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Schwarz lemma and optimal recovery of functions in H*
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Let D C C* be a domain, v be a probability measure on D and X be a
closed subspace of L?(v). Consider Dy, ..., D, C D and probability measures
[0y -5 ftn O Do, ..., D, respectively. We suppose that X C L*(u;),j =
0,1,...,n. We allow one of D; to coincide with D. In this case we assume that
f; coincides with v.

Write D = (Dg,...,Dn),pu = (fo,--spin)spt = (H1,.ooyfin),y =
(Y15 Un)-

1. Optimal recovery problem

Given yq, ...,y, defined on Dy, ..., D, such that

1fi — yj”L2(uj) <dj,j=1,...,n,

we are to reconstruct f. Here f; is the restriction of f to D; and
delta; > 0,7 = 1,...,n are accuracy levels. In particular,
delta; = 0 means that f is known precisely on D;

A recovery algorithm (method, procedure, etc.) is an operator

A L2 () X oo X L2 () = L2 (pao).

We consider A(y),y = (y1,...,Yn), to be the recovered value of f on Dy. At
this point we impose no conditions on A.
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The maximal possible error of a method A is

e(X, D, 11,8, A) = sup{|| fo — AWl z2u) : f € X,y € L2 (1) X -+ x L*(11),
i = yillezg) < 05,5 =1,...,n}

The optimal recovery error as

E(X.D,u,6) = inf X.D, 1,6, A).
(X,D, p,9) A:Lz(m)x-"illl,Q(un)HH(uo)e( D, 1,6, A)

A method A such that
E(X,D,u,8) = e(X,D, 1,8, A)

is called an optimal recovery method.

The problem of finding an optimal recovery method (and sometimes an
extremal function at which the optimal recovery error is attained) is usually
referred to as optimal recovery problem.

2. Extremal problem

The optimal recovery problem is closely related to the following extremal
problem. Find

1 foll2(uoy = sup, f € X, [ filllzg) <055 =1,...n. (1)

A special case of this extremal problem is when D is the unit disk I, po and
(1 are point masses and po is the normalized Lebesgue measure on the unit
circle. Here the problem turns into

max{\f(ao)| : |f(a1)| <, Hf||H2 < 52},

which might be viewed as a version of the classical Schwarz lemma. Here we
consider another variant of Scwarz Lemma. Let a € D and I" be a circle inside
of the unit disk, x be the normalized Lebesgue measure on I', and ¢ > 0. Find

sup{ [P 1 € 12 e < 1.1 < 6}. @)

We will consider the case when the circle I' passes through the origin and its
center lies on the real axis, so that

F'={zeC:lz—p|=p}, 0<p<1/2

The corresponding optimal recovery problem is: Reconstruct a Hardy func-
tion [ from its values on the circle I' and at a given with some tolerance.
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3. Euler equation for the general problem
Let K(z,w) be the reproducing kernel of X. Write
= —po+ > Ay

=1

Then fi is a regular measure on D and every function from X is square- inte-
grable with respect to fi. For w € D we introduce

dfi,(2) = K(z,w)dfi(z).

Obviously every function from X is fi,-integrable.
We further define

(z) = /D K (7)dfin (7).

Theorem 1. IffAG X is a solution of the general extremal problem above,
then there exists a non-negative vector A = (A1,..., \,) such that

f = (span{r),w € D})*,

and R
/\j(”fHM(Hj) - 5]') =0,7=1,...,n.

We say that a non-negative vector A = (A, ..., \,) belongs to the spectrum
of the problem, if there exists an admissible for this problem function f € X
such that

LA (1l 22y = 1) = 0.
2. f € (spann{r) :w € D})*.

In this case we call f a spectral function.

Theorem 2. Let A be the spectrum of the problem. Then

sup = sup Z /\jcﬁ. (3)

Hf”LQ(;Lj)S(sj7j:17"'7n AEA j=1

We call a spectral point ()Tl, o ,5\;) extremal, if the maximum of the right-
hand side of (3) is attained at (A, ..., A,).
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4. Spectrum of the Schwarz Lemma

Here we have:

R 1/ 1 1 ldr|
Tw:—— — - — - +
TJrl—2T 1—71wW |T—0p|
1 1 Ao 1 1
1 — — - —_ " 7|d7’|:
l—za 1l-—aw 27 [ 5y 1 =27 1—71Ww
1 A A
— — + 1
l—zp—pw (1—-za)(l—aw) 1-z2w

A

By Theorem 1 every extremal function satisfies the following equation

1 =r \_, [fl
1—pwf<1—pw> _)\ll—dw

for some A\, Ay > 0 and all w € . Let

b_l—\/1—4p2

2p

Then b is the Denjoy-Wolff point of the following self-mapping of D

P
H
1—pz’

z

and the disk bounded by the circle I' is a hyperbolic neighborhood of b.
Consider the following functions

m<b_z>j |
,3=0,1,....

%(z): 1—bz \\1-0z

These functions form an orthonormal basis of H?, and they are eigenfunc-
tions of the operator

1 p
T16) = 1=t (12

and the corresponding eigenvalues are

b2 4
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Theorem 3. Let a # b.

L If

P2

P
>
_1_p2)

_1_p2

a

or

Vl]alp* = |p = al?
ap +ap — |al?

)

then the spectrum of Schwarz Lemma extremal problem consists of two parts
A=Ay UA,, where

A =A{(0,q) : [g;(a)| < 6},

Ay = f(A1, A2) 2 Ap, A >0,

F(h) =672 M\ = h(\y)

where
= |pi(a)]* ,
FA) =) ———5h(\),
]ZO (a; —A)?
= Jpy@f?\
wil\a
h(\) = e
2. If
p P
a— 1—,02 < 1_,02’
and
5 < ViaPr —lp—aP

I

ap +ap — |al?

then the spectrum includes in addition the point

— 2
A3:{<W,O>}.

