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Abstract 

The stability of linear mechanical systems subjected to potential and 
non-conservative positional forces is considered. A criterion which contains 
necessary and sufficient conditions for spectral stability, static (divergence) 
and oscillatory (flutter) instability of the systems is formulated. Particular-
ly, this criterion directly implies a number of recent conditions for flutter in 
terms of the invariants of the system matrices. 

SPEKTRALNA STABILNOST, STATIČKA I 
OSCILATORNA NESTABILNOST  

CIRKULATORNIH SISTEMA

Sažetak

Razmatra se stabilnost linearnih mehaničkih sistema podvrgnutih dej-
stvu potencijalnih i nepotencijalnih položajnih sila. Formulisan je krite-
rijum koji sadrži neophodne i dovoljne uslove spektralne stabilnosti, sta-
tičke nestabilnosti (divergencije) i oscilatorne nestabilnosti (flatera) da-
tih sistema. Kao posljedica, iz ovog kriterijuma dobijeno je nekoliko ne-
davnih uslova oscilatorne nestabilnosti iskazanih preko invarijanti opi-
snih matrica sistema.

*   Mašinski fakultet Univerziteta Crne Gore
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INTRODUCTION

Non-conservative undamped linear systems (circulatory systems) are 
mostly expressed in the form 

	 0=++ CqKqq&& ,� (1) 

where dot denotes time differentiation, q  is a n-dimensional vector, and 
real matrices TKK =  and TCC −=  are related to potential and non-con-
servative positional (circulatory) forces, respectively. Such systems are 
important mathematical models in areas of physics and engineering (solid 
mechanics, fluid dynamics, etc.). Tree classical examples of the systems 
are shown in Fig. 1–3 (for details, see [1–3]). 

The stability of system (1) is characterized by the position of the ei-
genvalues λ in the complex plane, where λ are the roots of the characte-
ristic polynomial 
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Since )()( λλ −∆=∆ , then all eigenvalues are symmetric with respect 
to both real and imaginary axes (Fig.4). 
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     Definitions: 
      -The system (1) is Lyapunov stable if all eigenvalues λ lie on the imaginary axis and are 
semi-simple (algebraic and geometric multiplicities of λ coincide). 
     -The system (1) is spectrally stable if all eigenvalues λ lie on the imaginary axis. 
     -The system (1) is statically unstable (divergence) if at least one of λ is real while 
remaining eigenvalues belong to the imaginary axis. 
     -The system (1) is oscillatory unstable (flutter) if at least one of the eigenvalues λ is 
complex.  
      In general, Lyapunov stability implies spectral stability, but not conversely. Also, note 
that for systems (1) the boundaries of Lyapunov and spectral stability are identical. 
Consequently, the notion of spectral stability allows us to calculate stability limits without 
excluding multiple eigenvalue cases.  
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Definitions:
– The system (1) is Lyapunov stable if all eigenvalues λ lie on the 

imaginary axis and are semi-simple (algebraic and geometric multiplici-
ties of λ coincide).

– The system (1) is spectrally stable if all eigenvalues λ lie on the 
imaginary axis.

– The system (1) is statically unstable (divergence) if at least one of 
λ is real while remaining eigenvalues belong to the imaginary axis.

– The system (1) is oscillatory unstable (flutter) if at least one of the 
eigenvalues λ is complex. 

In general, Lyapunov stability implies spectral stability, but not con-
versely. Also, note that for systems (1) the boundaries of Lyapunov and 
spectral stability are identical. Consequently, the notion of spectral stabi-
lity allows us to calculate stability limits without excluding multiple ei-
genvalue cases. 

