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Even when the constraint u ∈ U is absent, this problem can be
ill-posed, i.e. it is possible that there is ũ which is far from the set
of solution of (1.1), such that ‖Aũ − f‖ ≈ min{‖Au − f‖2 : u ∈ U}.
In this case, the ill-posedness of problem (1.1) with U = H, comes
obviously from the fact that the range of A, R(A) := {Au : u ∈ H} is
not closed. In case of constraints, the ill-posednes can be a consequence
of the properties of the operator B and of the structure of the set U∗
of solutions of the problem [5].

Problem (1.1), (1.2), and the correspondng problem without con-
straints

J(u) =
1

2
‖Au− f‖2, u ∈ H. (1.3)

in literature (see [12], [4], [7], [8] are regularly studied under as-
sumption that instead of the exact operators A and/or B and in-
stead of the element f one actually deals with their approximations
Aη ∈ L(H,F ), fδ ∈ F, and Bσ ∈ L(H,G), such that

‖A−Aη‖ ≤ η, ‖B −Bσ‖ ≤ σ, ‖f − fδ‖ ≤ δ, (1.4)

where η > 0, σ > 0, and δ > 0 are small positive real numbers.
Then, problem (1.1), (1.2) is ill-posed in many important concrete

cases, and in order to solve it, one has to use methods of regulariza-
tion. In this paper, we consider methods of regularization based on
a modification of the family of regularizing functions from [12]. Let
us mention that these methods were used in [6] in case when the op-
erator B is known exactly. Note also that the Tikhonov method and
the iterated Tikhonov method of regularization belong to this class of
methods. Usually, the estimates of the accuracy of of the regulariza-
tion methods for solving ill-posed problems (1.1), (1.2) are obtained
for classes of the problems defined by certain conditions related to
their soultons u∗ with minimal norm. In general case, these so-called
source conditons have the following form

u∗ = ϕ(A∗A)h∗, h∗ ∈ H

and were discussed, for example, in [2], [9], [10].
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Problems of the (1.1) and (1.3) with infinite-dimensionale spaces
H and/or F are usually related to optimal control problems (see for
example see[13].)

2 Regularization Method

Let us suppose that the set U∗ of solutons of problem (1.1), (1.2) is
nonempty. We will denote by u∗ and call a normal soluton of (1.1)
the element of U∗ with minimal norm: u∗ ∈ U∗ and ‖u∗‖ ≤ ‖u‖ for all
u ∈ U∗.

As an approximation of u∗ of (1.1), (1.2), one can take a unique
soluton wα = wαηδσ of the variational inequality ([12] and [6]),
〈
g−1
α (A∗

ηAη)uα −A∗
ηfδ, u− uα

〉
≥ 0, ∀u ∈ Uσ := {u ∈ H : ‖Bσu‖2 ≤ r2}.

(2.1)
where Borel measurable functions gα : [0, a] �→ R, a > 0, α > 0 (a ≥
‖Aη‖) satisfy the conditions:

1− tgα(t) ≥ 0, t ∈ [0, a], (2.2)

1

1 + βα
≤ gα(t) ≤

1

βα
, t ∈ [0, a], β > 0, (2.3)

sup
0≤t≤a

tp(1− tgα(t)) ≤ γpα
p, α > 0, γp = const, 0 ≤ p ≤ p0, p0 > 0.

(2.4)
Here, a is the constant such thata a ≥ ‖Aη. Number p0 is called

qualification of the family {gα : α > 0} and it has an important role.
Let us denote by uα a unique solution to (2.1) on the set U = {u ∈

H : ‖Bu‖2 ≤ r2}. In [6] (see also [4]) the following result was proven.

Teorema 1. Suppose conditions (1.4) and (2.2)-(2.4) are satisfied.
(a) If the parameter α in (2.1) is chosen such that α = α(η, δ) → 0

and η+δ2

α → 0 as η, δ → 0, then uα → u∗ as η, δ → 0.

