is given by (3.9), in which

2m /2
W, = —7/ (orur + 0roup)r=p pdf, Wg= 1/ (opuy + orgug) =g Rdf  (3.10)

2 Jo 2 2
account for the work done by tractions on the corresponding displacements over the core
circle and a remote semicircle. No work is done by the boundary traction along z; = 0. For
a sufficiently small core radius, the work W), is equal to that for a dislocation in an infinite
medium, while Wx is equal to one-half of the work along the entire circle of large radius R
around the dislocation of a Burgers vector 2b; in an infinite medium. Thus, by using the

expressions from Asaro and Lubarda (2006), page 425,

p(l —2v)
s7(1— )2

I 1
Wy = ot [(L=n)(6 = 8) 5 (F +8) |, We=

- b2 (3.11)

It is noted that in (3.9), —pdU/0p = M, which is the relationship that holds for all
three houndary conditions of a half-space, consistent with the physical interpretation of M>
integral as the energy release rate associated with a self-similar expansion of a dislocation
core.

4 Fixed boundary

Figure 4a shows a straight dislocation with a Burgers vector {b1,bs,b3} at a distance h
from a fixed boundary of a half-space, which prevents all three displacement components
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(a) (b)

Figure 4: (a) A straight dislocation at a distance h from a fixed boundary of an isotropic
half-space. (b) A boundary dislocation, obtained from part (a) in the limit as h — 0. The
elastic strain energy is calculated in the region between a semicircular core of small radius
p and a large semicircle of radius R.

(u1 = ug = uz = 0). To determine the image force, it is sufficient to consider the dislocation
residing at the boundary (h = 0). The stress and displacement fields for such dislocation
are listed in Appendix B of the paper. From this, the elastic strain energy within a large
semicircle of radius R, outside a semicircular core of small radius p (Fig. 4b), is

1 R
U1‘2 = 5/ (Ur9b1 + ogby + Ugebg);ljo dr. (4.1)
p

Since dp(l—v) b 4p(l—v) b b
12 V) 01 12 V) 02 12 3

3 =1 /2 = — 4.2
=0 T(3—4v) r - 0)9:0 T(3—4v) r T30 ar’ (42)

as shown in Appendix B, there follows
R p 20-n)BHR) |

U1|2 _ E1|2 In=
e (3 —4v) 2m

(UT9)

(4.3)

where E'12 is the corresponding prelogarithmic factor. Expression for E'? in (4.3) coincides
with the Barnett and Lothe (1995) expression (14) if in their expression po — 0.

The substitution of £ from (1.2) and E'I? from (4.3) into the Barnett and Lothe formula
(1.1) gives the following expression for the image force on a dislocation at a distance h from
a fixed boundary (Fig. 4a),

f- (b7 + b3)

 ATh(3 - 4v) 4h

{4(121/)+1_V

|+, (1.9
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As in the case of a traction-free boundary, this force is independent of the direction of the
edge component of the dislocation. Ting and Barnett (1993) also derived an expression for
the image force on a dislocation in an arbitrary anisotropic half-space with a fixed boundary.

4.1 M integral derivation

From the results in Appendix B, the strain energy density is

4(1 = v)pu(b? + b3) 3] 1
12 _ 17103 2 3
w'l? = [ 23— 11)? (1—2v+ cos 9)+ﬁ 2 (4.5)
so that " . ,
M2 = / 220112 4o — 2(1 = v)u(by +b3) n Lb?) (4.6)
—7/2 (3 — 41/) 2T

(
The substitution of M> from (1.4) and M from (4.6) into (1.3) reproduces (4.4).