For almost a century it has been well known that circulatory forces 
can destabilize a stable potential system, and that they can stabilize an 
unstable potential system [1–4]. Various results concerning the stability 
problem for circulatory systems can be found in [1–9]. In what follows 
we give a criterion which contains necessary and sufficient conditions for 
spectral stability, static and oscillatory instability of the systems. The cri-
terion is formulated in terms of the definiteness of a quadratic form who-
se coefficients are traces of powers of the system matrix (K+C). 
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A STABILITY CRITERION

Define the quadratic form 

	
nT xPxxxp ℜ∈= ,)( � (3) 

with 
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where

	 .22,...,1,,)1( −=+=−= nkCKATrAp kk
k � (5) 

Theorem 1.
a) The system (1) is spectrally stable iff   i  
b) The system (1) is unstable by divergence iff 0 and 0( ) ip x a≥ ∃ < . 
c) The system (1) is unstable by flutter iff ( )p x  can take negative values.

Remark 1. The coefficients ia  of the polynomial (2) can be expressed 
in terms of ip by means of the Leverrier algorithm [9]

	 .,...,1,... 1111 nkpapapka kkkk =−−−−= −− � (6)

Remark 2. This criterion is an alternative to the Gallina result [6] whi-
ch requires the knowledge of the coefficients in the characteristic polyno-
mial and the inspection of the minors of the 2n x 2n discriminant matrix.

Proof. ∑
=

=−
n

i

k
i

kATr
1

)( α , k = 1, 2, … , where ia are eigenvalues of 
)( A−  [10]. Then, in view of Borhardt-Jacobi theorem [10–11 ], rank and 

signature of the quadratic form (3) are equal to the number of unequal ei-
genvalues of )( A−  and the number of unequal real eigenvalues, respe-
ctively. It follows that all eigenvalues ia  are real iff )(xp  is positive se-
mi-definite. In this case a simple consideration shows that a) all a are 
non-positive, i.e. all eigenvalues λ of the system (1) lie on the imaginary 
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axis, iff niai ,...,1,0 =≥ ; b) at least one of the eigenvalues a is positi-
ve, i.e. at least one of λ is positive, iff 0<∃ ia . Finally, in the case when 

)(xp  can take negative values at least one pair of the eigenvalues a is 
complex (at least two eigenvalues of λ  are non-real and have positive re-
al parts), and conversely. 

SOME CONSEQUENCES

Lemma 1. If any of the inequalities hold 

	 02
12 <− pnp ,� (7)

	 02
24 <− pnp ,� (8)

	 02
342 <− ppp ,� (9)

then 0)(xp  is not positive semi-definite. 

Proof. The inequalities (7), (8) and (9) imply that the restrictions 
,  and  can take negative values, 

respectively. 
From (5) by a direct computation we have 

	 )(1 KTrp −= , , )(3)( 23
3 KCTrKTrp −−= , �(10)

	 ))((2||||4|||||||| 222222
4 KCTrKCCKp +−+= ,� (11)

where |||| B is Euclidean norm of a matrix B, i. e. ∑=
ji

ijbB
,

22|||| .

Substituting expressions (10) and (11) in Lemma 1, according to The-
orem1-c, we obtain the following recent instability results [8],[9]. 

Theorem 2. The system (1) is unstable by flutter if one of the following 
inequalities hold

a) )()||||||(|| 222 KTrCKn <− ;[8]� (12)

b) ;[9]� (13) 

c) � (14 ) 



10 Ranislav M. Bulatović

AN ILLUSTRATIVE EXAMPLE

Consider the tree degree of freedom system with
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where k and c are real numbers.
From (10) and (11), we have

	 31 −=p , ),(23 22
2 ckp −+=  

	 ,)(2)(123 22222
4 ckckp −+−+= � (16) 

and

	 .1,3,3 22
3

22
21 kcakcaa −+=−+== � (17)

In this case the leading principal minors of the matrix (2) are as follows

	 ,)(4),(6,3 322
)3,2,1(

22
)2,1()1,1( ckPckPP −=−==  � (18) 

and, according to Theorem 1, the system is: spectrally stable iff 
10 22 ≤−≤ ck , unstable by divergence iff 122 >− ck and unstable by 

flutter iff 022 <− ck , see Fig.5. 

Fig. 5. Stability (S), divergence (D) and flutter (F) domains for the example
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