(b) If u∗ = |A|ph∗, where h∗ ∈ H, |A|p = (A∗A)
p
2 , p > 0, and

α = α(η, δ) = d(η + δ)
2

p+2 , d = const,
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then
‖uα − u∗‖ ≤ const(η + δ)

p
p+2 , 0 ≤ p ≤ 2p0 − 1. (2.5)

Let us estimate the distance between wα and uα.

Lemma 2.1. There is a constant c0 > 0 such that

‖uα − wα‖ ≤ c0
σ

α
.

Proof. By the Khun-Tucker theorem, there exist real numbers λα ≥ 0

and pα ≥ 0, such that

g−1
α (A∗

ηAη)uα −Aηfδ + λαB
∗Buα = 0 (2.6)

λα‖Buα‖2 = λαr
2 (2.7)

g−1
α (A∗

ηAη)wα −Aηfδ + pαB
∗
σBσwα = 0 (2.8)

pα‖Bσwα‖2 = pαr
2 (2.9)

Firstly, let us prove the boundeness of the Lagrange multipliers λα

and pα from (2.6) - (2.9). Multiplying (2.6) by uα, (2.8) by wα and
bearing in mind (2.7) and (2.9), we obtain

‖g−1
α (A∗

ηAη)uα‖2 + λαr
2 = 〈fδ, Aηuα〉, (2.10)

and
〈g−1

α (A∗
ηAη)wα, wα〉+ pαr

2 = 〈fδ, A∗
ηwα〉. (2.11)

From here, taking into account the inequalty ‖Aηx‖2 ≤ 〈g−1
α (A∗

ηAηx, x〉
for all x, we obtain that ‖Aηuα‖ ≤ ‖fδ‖ and ‖Aηwα‖ ≤ ‖fδ‖. Conse-
quently,

max{λα; pα} ≤ ‖fδ‖2

r2
≤ 2(‖f‖2 + δ2)

r2
.

Further more, if u∗α = gα(A
∗
ηAη)fδ belongs to {u ∈ H : ‖B‖2 < r2},

then ‖Bσu
∗
α‖ < r2 for all suffciently small σ and uα = wα = u∗α. This

equality is valid also in case of ‖Bu∗α‖ = r2 and‖Bσu
∗
α‖ < r2. In all

other cases we have that

‖Buα‖2 = r2, ‖Bσwα‖2 = r2. (2.12)

On Regularization of One Quadratic Programming Problem…
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Hence, in what follows, we will assume that this is fullfiled.
Multiplying the equality

g−1
α (A∗

ηAη)uα − g−1
α (A∗

ηAη)wα = pαB
∗
σBσwα − λαB

∗Buα

by uα − wα, we have

〈g−1
α (A∗

ηAη)(uα − wα), uα − wα〉 ≤

pα〈B∗
σBσwα, uα−wα〉−λα〈B∗

σBσuα, uα−wα〉+λα〈(B∗
σBσ−B∗B)uα)uα, uα−wα〉.

(2.13)
Now, from (2.13) using the following consequence of (3.5)

pα〈B∗
σBσwα, uα−wα〉−λα〈B∗Buα, uα−wα〉 = −λα + pα

2
‖Bσ(uα−wα‖2 ≤ 0,

we obtain

〈g−1
α (A∗

ηAη)(uα − wα), uα − wα〉 ≤ λα〈(B∗
σBσ −B∗B)uα, uα − wα〉 =

λα 〈(B∗
σ(Bσ −B) + (B∗

σ −B∗)B)uα, uα − wα〉 .

Finally, taking into account the estimates

〈g−1
α (A∗

ηAη)(uα − wα), uα − wα〉 ≥ βα‖uα − wα‖2 and λα ≤ ‖fδ‖2

r2
,

we obtain
α‖uα − wα‖2 ≤ const · σ.

This completes the proof of the Lemma.

