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Abstract

In this contribution we present an approach to optimal design prob-
lems based on sensitivity functions and on generalized sensitivity func-
tions. Roughly speaking, generalized sensitivity functions as introduced
in [6] describe the sensitivity of parameter estimates with respect to
variations of available measurements for model outputs. The approach
developed in [2] applies to all design criteria, which are continuous func-
tions of the Fisher information matrix. The theoretical background is
provided by minimization/maximization of continuous functions on the
space of probability measures on a given time interval endowed with
the Prohorov metric. Probability measures describe generalized mea-
surement procedures. In order to obtain concrete information on the
number and distribution of time instants, where measurements should
be taken, one has to approximate the "optimal measurement distribu-
tion" by discrete probability measures.

1. Introduction

Assume that
y(t) = f(t; θ), t ≥ 0, (1)

is the output of a dynamical system modeling some real world process, where
θ ∈ Rp is the vector of parameters. As usual, during the modeling process
a considerable number of parameters are picked up, which in general cannot
be determined a priori by direct measurements. The following two important
tasks have to be accomplished in each modeling project:

a) We have to obtain sufficiently reliable estimates for the parameters θ on
the basis of measurements for the output y(·).
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b) We have to provide guidelines concerning the experiments which have to
be conducted in order to get the desired measurements. These guidelines
have to address questions like how many measurements one has to take
at what time instants in order to get parameter estimates of a given
quality. Since measurements can be quite costly, it is also important not
to take unnecessary many measurements.

In this contribution we shall only address problems related to b). Our
approach will be based on the so called generalized sensitivity functions first
introduced in [6]. Roughly speaking, generalized sensitivity functions describe
the sensitivity of the parameter estimate with respect to variations of the
nominal parameter values. The theory is developed under the following basic
assumptions (additional assumptions will be introduced below):

A measurement at a time instant t ∈ [0, T ], where T > 0 is fixed, is given
as

ξ(t) = f(t, θ0) + ε(t), (2)

where θ0 is the ‘true’ parameter vector (also called the nominal param-
eter vector) and ε(·) is a representation of a noise process E(·), where
the random variables E(t), t ∈ [0, T ], are independent and identically
distributed with expected value zero and variance σ2(t), which is inde-
pendent of the parameters, but may depend on time. It is clear that
the measurements ξ(t) are realizations of random variables Ξ(t) with
expected value f(t, θ0) and variance σ2(t). We assume that the output
function f is continuous in t and has continuous second order derivatives
with respect to θ.

We shall study the parameter identification problem for nominal parame-
ters in a neighborhood U of θ0. In Section 2 we introduce generalized sensitivity
functions in an abstract setting following the approach given in [2]. We refer
also to this paper and to [3], [6] for interpretations of the properties of gen-
eralized sensitivity functions concerning information on parameters contained
in the given measurements. In Section 3 we indicate shortly the importance
of generalized sensitivity functions for experimental design, again referring for
details to [2]. Finally, in Section 4 we present new results connecting linear
behavior of generalized sensitivity functions with identifiability of parameters.
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2. Abstract measurement procedures and generalized
sensitivity functions

Let m(t) denote the measurement density at time t ∈ [0, T ], i.e., m(t) is the
number of measurements per unit time at t. We assume that m is continuous
on [0, T ]. By definition of m,

∫ t

0
m(τ)dτ is the number of measurements in

the interval [0, t]. In order to define the least squares error J(ξ, θ) for a given
measurement procedure ξ(·, θ0) and a nominal parameter vector θ ∈ U we
start with the weighted error for one measurement at time t, which is given by
σ(t)−2

(
ξ(t, θ0) − f(t; θ)

)2.
For mesh points ti = i∆t, i = 0, . . . , N , ∆t = T/N . Then the number

of measurements in the time intervals [ti, ti + ∆t] is given by m(t∗i )∆t with
t∗i ∈ [ti, ti + ∆t]. The average of the weighted error on [ti, ti + ∆t] is given
by σ(t∗∗i )−2

(
ξ(t∗∗i , θ0)− f(t∗∗i ; θ)

)2, where t∗∗i ∈ [ti, ti + ∆t]. Then the weighted
errors in the intervals [ti, ti + ∆t] are given by

m(t∗i )
σ(t∗∗i )2

(
ξ(t∗∗i , θ0) − f(t∗∗i ; θ)

)2
∆t, i = 0, . . . , N − 1.

