CRNOGORSKA AKADEMIJA NAUKA I UMJETNOSTI
GLASNIK ODJELJENJA PRIRODNIH NAUKA, 16, 2005.

QERNOGORSKAYA AKADEMIYA NAUK I ISSKUSTV
GLASNIK OTDELENIYA ESTESTVENNYH NAUK, 16, 2005.

THE MONTENEGRIN ACADEMY OF SCIENCES AND ARTS
PROCEEDINGS OF THE SECTION OF NATURAL SCIENCES, 16, 2005

UDK 539.319

Viado A. Lubarda*

MOHR’S CIRCLES FOR NON-SYMMETRIC
STRESSES AND COUPLE STRESSES

Abstract

Determination of the principal values of a non-symmetric stress
tensor in plane strain problems of couple stress theory based on Mohr’s
circle construction is presented. It is shown that the antisymmetric
component of the stress tensor affects the maximum shear stress, but
not the maximum normal stress. The analysis is then extended to

non-symmetric couple stresses under conditions of anti-plane strain.

MOHROVI KRUGOVI ZA NESIMETRICNE
NAPONE I NAPONSKE SPREGOVE

ITzvod

U radu je prezentovana procedura za odredjivanje glavnih napona
nesimetricnog tenzora napona u ravnom problemu deformacije na bazi
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konstrukcije Mohrovog kruga. Pokazano je da antisimetri¢cna kompo-
nenta tenzora napona utic¢e na maksimalni smi¢uéi napon, ali ne i na
maksimalni normalni napon. Analiza je proSirena na sluc¢aj nesimet-
ricnih naponskih spregova u uslovima antiravne deformacije.

1. INTRODUCTION

In a micropolar continuum the deformation is described by the
displacement vector and an independent rotation vector (Eringen,
1968,1999; Nowacki, 1986). In the couple stress theory, the rotation
vector ¢; is not independent of the displacement vector u; but subject
to the constraint

1 1

i = 5 Cijk Wik = 5 Cijk Uk, Wij = Cijk Pk (1.1)

as in classical continuum mechanics (Mindlin and Tiersten, 1962; Koi-
ter, 1964). The skew-symmetric alternating tensor is e;j;, and w;; are
the rectangular components of the infinitesimal rotation tensor. The
comma designates the partial differentiation with respect to Carte-
sian coordinates z;. The gradient of the rotation is a non-symmetric
curvature tensor

Kij = $ji = —C€jkl€ik,] - (1.2)

Since €;; is symmetric and e;; is skew-symmetric, the curvature ten-
sor in couple stress theory is a deviatoric tensor (kg = 0). A sur-
face element dS transmits a force vector T; dS and a couple vector
M;dS. The surface forces are in equilibrium with a non-symmetric
Cauchy stress t;;, and the surface couples are in equilibrium with a
non-symmetric couple stress m;;, such that

T; = njtj;, M;=n;mj;, (1.3)

where n; are the components of the unit vector orthogonal to the
surface element under consideration. In the absence of body forces
and body couples, the differential equations of equilibrium are

tjij = 0, mjij + eijktjk =0. (1.4)
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By decomposing the stress tensor into its symmetric and antisymmet-
ric part t;; = 0;j + 745, it readily follows from the moment equilibrium

equation that
1

Tij = 5 Cijk kL - (1.5)
If the gradient of the couple stress vanishes at some point, the stress
tensor is symmetric at that point.
The normal stress in the plane orthogonal to the direction n is

ly = op = 055M4N; (1.6)

because 7;;n;n; = 0 in view of the symmetry of n;n;. Thus, the prin-
cipal stresses of the symmetric tensor o;; are also the principal stresses
of the nonsymmetric tensor ¢;;, although there are shear stresses in the
principal planes of ¢;; due to antisymmetric shear stress components
7;; (Lubarda, 2003). The magnitude of this shear stress is

2 2 2 2 2
Tp = NN TikTjk = Tig + Tog + T3] — (”17'23 + noT31 + n37'12) . (1-7)

Similarly, the couple stress component m,, = m;;n;n; is independent
of the antisymmetric part of m;;.
In the case if isotropic linear elasticity,

o5 = 20 €5 + A €Lk 5ij , (1.8)

mij = dakij + 46 Kj; . (1.9)

where 4, A, «, and g are the Lamé-type constants of couple stress
elasticity. In this case, since ki = 0, the couple stress is a deviatoric
tensor (myx = 0).