3 Algorithm and Rate of Convergence

In what follows we will consider the convergence of the regularized
approximations of the solution, which are obatined in real process, to
u∗. At the begin, we will establish some properties of the functions
sα : [0,+∞)toH and ϕ : [0,+∞) → H definied by

sα : [0,+∞) �→ H, sα(t) =
(
g−1
α (A∗

ηAη) + tB∗
σBσ

)−1
A∗

ηfδ,
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Hence, in what follows, we will assume that this is fullfiled.
Multiplying the equality

g−1
α (A∗

ηAη)uα − g−1
α (A∗

ηAη)wα = pαB
∗
σBσwα − λαB

∗Buα

by uα − wα, we have

〈g−1
α (A∗

ηAη)(uα − wα), uα − wα〉 ≤

pα〈B∗
σBσwα, uα−wα〉−λα〈B∗

σBσuα, uα−wα〉+λα〈(B∗
σBσ−B∗B)uα)uα, uα−wα〉.

(2.13)
Now, from (2.13) using the following consequence of (3.5)

pα〈B∗
σBσwα, uα−wα〉−λα〈B∗Buα, uα−wα〉 = −λα + pα

2
‖Bσ(uα−wα‖2 ≤ 0,

we obtain

〈g−1
α (A∗

ηAη)(uα − wα), uα − wα〉 ≤ λα〈(B∗
σBσ −B∗B)uα, uα − wα〉 =

λα 〈(B∗
σ(Bσ −B) + (B∗

σ −B∗)B)uα, uα − wα〉 .

Finally, taking into account the estimates

〈g−1
α (A∗

ηAη)(uα − wα), uα − wα〉 ≥ βα‖uα − wα‖2 and λα ≤ ‖fδ‖2

r2
,

we obtain
α‖uα − wα‖2 ≤ const · σ.

This completes the proof of the Lemma.

3 Algorithm and Rate of Convergence

In what follows we will consider the convergence of the regularized
approximations of the solution, which are obatined in real process, to
u∗. At the begin, we will establish some properties of the functions
sα : [0,+∞)toH and ϕ : [0,+∞) → H definied by

sα : [0,+∞) �→ H, sα(t) =
(
g−1
α (A∗

ηAη) + tB∗
σBσ

)−1
A∗

ηfδ,
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ϕα : [0,+∞) �→ [0,+∞), ψα(t) = ‖Bσsα(t)‖2.

Let us observe that the functions sα satisfy the equality

g−1
α (A∗

ηAη)sα(t) + tB∗
σBσsα(t) = A∗

ηfδ. (3.1)

This equation is obtained by applying of the operator g−1
α (A∗

ηAη) +

tB∗B on the equality sα(t) = (g−1
α (A∗

ηAη) + tB∗
σBσ)

−1A∗
ηfδ.

Lemma 3.1. (a) Functions sα and ϕα are differentiable and

s′α(t) = −(g−1
α (A∗

ηAη) + tB∗
σBσ)

−1B∗
σBσsα(t),

ϕ′
α(t) = −2

〈
(g−1

α (A∗
ηAη) + tB∗

σBσ)
−1B∗

σBσsα(t), B
∗
σBσsα(t)

〉

(b) If the solution of the equation g−1
α (A∗

ηAη)u−A∗
ηfδ = 0 does not

belong to the set Uσ = {u : ‖Bσu‖ ≤ r2}, then the following statements
hold:

(i) B∗
σBσsα(t) �= 0 for all t ∈ [0,+∞).

(ii) Function ϕα is strictly decreasing and lim
t→+∞

ϕα(t) = 0.

(iii) There exists tα ∈
(
0, ‖fδ‖

2

r2−σ

)
such that

r2 − σ ≤ ‖Bσsα(tα)‖2 ≤ r2. (3.2)

(iv) There exists M > 0 such that

‖ϕ′(t)| ≥ M ∀t < tα. (3.3)

Proof. By a simple trasformation, we obtain

sα(t+ h)− sα(t)

h
= −(g−1

α (A∗
ηAη) + (t+ h)B∗

σBσ)
−1B∗

σBσsα(t).

The first equality in (a) follows from here. Further more, it is easy to
prove the second equality in (a), in the following way:

ϕ′
α(t) = 2〈s′α(t), B∗

σBσsα(t)〉 = −2
〈
(g−1

α (A∗
ηAη) + tB∗

σBσ)
−1B∗

σBσsα(t), B
∗
σBσsα(t)

〉
.
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(b) Bu asumptation, ‖Bσsα(0)‖ > r2. Then, the solution u∗α of the
equation g−1

α (A∗
ηAη)u−A∗

ηfδ = 0 is given by

u∗α = gα(A
∗
ηAη)A

∗
ηfδ = sα(0).