4.2 Comparison with other derivations

The derived expression (4.4) can also be deduced from the general results of Head (1953),
Dundurs and Mura (1964), and Dundurs (1969) for a straight dislocation near a fixed inter-
face between two half-spaces with different elastic constants, by taking the shear modulus
of a half-space in which the dislocation does not reside to be infinitely large. Their expres-
sions were deduced from the Peach-Koehler force expression, or from the negative gradient
of the interaction energy with respect to the dislocation position, once the entire boundary
value problem was solved. A complete expression for the strain energy of the dislocation
(including its screw component) near a bimaterial interface is given by eq. (8) of Lubarda
(1997). When p12 — 0o, this expression reduces to

- (b + b3) R 5-12v+8° 2h] b3 < R 2h

=—= Bl-v)n——————In—|+—=(In——In— |+ W, (47
4m(3 — 4v) ( V)np 1-v np +47r np np>+ » (47)
with the appropriately specified work contribution W = Wg + W,, which is independent
of h. By taking the negative gradient of U with respect to h, we recover f; = —9U/0h as
specified in (4.4). Furthermore, it follows that —pdU/dp = M, as given in (1.4), while the
prelogarithmic factor in front of In(R/p) term in (4.7) is E'/?, as given in (4.3).

5 Conclusions

We have derived in this paper the classical expressions for the image force exerted on a
straight dislocation by a traction-free, slipping, or fixed boundary of an isotropic half-space
(Head, 1953; Dundurs and Mura, 1964; Dundurs, 1969) by using either the Barnett and
Lothe (1974) formula f; = —(E> — E?)/h, expressed in terms of the prelogarithmic energy
factors E* and E', or an equivalent formula f; = —(M® — M'12)/h, expressed in terms of
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the M integrals, which is deduced from Rice’s (1985) analysis of a dislocation near bimaterial
interface. The normal distance between a dislocation and a boundary of a half-space is h,
E* and M are the quantities evaluated for the dislocation in an infinite medium, while
E'2 and M'? correspond to a dislocation located at a boundary of a half-space. Although
the two formulas are equivalent in the sense that M> = E* and M2 = E'?, the details
of the evaluations of M> and E*, or M'? and E'I?, are mathematically and conceptually
different, as explicitly demonstrated in this paper. Since the expressions for E* and M
are well known, only the expressions for E'1? and M needed to be evaluated for each of
the three considered boundary conditions. It is shown that the M'? integral is the angle
integral of r?w'? along a semicircle of radius r around the boundary dislocation, where w'l?
is the corresponding strain energy density. For a traction-free boundary, M'? = 0, because
w'l> = 0. For a slipping boundary, M'? integral for a dislocation with a Burgers vector
{b1,b2,b3} is equal to one-half of M for a dislocation with a Burgers vector {2b,0,0}
because w'l? = wgyy . This is so because the complete elasticity solution for a dislocation
with a Burgers vector {by,bs,b3} near a slipping boundary of a half-space is the sum of
the infinite-medium solutions for the actual dislocation and an image dislocation with a

Burgers vector {b1, —by, —b3}. For a fixed boundary, w'l? is evaluated from the elastic field
of a boundary dislocation, which is conveniently deduced from the corresponding Airy stress

function.

Acknowledgments: Research support from the Montenegrin Academy of Sciences and
Arts is kindly acknowledged.

Appendix A: M integral

The M integral is defined by (Knowles and Sternberg, 1972; Budiansky and Rice, 1973)

M= ?{Paﬂnaxﬂ dl, (e,p)=1,2, (A1)

where the integration is over a closed contour whose infinitesimal element is dl, with the
outward normal n,. The components of the energy momentum tensor P, (Eshelby, 1956)
are

Paﬁ = wéag — Oanylly,g — 0a3U3 3, W= 5 OaB€aB T 037€3 . (A2)

The strain energy density is denoted by w, s are the components of the Kronecker delta
tensor, and the comma specifies the indicated partial derivative. The summation convention
is implied over a repeated index. The strain components are related to stress components
by Hooke’s law €,3 = (0ag — ¥0y40ap)/21t and €3, = 03, /2p1, where p is the elastic shear
modulus, v is the Poisson ratio, and 0, = 011 + 022.

