ABDUS SALAM (1926–1996) – MORE THAN A NOBLE LAUREATE

Abstract: In his interesting lecture Academician Emil Constantinescu, President of Romanian Academic Forum, referrers to Modern Alchemy: "From the lead of Information to the Gold of Knowledge."

Abdus Salam, the Nobel Prize Laureate in Physics of 1979, had a remarkable command of transmitting the alchemist's retorts from lead of information into the scientist's gold of knowledge for the developing world. Abdus devoted his life to advocate the development of Science in the third world countries.

This Essay starts with some reflections around a photo of a young man.

This is a 'cabinet photo' which in British India was used as a supplement to the visiting card. The photo is dated Lahore 1940 and depicts a serious young man from the small Pakistan village of Jhang in an agricultural district on the Indian subcontinent, established around 2.000 BC as "a low-yielding agriculture area close to the fortress city of Lahore" – the citadel which once defended Punjab from wild Afghan tribes and looting Moguls. Lahore, with its beautiful Shalimar gardens, is the town which Ramjet Singh failed to turn into a capital for his followers, the Sikhs. It was also intended to become a Religious Centre for Mirza Ghulam, prophet of the Muslim movement Ahmadiyya. And in Lahore the Indian army once rebelled against the British Empire and was brutally punished. Since then, Lahore has developed into a learned town with public libraries and research institutes, the the oldest University of Pakistan. The bloodstained religious riots against the Ahmadiyyias- Muslims were still to come.

The boy in the cabinet photo is 14 years of age. He looks at you with an anticipating, thin smile behind spectacles. In Colonial India, the society was sharply divided by colour, class, cast, religion, language and profession. Each group jealously defended their headwear which demarcated them from the other groups in society.

^{*} Royal Swedish Academy of Sciences, fellow of WAAS

The young boy with the black turban and the white casing indicated that he has read the Koran and belongs to the Ahmadiyya-Muslim community. His name was Muhammad Husain Abdus Salam.

Most probably, the photo was taken by a professional photographer in a Lahore studio in order to distribute it to Salam's friends, celebrating that – at the age of 14 – Abdus Salam had scored the highest marks ever given by the Punjab's Matriculation Examiner. Abdus was the proud recipient of a full scholarship from the Government College. Equally proud was Abdus' parents; poor but pious farmers.

Abdus recalls later in life a statement by his teacher in a backward

Village school in Punjab. The teacher in Natural Science started with the subject of Gravity; "Now of course we all have all heard of Gravity." Then he went on to say," Electricity. Now there is a force called Electricity, but it doesn't live here in Jhang, it lives in our capital town of Lahore, 100 miles to the East." The teacher had just heard of Nuclear Power so he said: "Nuclear Power – It only exists in Europe." Abdus added: "This was how Natural Sciences were taught in a developing country!"

Abdu's scholarship opened the doors to the Government College in Lahore. He started studying Urdu and English literature. But Mathematics eventually became his major. Because of Abdu's strong interest in humanism his mentor suggested that he should become a teacher in the English Language. But Abdus held on to mathematics and wrote a paper on Trinova's Rumanian (1887–1920), the outstanding Indian mathematician from Tamil Nadu, Abdus explained Rumanian's studies on elliptic functions and the analytical theory of numbers.

Abdus Salam graduated with a M. A. in Mathematics. He completed a B. A. in Mathematics 1944 and was looking for a job. His father urged him to apply for the Civil Service at the Indian Railways 'The Lifeline to the nation'. But luckily for the development of Theoretical Physics, Abdu's application was turned down because he failed his optical test.

Two years later, Abdus Salam received a scholarship to Cambridge in the UK. Five scholarships to study abroad were available in 1946 at the Punjab Administration. Abdus adds: "If I had not gone that year, I would not have been able to go to Cambridge at all; the following year there was the partition of British India and the scholarships of 1947 simply disappeared." In 1947, Abdus received a ticket for one of the steamers filled with British families leaving before India became independent. For a non-experienced student, travelling from an Indian village to Cambridge University was a long journey. But as Abdus remarked: I made friends on the way."