2. MOHR'’S CIRCLE FOR NON-SYMMETRIC STRESSES IN
PLANE STRAIN

For the plane strain problems, the displacement components are
up = uq(x1, o), us = us(x1, o), and ug = 0. The stress and couple
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Figure 1: (a) A rectangular material element under conditions of plane
strain; (b) an inclined plane at an angle ¢ supports the stresses t,,
and t,,, and the couple stress m,3.

stress tensors are accordingly

t11 ti2 0 0 0 mis
t=| 121 2 0 |, m= 0 0 mas |. (2.1)
0 0 33 m3; m3z 0

Consider a material element with sides parallel to coordinates direc-
tions 1 and x5 (Fig. 1a). In an inclined plane whose normal p makes
an angle ¢ with the direction z1, the normal and shear stresses are £,
and t,,, and the couple stress is m,3 (Fig. 1b). From the equilibrium
conditions of the triangular element it readily follows that

mp3 = M13 COS Y + mo3 sinzp, (22)

1 1 1 .
tpp = 5 (tll + tQQ) + 5 (tll - t22) COS 2(,0 + 5 (t12 + t?l) Sln?(p’ (23)

1 1 1 .
tpp = 3 (t12 —to1) + 3 (t12 + ta1) cos 2 — B (t11 — t22)sin2¢p. (2.4)

The planes with the maximum magnitude of ¢,, and t,, are defined
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by
tig+1 2t
tan2¢p; = 2 2L tan2py = ——— L (2.5)
2t11 t12 + 121
with the obvious connection ¢y = @1 £ 7/4. The corresponding ex-
treme values of the stresses are

1 1 1/2
by = 3 (t11 +t22) £ 3 [(t11 — t22)? + (t12 + 21)?] / ; (2.6)

1/2

1 1
b = 5 (t1i2 —t21) £ 3 [(t11 — t22)? + (t12 + t21)?] (2.7)

2
It is noted that ¢ depends only on the symmetric part of the stress

tensor ¢;;. Indeed, if we decompose t into its symmetric and antisym-
metric parts,

011 012 0 0 T2 0
o=|o012 o 0 |, 7=| -12 0 0], (2.8)
0 0 o33 0 0 O
where o011 = t11, 029 = 92, 033 = 133, and
1
o12 =5 (tig +t21), Ti2= 3 (t12 — t21) (2.9)

we can write

x x_ 1 1 . 9 11/2
tmax — gmax —(011 +022) + - [(011 —022)2+40f2] / s (2.10)

op op 2 2

1
=79 * Umax’ omax — 5 [(011 — 022)2 + 40’%2] 1/2 . (2.11)

max
¢ py

The physical interpretation of Eq. (2.11) is facilitated by observing
that the shear stress on any inclined plane due to antisymmetric stress
component 79 is also equal to 712. This follows from the force equi-
librium condition for the triangular element shown in Fig. 2b. The
moment equilibrium is ensured by the non-uniform field of couple
stresses (not shown in Fig. 2).