The value of M integral depends on the selected coordinate origin. The M integral with
respect to the coordinate origin at point O is related to the M integral with respect to the
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(a) (b)

Figure 5. (a) A straight dislocation at point A, a distance h from the boundary of an
isotropic half-space. The My integral can be conveniently evaluated along a small circle of
radius r < h around A. The My integral around a dislocation can be conveniently evaluated
along a closed contour which consists of a long boundary segment from z; = —R to 21 = R,
completed by a large semicircle of radius R >> h. The contribution to Mo from the (=R, R)
boundary segment vanishes, while along a large semicircle of radius R the distance h is not
observed and a dislocation acts as a boundary dislocation shown in part (b).

coordinate origin at point A, at distance h from point O along z; axis, by
MA :Mo—hjl, Jl :]{Palna dl. (A3)

Here, J; integral, evaluated around a defect (dislocation), represents the energy release
rate associated with an infinitesimal translation of the defect in the x; direction. Thus, J;
integral can be used to evaluate the dislocation force from f, = J; = —(M4 — Mp)/h.

For the problem of a dislocation near a free, slipping, or fixed boundary of a half-space
(Fig. 5a), the integral M4 can be conveniently evaluated along a small circle of radius
r < h around A. The stress and displacement fields along such circle are nearly those of
a dislocation in an infinite medium. If they are substituted into the expression for My
integral, which can be expressed in polar coordinates with the origin at A, as

My = }{[w — (0rUry + OroUgr + opaus )] r2de, (A4)

there follows (e.g., Rice, 1985)

p(bf +63) | pb3
My=——=-+4—=. A.
4 dr(l-v)  4r (A.5)
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Indeed, the strain energy density for a dislocation in an infinite medium is

0 L oo Ky 212 : 1
w :{%E +87T2(1_V)[(bl—b2)00529—|—2b1bgsm29]}TQ. (A.6)

Since

o _ U +b3)(1—2v)
) == 812(1 — v)?
whose integral from 0 to 2 is equal to zero, the My integral is equal to the contour integral
of r?w™, which gives (A.5).

To evaluate Mo integral around a dislocation in Fig. 5b, we conveniently choose for

0820, (A.7)

2
T (Urur,r + OroUe,r + Tr3us

the contour a long boundary segment from z; = —R to z; = R, completed by a large
semicircle of radius R > h. The contribution to Mo from (—R, R) boundary segment
vanishes for each of the three considered boundary conditions, because ny = 0 and P =
—01yUy2 — 013u32 = 0 along the edge x; = 0. Along a large semicircle of radius R > h
centered at O, the distance h is not observed and the dislocation acts as if was an interface
(boundary) dislocation. Thus, we evaluate Mo from

/2

Mo = / [w— (opUr, + orgug, + UT3U3’7«)]1‘2 R%d6. (A.8)
—7/2

The attached superscript ()!? indicates that the integrand in (A.8) is evaluated for the

elasticity field of a boundary dislocation from Fig. 5b. It is shown bellow that for a slipping

or fixed boundary of a half-space, only w-part of the integrand in (A.8) contributes to Mo

integral, so that (A.8) reduces to

/2
Mo = / R*w'?de. (A.9)
—m/2

For a free boundary of a half-space, w'l?> = 0 and thus M'? = 0.
Al. Dislocation at a slipping boundary

For a dislocation at a slipping boundary (Fig. 3b), the elastic field in a half-space is
equivalent to an infinite medium field to the right of a dislocation with a Burgers vector 2b;
(Fig. 3b). Thus,

1|2 00 1 o H

- | = Vo2 1
= way, = |5 Eap, S72(1 =) b cos 260 a2 (A.10)

Furthermore, since

12 _ _M(2bl)2(1 - 2v)

Sr2(1 =) cos 26, (A.11)

2
r (UTUT,T‘ + OrpUg,r + UTBUS,T)

whose integral from —m /2 to 7/2 is equal to zero, only the w-part of the integrand in (A.8)
contributes to Mo integral, giving rise to (A.9).
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A2. Dislocation at a fixed boundary

)12 = 0, because it is shown in Appendix B that

In this case, (0, Uy + OroUg r + OpgUs,
for a dislocation at a fixed boundary (Fig. 4b), the displacement components u,, ug, and us
are all independent of 7. Thus, again, only the w-part of the integrand in (A.8) contributes

to Mo integral, which, therefore, reduces to (A.9).