Taking ∆t → 0 we get

J(ξ, θ) =

∫ T

0

m(t)

σ(t)2

(
ξ(t, θ0) − f(t; θ)

)2
dt.

This integral can be viewed as an integral with respect to an absolutely contin-
uous measure P on [0, T ] with density m(·). This is the motivation to consider
error functionals of the form

J(ξ, θ) =

∫ T

0

1

σ(t)2

(
ξ(t, θ0) − f(t; θ)

)2
dP,

where P is a general measure on [0, T ]. Of course, we can restrict ourselves to
probability measures on [0, T ], because the minima of J do not change, if J is
multiplied by a positive constant. If, for points t0 < t1 < · · · < tN , we take

P =
N∑

i=0

δti ,

where δa denotes the delta distribution with support {a}, we get

J(ξ, θ) =
N∑

i=0

1

σ(ti)2

(
ξ(ti, θ0) − f(ti; θ)

)2
.
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This is exactly the type of quadratic error functionals, which one would con-
sider for real measurement procedures (and was the basis in [6]).

For a nominal parameter vector θ ∈ U we denote the minimizer of J by
θ̂(θ), i.e.,

θ̂(θ) = argmin
τ

J(ξ, τ), θ ∈ U .

Here we assume that,

(ii) for any θ ∈ U , the functional J has a unique minimum in a neighborhood
of θ, i.e., we have unique local identifiability, and that E θ̂(θ) = θ for
θ ∈ U , i.e., the estimation procedure is unbiased.

A necessary condition, which θ̂(θ) has to satisfy, is

∇θJ(ξ, θ̂(θ)) = 0, θ ∈ U . (3)

For each realization ξ(·, θ) of Ξ(·, θ), i.e., for each realization ε of E , we get a
specific value for θ̂(θ), which is a realization of a random variable we denote
by Θ̂(θ).

We are really interested in the dependence of θ̂(θ) on θ. Therefore we
compute the Jacobian

∂θ̂

∂θ
(θ), θ ∈ U .

In order to do so we differentiate (3) with respect to θ and get

0 = ∇2
θθJ(ξ, θ̂(θ))

∂θ̂

∂θ
(θ) + ∇2

θξJ(ξ, θ̂(θ))
∂ξ

∂θ
(θ).

Assuming that ∇2
θθJ(ξ, θ̂(θ)) is nonsingular in U this yields

∂θ̂

∂θ
(θ) = −

(
∇2

θθJ(ξ, θ̂(θ))
)−1

∇2
θξJ(ξ, θ̂(θ))

∂ξ

∂θ
(·, θ), θ ∈ U . (4)

From the definition of J(ξ, θ) we get

∇2
θθJ(ξ, θ) = 2

∫ T

0

1

σ(s)2
∇θf(s; θ)T∇θf(s; θ) dP

− 2

∫ T

0

1

σ(s)2

(
ξ(s, θ0) − f(s; θ)

)∇2
θθf(s; θ) dP.

F. Kappel, M. Munir



205
A new approach to optimal design problems 205

Analogously we get

∇2
θξJ(ξ, θ)

∂ξ

∂θ
(·, θ) = 2

∫ T

0

1

σ(s)2
∇θf(s; θ)T ∂ξ

∂θ
(s, θ) dP.

We take these quantities at the expected values of the random variables cor-
responding to their arguments. Observing (2), E(E(t)) = 0, i.e., E(Ξ(t, θ)) =
f(t; θ), and E(θ̂(θ)) = θ we obtain

(∇2
θθJ

)
(f(·; θ), θ) = 2

∫ T

0

1

σ(s)2
∇θf(s; θ)T∇θf(s; θ) dP

and
(∇2

θξJ
)
(f(·; θ), θ)∂ξ

∂θ
(·, θ) = −2

∫ T

0

1

σ(s)2
∇θf(s; θ)T∇θf(s; θ) dP.

Using this in (4) we get

∂θ̂

∂θ
(θ) = F(T )−1

∫ T

0

1

σ(s)2
∇θf(s; θ)T∇θf(s; θ) dP ≡ I, (5)

where

F(T, θ) =

∫ T

0

1

σ(s)2
∇θf(s; θ)T∇θf(s; θ) dP (6)

is the so called Fisher information matrix. Equation (4) reflects the assumption
that the estimates are unbiased. If we want to indicate the measure P used in
(6), then we also write FP (T, θ).