Once established at St John's College, one of the oldest colleges in Cambridge, Abdus went to the library in order to borrow a copy of the Concise Oxford Dictionary in order to learn 'proper English' from A to Z. As we will see

Some 37 years later he remembered the Dictionary and explained the meaning of "coinage".

His tutor Fred Hoyle, perhaps one of the 20th century's greatest scientific gurus, Advised the young Abdus to stay on at St. John's and go into advanced laboratory research. But Abdus did not have the patience for long experiments in the laboratory.

Abdu's good grades and warm personality among his fellow students rendered him a 'Johnian' friendship-award among, which Abdus valued highly.

He received double First Class Honours in Mathematics and Physics as well as the Smith's prize for outstanding pre-doctoral contributions in Physics.

Abdus was also asked to solve a seemingly unsolvable problem proposed by Hideki Yukawa, a Nobel laureate of 1949 from Kyoto Imperial University. The problem concerned Yukawa's prediction of the existence of mesons on the basis of theoretical work on nuclear forces. Salam found a solution which attracted the Nobel laureates Paul Dirac and Hans Albert Bethe. The doors to the Cavendish Laboratory were open.

Salam managed to renew his scholarship and began his doctorate studies at Cavendish. In 1951, Abdus Salam presented his thesis in Theoretical Physics in the field of Quantum Electrodynamics which was well received.

In the same year, Abdus received 'the Adam Prize' – one of the oldest and most prestigious awards at Cambridge. The prize is named after the mathematician John C Adams who in 1846 predicted the existence of the 'blue' planet Neptune by using only mathematical calculations.

Salam returned home to Punjab in order to take up a chair of Mathematics at the Pakistan College University. When Salam proposed to update the curriculum at the College by offering courses in quantum mechanics, his suggestions were not accepted by the Vice-Chancellor. Abdus decided to give evening courses in Quantum Mechanics outside the framework of the regular curriculum. His new ideas were met with mixed feelings by the Scientific Community at the University. When Salam's idea to establish a new research institute in Lahore was rejected, he accepted a fellowship from PAS (the Pakistan Academy of Sciences) in Islamabad in 1953, where he became one of the first academicians in Pakistan.

Abdus writes: "As a physicist in Pakistan I was lonely and completely isolated. It was very difficult to get scientific journals and keep in touch with my subject. I had to leave my country in order to remain a physicist. It is the lack of contacts with other scholars that is the biggest curse of being a scientist in a developing country. You simply do not have the funds, the opportunities, which those from richer countries enjoy as a matter of course. There are no communities of people thinking and working in the same field... There must be possibilities open for scientists to remain in their own country, meet people working in the same subject, and learn new ideas. You must return to your own country with a mission to change the image of science and technology in your own country."

Noteworthy is that some 15 years later Abdus Salam founded ICTP, the International Centre for theoretical Physics in Trieste, for young scientists from the developing world.

After serious religious unrest in Punjab, the Pakistan President declared martial law for the region of Lahore in 1953. A series of vicious pogroms had taken place against the Ahmadiyya Muslim Jaamaat, to which the Salam family belonged. Orthodox Muslims did not consider the Ahmadiyyas to be 'real' Muslims because they adopted parts from other religions and considered Jesus Christ to be one of

their prophets. The Ahmadiyyas had also adopted the St. Thomas Christians' claim that Jesus Christ survived his crucifixion and had travelled to Kashmir where his tomb is located. To some orthodox Muslims these legends were evil information and dangerous blasphemy. Religious tension in northeast India had started again. The situation became tense in Punjab with persecution and oppression.

A law was passed by the Pakistan Parliament announcing that the Amadiyya Muslim Community ware not Muslims. The Salam family urged Abdus to leave Pakistan. He left for England.

In 1957, Abdus was invited to the Imperial College London in order to set up a new Department of Theoretical Physics. His advanced methods of research were noticed not only by theoretical physicists. Leading researchers joined Abdu's department, including scientists as Stephen Weinberg, Thom Kibble, Gerald Guaraní, C. R. Hagen and John Warred.

At the age of 33, Abdus became one of the youngest Fellows ever to be elected to become a member of the prestigious Royal Society, London.