Equations (2.3) and (2.4) can be combined to give

(2.12)

] 2
tpp — B (t11 +t22 ] [ -3 (t12 — 121)

1

4

[(t11 — t22)® + (t12 + t21)?]
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Figure 2: (a) A rectangular material element carrying the antisym-
metric shear stress 719; (b) the corresponding shear stress at an arbi-
trarily inclined plane is also 7s.

which defines Mohr’s circle for the non-symmetric stress components
under conditions of plane strain (Fig. 3). The normal stress t,, =
(t11 + t22)/2 acts in the planes where t,, attains its maximum or
minimum value, while the shear stress ¢,, = (t12 — t21)/2 acts in the
planes where t,, has its maximum or minimum value. If #15 = #o,
Eq. (2.12) defines the classical Mohr’s circle for a symmetric stress
tensor (Timoshenko and Goodier, 1970).

2.1. Eigenvalue Analysis

The extreme values of the stresses ?,, and t,, can also be deter-
mined by an eigenvalue analysis. If n = {ny,ns} is the unit vector
perpendicular to the plane which supports t,, and t,, = (t12 —t21)/2,

we can write
1 . .
niti = An; + 3 (tiz —ta1) 7y, (4,5 =1,2). (2.13)

The unit vector orthogonal to n is i = {—ng,n1}. The system of
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Figure 3: Mohr’s circle for non-symmetric stresses in plane strain.
The center of the circle is at the point with the coordinates %[(tu +
t92), (t12—t21)]. The radius of the circle is %[(tu —t22)2+(t12+t21)2]1/2.

max tmax

The angles o1, 2, and ¢ specify the planes of £;**, ¢ 7

,and t,, = 0.

equations (2.13) has a nontrivial solution for (n,ng) if A is given be

the right-hand side of Eq. (2.6). The corresponding planes are defined

by
911/2
t11 — too (tu — t22)
fangy = — L P22 4 g (LT , 2.14

w1 t12 + to1 [ t12 + 121 ( )

in agreement with the first expression from Eq. (2.5).
Similarly, for the plane which supports the stresses t,, and t,, =

(t11 + t22)/2, we have
. 1 ..
niti; = An; + 3 (tin +ta2)ni, (4,5 =1,2). (2.15)

The system of equations (2.15) has a nontrivial solution for (ny,ns)

if A is given by the right-hand side of Eq. (2.7). The corresponding
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planes are defined by
1/2

2
t t t t
fan gy = 2721 4 [1 n (M) ] , (2.16)

t11 — to2 t11 — too
in agreement with the second expression from Eq. (2.5).
The planes with the vanishing t,, (if they exist) are found by

solving the eigenvalue problem
njtji = An;, (2.17)

which specifies

1/2

1 1
A= tpp = §(t11 + t22) + — [(tn — t22)2 + 4t12t21] (2.18)

2

The corresponding planes are defined by

{—(tu — tgg) + [(tn — t22)2 + 4t12t21:| 1/2} . (219)

1
tan g = E

There is one such plane if (t1; —t29)? = —4t19t21, and two such planes
if (tM — t22)2 > —4t19t9q.
The planes with the vanishing ¢,, (if they exist) are found by

solving the eigenvalue problem
nity; = AT, (2.20)
which specifies
1 1 9 1/2
A=tp, = 5(t12 — 1) £ 5 [(ti2 + t21)® — 4At1atee] 7. (2.21)
The corresponding planes are defined by

_ 1/2
tan @y = {—(t12 + tgl) + [(tlg + t21)2 — 4t11t22] / } s (2.22)

provided that (t15 + to1)? > 4t11t9s.
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3. MOHR’S CIRCLE FOR COUPLE STRESSES IN
ANTI-PLANE STRAIN

For the anti-plane strain problems, the displacement components
are uy = ug = 0, and ug = uz(x1, z2). The stress and couple stress

tensors have the components

0 0 t13 mi1 MMi2 0
t = 0 0 t23 , m = mo1 M99 0 . (31)
ts1 t32 0 0 0 0

A material element under conditions of anti-plane strain is shown in
Fig. 4a. In an inclined plane whose normal p makes an angle ¢ with
the longitudinal direction x1, the shear stress is ¢,3 and the couple
stresses are m,, and m,, (Fig. 4b). From the equilibrium conditions

of the triangular element it readily follows that

tpg = t13Co8 p + tazsinp, (32)

