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Abstract

In this paper we consider a problem of minimization of a quadratic
function on an ellipsoid in a Hilbert space. In general case, this prob-
lem is ill-posed. This fact generates the necessity to apply certain
method of regularization, [1], [3], [13] that will produce a good ap-
proximate solutions of the problems. Methods of regularization that
will be used in this paper are based on a modification of the family of
regularizing functions from [12]. We used this method in [6] for solv-
ing the same problem under assumptation that the ellipsoid is known
exactly, while instead of all other data we know only their approxma-
tions. Here, we assume that insted of the exact initial data, we know
only their approximations.
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O REGULARIZACIJI JEDNOG ZADATKA
KVADRATNOG PROGRAMIRANJA SA
PRIBLIZNIM POCETNIM PODACIMA

Apstrakt

U ovom radu izu¢avamo zadatak minimizacije kvadratnog funkcionala
na elipsoidu u Hilbertovom prostoru. U opStem slu¢aju ovaj problem
je nekorektan i za njegovo rjeSavanje potrebno je primijeniti metode
regularizacije (v. [1], [3], [13]) koje ¢e generisati dobre aproksimacije
rjeSenja. Metode regularizacije koje ée biti koriséene u ovom radu zas-
novane su na modifikaciji klase regularizujuéih funkcija iz [12]. U radu
[6] razmatrali smo isti problem pretpostavljajué¢i da su svi parametri
kojima se definiSe elipsoid poznati, dok su umjesto ostalih param-
etara poznate samo njihove aproksimacije. Ovdje pretpostavljamo da
su umjesto ta¢nih pocetnih podataka poznate samo njihove aproksi-
macije.
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1 Introduction

Let H and F' be real Hilbert spaces, A : H — F - linear bounded
operator from H to F, f € F- a fixed element, and U C H- a closed
convex set. We will deal with the minimization problem

1
J(u) = §HAu—f\y?, ueU. (1.1)
We suppose that the set U is given by
U={uecH:|Bul?<r’}, (1.2)

where B : H — G is an linear continuous operator from H to Hilbert

space G.
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Even when the constraint uw € U is absent, this problem can be
ill-posed, i.e. it is possible that there is @ which is far from the set
of solution of (1.1), such that ||A% — f| ~ min{||Au — f|* : uw € U}.
In this case, the ill-posedness of problem (1.1) with U = H, comes
obviously from the fact that the range of A, R(A) := {Au:u e H} is
not closed. In case of constraints, the ill-posednes can be a consequence
of the properties of the operator B and of the structure of the set U,
of solutions of the problem [5].

Problem (1.1), (1.2), and the correspondng problem without con-
straints

J(u) = %HAu—fHQ, ue H. (1.3)

in literature (see [12|, [4], [7], [8] are regularly studied under as-
sumption that instead of the exact operators A and/or B and in-
stead of the element f one actually deals with their approximations
A, € L(H,F), fs € F,and B, € L(H,G), such that

A=Ayl <n, |1B—=Bsll <o, [If = fsll <, (1.4)

where 1 > 0,0 > 0, and § > 0 are small positive real numbers.

Then, problem (1.1), (1.2) is ill-posed in many important concrete
cases, and in order to solve it, one has to use methods of regulariza-
tion. In this paper, we consider methods of regularization based on
a modification of the family of regularizing functions from [12]. Let
us mention that these methods were used in [6] in case when the op-
erator B is known exactly. Note also that the Tikhonov method and
the iterated Tikhonov method of regularization belong to this class of
methods. Usually, the estimates of the accuracy of of the regulariza-
tion methods for solving ill-posed problems (1.1), (1.2) are obtained
for classes of the problems defined by certain conditions related to
their soultons u, with minimal norm. In general case, these so-called

source conditons have the following form
us = p(A*A)hy, hy € H

and were discussed, for example, in [2], [9], [10].
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Problems of the (1.1) and (1.3) with infinite-dimensionale spaces
H and/or F are usually related to optimal control problems (see for
example see[13].)

2 Regularization Method

Let us suppose that the set U, of solutons of problem (1.1), (1.2) is
nonempty. We will denote by u* and call a normal soluton of (1.1)
the element of U, with minimal norm: u* € U, and [Ju.|| < ||u|| for all
u € U.

As an approximation of u* of (1.1), (1.2), one can take a unique
soluton wy = Wanse of the variational inequality ([12] and [6]),

<g;1(A;';An)ua — Ajfs,u—ug) >0, Vue Uy, :={uecH: | Bou|® < r?}.