Theorem 4. Let a =0,
A ={0,05): j=1,2,...,},

AQ = {((1 —bz)(ao—Oéj),O[j) : ]: 1,2,...,}.



26 K. Yu. Osipenko, M. L. Stessin

Then the spectrum of problem is A = A{UAg, if § < \/11_?, and A = AfUA U
{(0,a0)}, if 6 = ﬁ
It turns out that As is the most important part of the spectrum.
Proposition 1. If a lies outside T', then F(\) — oo as A — 0.

This Proposition implies that if a lies outside I', then Ay contains only finite
number of points.

Now we will use Theorem 2 to describe the extremal points of the spectrum.

Proposition 2. If § > |po(a)|, then (0,aq) is the extremal point of the
spectrum.

Proposition 3. Ifa = b and § < 1/y/1— 1%, then the extremal spectral
point s L
(A1, A2) = ((1 = b)) (ag — 1), an).

Proposition 4. If § < |¢o(a)|, then Ay does not contain extremal spectral
points.

Note that the function
— |;(a)]?
g(h) =) (7)

is monotone and increases from —oo to +00 when A € (aj11, @;). Let ¢; be the
only zero of g on the interval (aji1, a;).

Proposition 5. Let a #b. If § < |pi(a)|, then the extremal spectral point
(A1, Aa) is unique, belongs to Ay and is determined by the condition (o < Ay <
Qp.

Proposition 6. Assume that |p1(a)] < < |@o(a)| and

b—a

o >b2/3
1—ab '

-

then the conclusion of Proposition 5 is valid, that is, the extremal spectral
point (A1, A2) is unique, belongs to Ay and is determined by the condition that

~

(0<)\2<a0.
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5. Optimal Recovery Method

The following result is due to Magaril-Il'yaev and Osipenko.

Theorem 5. Assume that there exist Xj >0,7=1,...,n, such that the
value of the extremal problem

||f0||%2(,u0) = max,

Z)‘ijjH%Q(o,M) < Z)‘jéf‘y feXx
j=1 j=1

is the same as in (1). Moreover, assume that for every § = (U1,...,0n) €
Y) X -+ X Y, where Y; are almost everywhere dense in L*(u;), there exists f;
which is a solution of the extremal problem

ZAJHfJ - ng%Q(oMj) — min, f € X. (8)
j=1

Moreover, let A : L*(ul) X -+ x L*(p,) — L*(uo) be a linear continuous
operator, where the norm in L*(ul) X -+ x L*(u,) is defined as

" 1/2
lyll = (ZH%’HL?(M)) )
j=1
such that for all gy = (J1,...,9n) € Y1 X -+- X Y,

A®) = (fy)o
Then
E(X7Dnu7 5) = Su)l? ||f0||L2(#0)
5
1751l Ly (uy) <855 3=150m
and the method A(y) is optimal.

We will apply Theorem 5 to the construction of optimal recovery method
for the Schwarz Lemma type problem considered above.
Consider the extremal problem

/ f1Pdp — sup, (9)
T
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fe H2 M F (@) + Nall F3 < X% + A

where as before y is the normalized Lebesgue measure on (Xl, A2) is an extremal
spectral point for problem (2).

Proposition 7. Suppose that either
1. a#band § < |pi(a)l, or [i(a)| <& < |po(a)] and v = |£=%] > 6%/,
or

2.a=0bandd < p(b) =1/v/1—-1b%

Then the values of extremal problems (2) and (9) are the same.

Theorem 6. Suppose that one of the following conditions is satisfied
L. 6 > |po(a)l,
2.9 S ’901(a>‘7
3. |pi(a)] <8 < |pola)l, v > b3,
4./\(1 = b,
and (A1, \2) the corresponding extremal spectral point. Then the error of opti-

mal recovery is given by
V82 + A

_ le 1—|af?
A+ Ao(1—af?) 1-a2

and the method

Aly)(2)

(10)

15 optimal.

Note that for a = b the optimal method of recovery (10) does not depend

on 0 and has the form
Az = L2
Z) = —0—.
y 1—0bz

6. Open problems

1. It would be desirable to identify the extremal spectral point in all possible
cases. We have shown that in a number of cases the extremal spectral point is
the only point in A, such that (5 < Ay < ap. Our attempts to find a nontrivial-
case when this point is not extremal failed. Thus, we are tempted to conjecture
that the point of Ay with the biggest Ay is always extremal.

Conjecture. If a # b and 0 < |po(a)|, the point in Ay such that (5 < Ao <
ap. 18 always the spectral extremal point for problem (2).
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2. Tt is natural to ask which choice of a minimizes the value of problem (2)
(of course, this choice of a leads to the least optimal recovery error). It follows
from above discussion that the point b plays a special role.

Problem. Does the choice a = b always lead to the least mean square
optimal recovery error?

3. Finally, if in problem (2) we replace the constraint |p(a)| < ¢ with

1 9
- dlz —a) < _
2i ’f(z)| (Z ) = 5, O<r<l1 \a],

|z—al=r

then the problem becomes even more difficult. The reason is that in the right

hand side of Euler’s equation the term Alm is replaced with

l—-az

2
roz
)\1f (a — — > .
1—az
and the equation turns into

1 p N 2z
1—pwf (1—pw> B 1—ﬁzf <a— 1—Ez> S (w)

Thus, finding the spectrum in this case is reduced to finding eigenvalues of
an operator which is a linear combination of two compact non-commuting
operators. It would be very interesting to find the eigenbasis which corresponds
to this problem and to find the solution.
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