In order to obtain information at what time instants measurements contain
more information on the parameters than measurement at other time instants
we consider the following procedure. The value of the cost functional J still
depends on all measurements on the interval [0, T ]. However, the variation of
the parameter estimate is only determined with respect to measurements up
to time t ∈ [0, T ]. Computations analogous to those leading to (5) give the
following result (we set denote by G(t, θ) the Jacobian ∂θ̂/∂θ in this case):

G(t, θ) = F(T, θ)−1F(t, θ), θ ∈ U , 0 ≤ t ≤ T. (7)

The diagonal elements of G are called the generalized sensitivity functions with
respect to the parameters θ1, . . . , θp,

gi(t, θ) =
(G(t, θ)

)
i,i

, θ ∈ U , 0 ≤ t ≤ T, i = 1, . . . , p.

In case P equals the Lebesgue measure on [0, T ] we call G the continuous
generalized sensitivity matrix and denote it by Gc.

A new approach to optimal design problems
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3. The Fisher information matrix and experimental
design criteria

Most of the optimal design criteria are based on the Fisher information
matrix. Here we mention some of the most frequently used criteria (see also
[4], [5]):

a) D-optimal design requires to maximize detF(T, θ̂).

b) E-optimal design requires to maximize the smallest eigenvalue λmin

(F(T, θ̂)
)

of the Fisher information matrix F(T, θ̂).

c) c-optimal design requires to minimize the variance of a given linear com-
bination cTθ of the parameters (for instance, if we choose c = ei, then we
want to minimize the variance of θ̂i). This is asymptotically equivalent
to minimizing cTF(T, θ)−1c.

These design criteria can all be incorporated in the following formulation. Let
P(0, T ) denote the space of probability measures on [0, T ] and assume that
J : Rp×p → R+ is continuous. The optimal measurement procedure is given
by the probability measure P̂ ∈ P(0, T ) such that

J (FP̂ (T, θ)) = min
P∈P(0,T )

J (FP (T, θ).

In order to solve this problem we introduce the following abstract setting.
Let (Ω, d) be a metric space (in our case Ω ∈ [0, T ] and d(x, y) = |x − y|) and
denote by P(Ω) the set of all Borel probability measures on Ω. On P(Ω) we
introduce the Prohorov metric ρ defined by

ρ(π, π̃) = inf
A⊂Ω closed

{
ε | π(A) ≤ π̃(Aε) + ε

}
, π, π̃ ∈ P(Ω).

Here we have set Aε = {y ∈ Ω | d(y, A) ≤ ε}. We make essential use of the
following properties (see [1]):

a) If (Q, d) is a complete metric space, then (P(Q), ρ) is also a complete
metric space.

b) ρ-convergence is equivalent to weak∗–convergence in P(Q).

c) If (Q, d) is compact, then also (P , ρ) is compact.
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d) If (Q, d) is separable, then also (P , ρ) is separable.

Based on these result the following design procedure was developed in [2]:
Step 1. Determine T using the condition number of the Fisher information
matrix (choose T such that the condition number decreases fast up to T and
slowly after T ).
Step 2. Determine the minimum number n of uniformly spaced measurements
on [0, T ] such that the standard errors SEk of the estimates for the parameters
θ1, . . . θp are smaller than a given bound. Here we use the asymptotic formula

SEk =

√
T

n
F−1

k,k , k = 1, . . . , p.

Here the Fisher information matrix is computed with the discrete probability
measure which corresponds to the uniform mesh.
Step 3. Determine the optimal P̂ ∈ P(0, T ) (P̂ exists according to property c)
from above).
Step 4. Approximate P̂ by discrete probability measures with n atoms (this
can be done by property d) from above).

4. Linear behavior of generalized sensitivities and
non-identifiability

In this section we take the measure P to be the Lebesgue measure on [0, T ].
For a fixed T > 0 and a nominal parameter vector θ0 let Gc(t; T ) denote the
generalized sensitivity matrix on the interval [0, T ],

Gc(t, θ) = Fc(T, θ)−1

∫ t

0

∇θf(τ ; θ0)
T∇θf(τ ; θ0) dτ, 0 ≤ t ≤ T, (8)

where the Fisher information matrix Fc(T, θ) is given by (6) with P being the
Lebesgue measure on [0, T ],

Fc(T, θ) =

∫ T

0

∇θf(τ ; θ0)
T∇θf(τ ; θ0) dτ. (9)

In [2] the following theorem is proved:

Theorem 1. Assume that detFc(T, θ) �= 0. Then

detFc(T + ∆, θ) �= 0 and
∥∥Fc(T + ∆; θ)−1

∥∥
2
≤ ∥∥Fc(T, θ)−1

∥∥
2

for all ∆ ≥ 0, where ‖A‖2 = (λmax(A
∗A))1/2, the spectral norm of a matrix A.
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In order to solve this problem we introduce the following abstract setting.
Let (Ω, d) be a metric space (in our case Ω ∈ [0, T ] and d(x, y) = |x − y|) and
denote by P(Ω) the set of all Borel probability measures on Ω. On P(Ω) we
introduce the Prohorov metric ρ defined by

ρ(π, π̃) = inf
A⊂Ω closed

{
ε | π(A) ≤ π̃(Aε) + ε

}
, π, π̃ ∈ P(Ω).

Here we have set Aε = {y ∈ Ω | d(y, A) ≤ ε}. We make essential use of the
following properties (see [1]):

a) If (Q, d) is a complete metric space, then (P(Q), ρ) is also a complete
metric space.

b) ρ-convergence is equivalent to weak∗–convergence in P(Q).

c) If (Q, d) is compact, then also (P , ρ) is compact.
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4.1. Solutions near an exponentially stable equilibrium

We assume that the output of the system corresponding to θ ∈ U can be
written as

f(t; θ0) = h(θ0) + M(t, θ0), t ≥ 0, t ≥ 0, θ ∈ U , (10)

where h respectively M are smooth functions defined on U respectively on
[0,∞) × U . Furthermore, we assume that

‖∇θM(t, θ0)‖ ≤ c(θ)e−α(θ)t, t ≥ 0, θ ∈ U , (11)

with positive functions c, α : U → R. Let T be sufficiently large and fix
T0 ∈ (0, T ). Then we get from (8) and (9)

Gc(t, θ) = Fc(T, θ)−1
(
Fc(T0, θ) +

∫ t

T0

∇θf(τ ; θ0)
T∇θf(τ ; θ0) dτ

)
, 0 ≤ t ≤ T.

(12)
From equation (10) we get

∇θf(t; θ0)
T∇θ(f(t; θ0) = ∇θh(θ0)

T∇θh(θ0) + m(t, θ0), t ≥ 0,

where

m(t, θ0) = 2∇θh(θ0)
T∇θM(t, θ0) + ∇θM(t, θ0)

T∇θM(t, θ0).

Assumption (11) implies

‖m(t, θ0)‖ ≤ 2c(θ0)‖∇θh(θ0)‖e−α(θ0)t + c(θ0)
2e−2α(θ0)t, t ≥ 0.

Consequently we have
∫ t

T0

∇θf(τ ; θ0)
T∇θf(τ ; θ0) dτ = (t − T0)∇θh(θ0)

T∇θh(θ0) + B(t, θ0), t ≥ T0,

where B(t, θ0) =
∫ t

T0
m(τ, θ0) dτ satisfies the estimate

‖B(t, θ0)‖ ≤
∫ t

T0

‖m(τ, θ0)‖ dτ

≤ 2
c(θ0)

α(θ0)
‖∇θh(θ0)‖e−α(θ0)T0 +

c(θ0)
2

2α(θ0)
e−2α(θ0)T0

≤ b(θ0)e
−α(θ0)T0 , t ≥ T0,

(13)
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with
b(θ0) = 2

c(θ0)

α(θ0)
‖∇θh(θ0)‖ +

c(θ0)
2

2α(θ0)
e−α(θ0)T0 .

Equation (12) can be written as

Gc(t, θ) = Gc(T0, θ) + (t − T0)Fc(T, θ)−1∇θh(θ0)
T∇θh(θ0)

+ Fc(T, θ)−1B(t, θ0), T0 ≤ t ≤ T.
(14)

Assume that detF(T1, θ) �= 0 for some fixed T1 < T . Then Theorem 1 and
(13) imply
∥∥Fc(T, θ)−1B(t, θ0)

∥∥
2
≤ ‖Fc(T, θ)−1‖2‖B(t, θ0)‖2

≤ b(θ0)‖Fc(T1, θ)
−1‖2e

−α(θ0)T0 , T0 ≤ t ≤ T, T1 ≤ T.

Given ε > 0 we choose T0 > 0 such that

b(θ0)‖Fc(T1, θ)
−1‖2e

−α(θ0)T0 ≤ ε.