(2.1)
where Borel measurable functions g, : [0,a] — R, a > 0, > 0 (a >
| Ay ||) satisfy the conditions:

1 —tga(t) >0,t€[0,a], (2.2)
L < tecl0a, 80 (2.3)
N , @f, 3 .
1+ pa ~ Ba
sup tP(1 —tga(t)) < v, a >0, v, = const, 0 < p < pg, po > 0.
0<t<a
(2.4)

Here, a is the constant such thata a > ||4,. Number pg is called
qualification of the family {go : @ > 0} and it has an important role.

Let us denote by u, a unique solution to (2.1) on the set U = {u €
H :||Bul|?> < r?}. In [6] (see also [4]) the following result was proven.

Teorema 1. Suppose conditions (1.4) and (2.2)-(2.4) are satisfied.
(a) If the parameter o in (2.1) is chosen such that o = a(n,d) — 0
and # — 0 asn,d — 0, then uq — uy asn,6 — 0.
(b) If u, = |A[Ph,, where h, € H, |A]P = (A*A)2, p > 0, and

a=a(n,0)=dn+ 5)17%2, d = const,
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then
p
| wa — ux|| < const(n+0)r+2, 0 < p < 2py — 1. (2.5)

Let us estimate the distance between w, and u,.

Lemma 2.1. There is a constant c¢g > 0 such that
o
[ta — wall < co—.
o

Proof. By the Khun-Tucker theorem, there exist real numbers A\, > 0
and p, > 0, such that

9o (A Ap)ua — Ayfs + AaB*Bug = 0 (2.6)
Aal|Bua|® = Aar? (2.7)
9 (A3 Ap)wa — Ay f5 + paBy Bowa = 0 (2.8)
pO(HB(,waH2 = por? (2.9)

Firstly, let us prove the boundeness of the Lagrange multipliers A,
and p, from (2.6) - (2.9). Multiplying (2.6) by uq, (2.8) by w, and
bearing in mind (2.7) and (2.9), we obtain

g (A5 Apuall® + Aar? = (f5, Ayua), (2.10)
and
<gc:1(A:<;An)wa> Wq) + pa7“2 = (fs, A;wa>. (2.11)

From here, taking into account the inequalty || A,z||* < (g, (4} Ayz, z)
for all @, we obtain that [|Ayua| < [|fs]| and [[Aywal| < || fs]|. Conse-
quently,

2 2 2
maz i) < MBI < 20012 + )
A

72 '
Further more, if uy, = ga(A;Ay)fs belongs to {u € H : |B|I? < r?},
then || Byul|| < r? for all suffciently small o and uq = w, = u},. This
equality is valid also in case of ||Buf|| = 72 and| B,ul|| < r2. In all
other cases we have that

1Bua||? = 7*, || Bowa? = 7*. (2.12)
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Hence, in what follows, we will assume that this is fullfiled.

Multiplying the equality
9o (AL Ap)ua — g2 (A5 Ap)wa = paBsBswe — AaB*Bua
by uq — W, we have
(9o (A5 Ap) (U — Wa), g — Wa) <

Do B Bowe, Ug—Wa ) —Aa (B Byl g —Wa )+ ((Bs By —B* B)ug ) Ug, Uq—Ws)-

(2.13)
Now, from (2.13) using the following consequence of (3.5)
* * Ao + Pa
pa<BgBawa7ua_wa>_/\a<B Bua,ua—wa> = — 5 HBa(ua_waHZ S 0’

we obtain

<go_¢1(A;;A77)(uoc - wa); U — wa> < )\a<(B;BU - B*B)Uouua - wa> =
Aa (B (Bs — B) + (B; — B")B) ta;, tia — Wa) -

Finally, taking into account the estimates

1511

rz

<ga_1(A,’;An)(ua — W), U — Wa) > Palug — woé||2 and A\, <

we obtain
ol — wel* < const - o.

This completes the proof of the Lemma.

3 Algorithm and Rate of Convergence

In what follows we will consider the convergence of the regularized
approximations of the solution, which are obatined in real process, to
uy. At the begin, we will establish some properties of the functions
Sq @ [0,+00)toH and ¢ : [0,4+00) — H definied by

S [0,400) 5 H, sa(t) = (g3 (A3 A,) +tBLB,) "~ AL fs,
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¢a 1 [0,400) = [0,+00), a(t) = || Besa(t)]*:
Let us observe that the functions s, satisfy the equality
9o (A3 An)sa(t) + By Bysa(t) = A fs. (3.1)

This equation is obtained by applying of the operator g, 1(A;;An) +
tB*B on the equality s, (t) = (95" (A} A,) + tB;Bs) ' As fs.