(b1) If there is t0 > 0 such that B∗
σBσsα(t0) = 0. then

sα(t0) = gα(A
∗
ηAη)A

∗
ηfδ = sα(0).

However, this is not possible, because we supposed that B∗
σBσsα(0) �=

0 and B∗
σBσsα(t0) = 0.

(b2) Operator (g−1
α (A∗

ηAη)+tB∗
σBσ)

−1 is positive and B∗
σBσsα(t) �=

0 for all t ∈ [0,+∞). Therefore, ϕ′(t) < 0 for all t ∈ [0,+∞) and,
consequently, ϕ is strictly decreasing.

Multiplying scalarly equality (3.1) by sα(t), we obtain

〈
g−1
α (A∗

ηAη)sα(t), sα(t)〉+ t‖Bσsα(t)‖2 = 〈fδ, Aηsα(t)
〉
.

From here, using the inequality

〈g−1
α (A∗

ηAη)sα(t), sα(t)〉 ≥ ‖Aηsα(t)‖2

we have

t‖Bσsα(t)‖2 = 〈fδ, Aηsα(t)〉 −
〈
g−1
α (A∗

ηAη)sα(t), sα(t)
〉
≤

1

2
‖Aηsα(t)‖2 +

1

2
‖fδ‖2 − ‖Aηsα(t)‖2

i.e. it yields

0 ≤ ϕ(t) ≤ ‖fδ‖2

2t
− ‖Aηsα(t)‖2

2t
≤

‖fδ‖2

2t
→ 0 as t → ∞. (3.4)

The Lemma is proven.
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Consequently, if ϕ(0) = ‖Bsα(0)‖ > r2, then there exists t0 > 0

such that ϕ(t0) = r2. The monotonicity and the differentiability of
the functions ϕα offer the possibility to apply different methods for
approximate solving of the equation such that ϕα(t) = r2. Let us
denote by tα = tαε ≈ t0 an approximate solution of this equation,
such that ‖vα − wα‖ = ‖sα(tα − s(t0)‖ ≤ ε.

The following theorem characterizes the convergence of the de-
scribed method.

Teorema 2. Suppose that the conditions (1.4) and (2.2)-(2.4), and
condition (b) from Theorem 1 are satisfied.

(a) If the parameter α = α(η, δ, σ) and tα > 0 are such that r2 −
(η + δ + σ) < ‖Bsα(tα)‖2 ≤ r2 and α(η, δ) → 0, η+δ2+σ

α → 0 as
η, δ, σ → 0, then

vα =

{
sα(0), sα(0) ≤ r2

sα(tα) sα(0) > r2,

converges to normal solution u∗ of problem (1.2), (1.1) as η, δσ, ε → 0.

(b) If u∗ = |A|ph∗, where h∗ ∈ H, |A|p = (A∗A)
p
2 , p > 0, and

α = α(η, δ, σ) = d(η + δ)
2

p+2 , d = const,

then

‖vα − u∗‖ ≤ const
[
(η + δ)

p
p+2 +

σ

δ
+ ε

]
., 0 ≤ p ≤ 2p0 − 1. (3.5)

Proof. From the inequality

‖u∗ − vα‖ ≤ ‖u∗ − uα‖+ ‖uα − wα‖+ ‖wα − vα‖. (3.6)

bearing in mind the results from Theorem 2.1, Lemma 2.1, we obtain
the conclusions of the Theorem.
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[4] M. Jaćimović and I. Krnić, On some classes of regularization
methods for minimization problem of quadratic functional on a
halfspaces Hokkaido Math. Journal. 28 (1999), 57-69.
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regularization of minimizing sequences in quadratic programming
problems in Hilbert space, Procedings on Confer. Nonlinear Anal.
and Optim. Problems, Montenegrin Academy of Sciences and
Arts, (2009), 185-206.
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