Then we have
∥∥Gc(t, θ) − Gc(T0, θ) − (t − T0)Fc(T, θ)−1∇θh(θ0)

T∇θh(θ0)
∥∥

2
≤ ε (15)

for T0 ≤ t ≤ T and T1 ≤ T . This shows that the functions
(Gc

)
i,j

(t),
i, j = 1, . . . , p, are close to straight lines on [T0, T ] connecting

(Gc

)
i,j

(T0, θ)

and
(Gc

)
i,j

(T, θ) = δi,j (Kronecker delta).
This result remains true if instead of (10) we assume that

f(t; θ0) = h(θ0) + γ(t) + M(t; θ0), t ≥ 0,

where γ(·) is a given function on t ≥ 0 not dependent on θ and M(t, θ0) satisfies
assumption (11).

We illustrate this result for a solution of the so called logistic equation

ẋ(t) = ax(t) − bx(t)2, t ≥ 0,

x(0) = x0,
(16)

where we have θ = (a, b, x0) and f(t; θ) = x(t; a, b, x0), t ≥ 0.
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Figure 1: Generalized sensitivities for the three parameters of the logistic equation (16) (left
panel) and corresponding solution for θ0 = (0.9, 0.005, 0.2) (right panel) on the time interval
[2, 30].

4.2. A sufficient condition for ill-conditioning of the parameter
identification problem

For T0 ∈ (0, T ) and 0 ≤ t ≤ T we get

Gc(t, θ) = Fc(T, θ)−1
(
Fc(T0, θ) +

∫ t

T0

∇θf(τ ; θ0)
T∇θf(τ ; θ0) dτ

)

= Gc(T0, θ) + Fc(T, θ)−1

∫ t

T0

∇θf(τ ; θ0)
T∇θf(τ ; θ0) dτ.

(17)

From (8) we get

G ′
c(t, θ) = Fc(T, θ)−1∇θf(t; θ0)

T∇θf(t; θ0), 0 ≤ t ≤ T,

and
Gc(T, θ) = I.

Let L(t; θ) be the linear matrix-valued function defined by

L(t; θ) = I + (t − T )G ′
c(T, θ)

= I + (t − T )Fc(T, θ)−1∇θf(T ; θ0)
T∇θf(T ; θ0), 0 ≤ t ≤ T.

We have the following result:

Proposition 2. Assume that for an ε > 0 we have

max
T0≤t≤T

‖Gc(t, θ) − L(t; θ)‖2 ≤ ε. (18)
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Then the minimal eigenvalue λmin of the matrix

Fc(T0, θ) =

∫ T

T0

∇θf(τ ; θ0)
T∇θf(τ ; θ0), dτ

satisfies
λmin ≤ ‖Fc(T, θ)‖2ε.

Proof. From equation (17) we immediately get (for T0 → T )

Gc(t, θ) = Fc(T, θ)−1
(
Fc(T, θ) −

∫ T

t

∇θf(τ ; θ0)
T∇θf(τ ; θ0) dτ

)

= I −Fc(T, θ)−1

∫ T

t

∇θf(τ ; θ0)
T∇θf(τ ; θ0) dτ, 0 ≤ t ≤ T.

This and the definition of L imply

Gc(t, θ) − L(t; θ)

= Fc(T, θ)−1
(
(T−t)∇θf(T ; θ0)

T∇θf(T ; θ0)−
∫ T

t

∇θf(τ ; θ0)
T∇θf(τ ; θ0) dτ

)
,

for 0 ≤ t ≤ T . Consequently we have

Fc(T0, θ) = (T − T0)∇θf(T ; θ0)
T∇θf(T ; θ0) −Fc(T, θ)

(Gc(T0, T ) − L(T0; θ)
)
.

(19)
Let a with ‖a‖2 = 1 be an eigenvector of ∇θf(T ; θ0)

T∇θf(T ; θ0) corresponding
to the eigenvector 0. Then equation (19) implies

aTFc(T0, θ)a = −aTFc(T, θ)
(Gc(T0, θ) − L(T0; θ)

)
a.

From assumption (18) we get the estimate

λmin ≤ aTFc(T0, θ)a ≤ ‖Fc(T, θ)‖2ε

for all a ∈ ker∇θf(T ; θ0)
T∇θf(T ; θ0).
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Figure 2: Generalized sensitivities for the three parameters of the logistic equation (16) and
corresponding straight lines corresponding to the diagonal elements of the matrix L(t; θ) for for
the nominal parameters θ0 = (0.9, 0.005, 0.2).
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