Lemma 3.1. (a) Functions s, and o are differentiable and
sa(t) = —(92" (A7 4y) +B;B,) " B} Bosa(t),

alt) = =2((9a ' (A3Ag) +tB;Bs) ™' By Bosal(t), By Bosal(t))

(b) If the solution of the equation g5 ' (A} Ay)u— A} f5 = 0 does not
belong to the set U, = {u : | Byul| < 12}, then the following statements
hold:

(i) BEByso(t) # 0 for all t € [0, +00).

(11) Function g, is strictly decreasing and tljgloo 0a(t) = 0.

(111) There exists to, € (0, %) such that
12 — 0 < ||Bysa(ta)||* < 72 (3.2)
(iv) There exists M > 0 such that
¢/ (t)] > MVt < t,. (3.3)

Proof. By a simple trasformation, we obtain

Sa(t+ h) — sq(t)
h

= —(ga (A7 Ay) + (t + h)B; Bs) "' By Bysalt).

The first equality in (a) follows from here. Further more, it is easy to
prove the second equality in (a), in the following way:

Pa(t) = 2(s4(t), ByBysalt)) = ~2((95 (43 4y) + B3 Bs) ™ B; Bosalt), By Bosalt))
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(b) Bu asumptation, ||B,54(0)|| > r2. Then, the solution u}, of the
equation g;l(A;;An)u — A} fs = 0 is given by

Uy, = ga (A Ay) AL fs = 5a(0).
(b1) If there is top > 0 such that B} Bysq(tg) = 0. then
sa(to) = ga(A;;An)A;fé = 54(0).

However, this is not possible, because we supposed that B} B,s,(0) #
0 and B} B;sq(to) = 0.

(b2) Operator (g, * (A;An)+tB;BU)*1 is positive and B By sq(t) #
0 for all t € [0,+00). Therefore, ¢'(t) < 0 for all ¢t € [0,+00) and,
consequently, ¢ is strictly decreasing.

Multiplying scalarly equality (3.1) by s4/(t), we obtain

(90 (A7 Ap)sa(t), sa(t)) +tl Bosa(t)* = (fs, Aysa(t)) .
From here, using the inequality
(9 (A7 Ap)sa(t), sa(1)) 2 | Apsa(t)[I?
we have

tl Bosa(t)|? = (f5, Aysa(t)) — (ga " (A7 Ay)sa(t), sa(t)) <

1 1
§||An5a(t)||2 + §||f6H2 - HAnsa(t)H2

i.e. it yields

I£s1” [ Apsa(®)|I?
< p(t) < — <
0=wl =7 2
2
@%Oast—ﬂxa. (3.4)

The Lemma is proven.
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Consequently, if ¢(0) = ||Bsa(0)|| > r?, then there exists tg > 0
such that ¢(tg) = 72. The monotonicity and the differentiability of
the functions ¢, offer the possibility to apply different methods for
approximate solving of the equation such that ,(t) = r2. Let us
denote by t, = tae =~ ty an approximate solution of this equation,
such that ||vg — wal|| = ||sa(ta — s(to)|| < e.

The following theorem characterizes the convergence of the de-
scribed method.

Teorema 2. Suppose that the conditions (1.4) and (2.2)-(2.4), and
condition (b) from Theorem 1 are satisfied.

(a) If the parameter a = a(n,d,0) and t, > 0 are such that r> —
2
(n+ 0 +0) < ||Bsalta)]®> < 72 and a(n,8) — 0, X7 0 as
1,0,0 — 0, then

converges to normal solution us of problem (1.2), (1.1) asn,do,e — 0.
(b) If uy = |APh., where h, € H, |APP = (A*A)2, p > 0, and

a=a(n,do)=dn+ 5)$, d = const,
then
e — || < const [(n +8)re ¢ % + e} L0<p<2p—1. (3.5
Proof. From the inequality
[t = va|l < llus = tall + Jua — wal + [wa = val. (3.6

bearing in mind the results from Theorem 2.1, Lemma 2.1, we obtain
the conclusions of the Theorem.
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