1 1 .
Mpp = 5 (m11 4+ mae) + B (m11 —mag) cos 2p + B (m12 + may) sin 2¢p,
(3.3)

1 1 .
Mpp = 5 (mig —mar) + 3 (m12 4+ mo1) cos 2¢ — 3 (m11 — mgg) sin2¢.
(3.4)

The planes with the maximum magnitude of m,, and m,, are
defined by

mio + Moy 2mqy

tan 2¢ = ,  tan2py = — (3.5)

2myy mig +mar
The two angles are related by ¢o = ¢; & m/4. The corresponding

extreme values of the couple stress components are

1 1
e — 5 (m11+ma2) £ 3 [(m11 — ma2)® + (M2 + may)?]

2 (3.6)
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Figure 4: (a) A rectangular material element under conditions of anti-
plane strain; (b) an inclined plane at an angle ¢ supports the shear
stress t,3 and couple stresses m,,, and m,.

1 1 2
7rL31$X =35 (m1g—ma1) £ 3 [(mn — mao)? + (myg + 77&21)2] 12 (3.7)

Again, it may be noted that my™ does not depend on the anti-

symmetric part of the couple stress tensor, i.e., on the component
(m12 —ma1)/2.
Equations (3.3) and (3.4) can be combined to give

2 2
1 1
Mpp — 5 (m11 +ma2)| + [mpy — 3 (my2 — ma1)

[(m11 — ma2)? + (maa +ma1)?] .
(3.8)

I

This defines Mohr’s circle for the couple stresses in anti-plane strain
(Fig. 5). The couple stress component m,, = (mi1 4+ mg2)/2 acts in
the planes where m,, attains its maximum or minimum value, while

Mpp = (M12 —mo1)/2 acts in the planes where m,, has its maximum
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Figure 5: Mohr’s circle for couple stresses in anti-plane strain. The
center of the circle is at the point with the coordinates %[(mu +
ma2), (Mm12 — ma1)]. The radius of the circle is %[(mu — magg)? +

(m1o + m21)2]1/2.
max max
pp 2 Moy

The angles 1, @9, and ¢ specify the planes of

m m and m,, = 0.

or minimum value.

The planes for which m,, = 0 are defined by

1 1/2
tan g = 2— {—(mn — mgz) + [(mu — m22)2 + 4m12m21] / } .
ma1
(3.9)
There is one such plane if (m1; — ma2)? = —4miamsa;, and two such
planes if (m11 — ma2)? > —4miamso;. The normal component of the
couple stress in these planes is

1 1 1/2
Mpy = §(m11 + m22) + 5 [(m11 — m22)2 + 4m12m21] / . (3.10)

The planes for which m,, = 0 are defined by
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Figure 6: Mohr’s circle for couple stresses in anti-plane strain in the
case when the couple stress is a deviatoric tensor. The center of the
circle is along the m,, axis at the distance %(mu — moy) from the
origin. The radius of the circle is mI®* = [m¥, + L(m2 + ma1)?)'/2.

PP
_ 1 2 1/2
tan po = DT {—(mm + mo1) £ [(m12 + m21)? — 4myimas] } ;
Mmoo
(3.11)
provided that (mio + mo1)? > 4mi1maos. The non-vanishing couple

stress in these planes is

[(ma2 4+ ma1)? — 4myymas] vz (3.12)

N | =

1
mpw = §(m12 — mgl) +

The extreme values of the couple stresses m,, and m,, can also
be determined by an eigenvalue analysis. The derivation is analogous
to that presented in section 2. The resulting formulas can be obtained
from Egs. (2.13)-(2.22) by replacing the stress symbol ¢ with the cou-
ple stress symbol m. In the case when the couple stress is a deviatoric

tensor (e.g., isotropic linear elasticity), the results simplify due to the
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condition my; + moo = 0. The corresponding Mohr’s circle is shown

in Fig. 6.
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