Appendix B: Elastic fields for a straight dislocation at a
fixed boundary of a half-space

The complete stress, strain and displacement fields are listed in this appendix for a straight
dislocation with a Burgers vector {by, by, b3} residing at a fixed boundary of an isotropic
half-space with the shear modulus p and Poisson’s ratio v (Fig. 4b). For convenience, the
results are given separately for each component of the dislocation Burgers vector. These
fields can be deduced from the results by Dundurs and Mura (1964), and Dundurs (1969)
for edge and screw dislocations near a perfect bimaterial interface in the limit of infinitely
stiff undislocated material. We assume that a dislocation is created by slip discontinuity
along the positive z; axis.

B.1 [Edge dislocation with a Burgers vector b,

The Airy stress function is

2
® = —kb [2(1 - v)rlnrsind+ (1 - 2v)rfcosf], k= W(T“M , (B.1)
with the corresponding stresses
in6 in6 0
o, = —2vkby sy , o9 =—=2(1—-v)kb smy , o org =2(1—v)kby o8y ) (B.2)
T T T
The displacement components are
by J(0—7/2)cost, 0<0< /2, (B.3)
T | (0+7/2)cosl, —7m/2<60<0, .

O—n/2)sin0+ =0 0<cp<np
b —7/2)sinf+ —+, 0<60<7/2,
up = —— 8 —dv (B.4)

o
(9—|—7r/2)sin0+%, r/2<6<0.

The Cartesian component counterparts are

p 5 sin 20 0
) -l +2(3—4V)’ i w2 cos? 6 (B.5)
! 4 ) sin 26 0 ’ ? T 3—4dv '
TRty S
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The latter are listed to point out that both displacement components (u; and us) are
independent of the radial distance r. This independence of 7 is in contrast to the solution
for the dislocation in an infinite medium, where 19 component depends on 7 in a logarithmic
manner.

The elastic strain energy within a large semicircle of radius R, outside a semicircular
core of radius p, is

1 R
U= 5/ (0‘,@)9;0 b1 d’l‘-l—Wp-l-WR, Wp =-Wg, (B.6)
p

where

1 ("2 1—20)b?
W, = —7/ (oruy + 0roug)r=p pdl = u

1 2 w2 ; u(fw_(?;u_)zj)2 (B.7)
Wg = 3 /_Wp(orur +0rgup)r=g RdO = m .
Since (0,9)p=0 = 2k(1 — v)by /7, there follows
U=FE"P 1n1§, EY1? = k(1 —v)b?, (B.8)
where E'? is the corresponding prelogarithmic factor.
B.2 [Edge dislocation with a Burgers vector b,
The Airy stress function is
Q =kby[2(1 —v)rlnrcosf — (1 —2v)rfsinb], (B.9)
with the corresponding stresses
or = 2vkby g . 09 =2(1—v)kby g , o orp = 2(1 —v)kby g . (B.10)
The displacement components are
b, | (6 —7/2)sinf — LSH, 0<6<m/2,
up = — 8- dv (B.11)

cos
(04 7/2)sinf — Fy -m/2<60<0,

by | (@ —7/2)cosf, 0<0<m/2,

Ug = — (B.l?)
T (0+7/2)cos, —7m/2<60<0,
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with the Cartesian counterparts

sin 26
23 —4v)’

p 5 sin 26
e L

by cos®6 by O —m/2-

U =—— — Uy = —
T 3—4dy’

The elastic strain energy is
1 (R
U= 5/ (Ug)ezobng-I-Wp-l—WR,
P

where

(3 — 2v)b3
W,=-Wgp="———""—.
? B on(3—4v)?

Since (09)g=0 = 2k(1 — v)by /7, there follows

U=pi2pf . EYr =g -2,
p

where E'12 is the corresponding prelogarithmic factor.

B.3 Screw dislocation with a Burgers vector b3

The displacement is

3 =
m

by |0—7m/2, 0<6<m/2,
U = 2
O+m/2, —n/2<6<0,

with the corresponding stresses
b
UBT:()a 0'39:&:20'??(9)'
r

The elastic strain energy is

1R R b3
U= */ (Ugg)g;o b3 dr = E1\21n77 E1|2 = & = QEEO .
2/, p 2 3
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