At this time he received a fellowship to the University of Princeton, USA where he met Robert Oppenheimer, the Scientific director of the Manhattan Project. They discussed the possibility of establishing a foundation for electrodynamics.

At Princeton, Abdus Salam happened to meet Albert Einstein who asked him what kind of research he was doing. Abdus told him that he was working on the renormalization theory. Einstein answered he was not interested in that. After a few moments Einstein asked, "Have you studied my relativity theory?" Salam replied: "I am not interested in that."

In 1979, Abdus Salam received the Nobel Prize in Physics for his electroweak theory. He shared the Prize with his colleagues from the Imperial College – Sheldon L Glashow and Stephen Weinberg: "for their contribution to the unified weak and electromagnetic interaction between elementary particles, including inter alia the prediction of the weak neutral current."

In his acceptance speech after receiving his Noble Prize in Stockholm, Abdul Salam quoted from the Koran:

"In shallah! – hou serest not, in creation of the All-merciful, any imperfection. Return thy gaze, serest thou any fissure. Then return thy gaze, again and again. Thy gaze, Comes back to thee dazzled. This, said Abdus,"...is the faith of all physicists; the deeper we seek, the more our wonder is excited, the more the dazzlement for our gaze."

Abdus Salaam turned his Nobel award into a fund in the memory of his parents Mohammad and Hajjis Hussain; "To help the brightest and most deserving pre-university students from schools in the district of Jhang, Punjab."

Salam had a habit of quickly jotting down anything of interest – a good joke, a new formula or plain gossip. He scribbled down his thoughts on whatever was handy – a bit of paper, a receipt, a cab note, and loose sheets from a notebook or the back of an old poster or an envelope. Abdus was invited by the Queen to Buckingham Palace. After the banquet and when all guests were gone, Abdus returned,

rang the bell and said: "Could I please have my napkin from the banquet table? I have some notes written on it."

In 1980, Salam received an official invitation from Islamabad to become Pakistan's First Advisor in Science. He accepted. In 1981–1984, Abdus built Pakistan's scientific infrastructure. The Government appointed Professor Abdus Salam to become director of SUPARCO (the Space and Upper Atmosphere Commission) and head of the TPG (Theoretical Physics Group). Abdus Salam was asked to develop Pakistan's nuclear energy and weapons programme. He linked this scientific activity to IAEA, the UN International Atomic Energy Agency Promoting Safe and Peaceful use of Atomic Energy in Vienna.

Salam was awarded the IAEA - "Atoms for Peace" medal.

Born into the Ahmadiyya Muslim Community, Abdus had integrated faith into his life and research. Abdus explains, "The Holy Qur'an enjoins us all to reflect on the verities of Allah's created laws of nature. However, our generation has been privileged to glimpse that part of His design is a bounty and a grace for which I render thanks with my humble heart."

THE ICTP AND TWAS

It was noted by Italian scientists that some administration buildings were not used in the town of Trieste – an old seaport, founded by the Romans in 100 BC at the Adriatic Sea. This gave Abdus Salam the opportunity to create his idea, the International Centre for Theoretical Physics (ICTP). He negotiated with the Italian government and managed to lease the buildings for a symbolic sum. In 1968, the autonomous international Institute was established under the aegis of IAEA, UN-ESCO and the Italian Government.

The guidelines for ICTP promotes training and research in the mathematical and physical sciences in developing nations. During the planning period, Abdus Salam underlined that he wanted to confront the issues of isolation and brain drain which continued to dim the prospects for science excellence in the developing world. ICTP promotes Science from the developing nations of the world and gives Associate-ships to young scientists, especially physicists.

Each year the ICTP hosts some 6,000 scientists. In cooperation with Italian Science institutions, links have been built for a great number of associates, lecturers, students and university leaders.

The well known Science writer Daniel Behrman noted that the ICTP in Trieste had become a 'World Rendezvous for Physicists'.

Behrman writes, "The pursuit of theoretical physics can not be justified in terms of its immediate applications. It is the most philosophical of sciences for it is connected with the study of the very nature of matter. As such, it attracts the most talented brains of the developing world, the Einstein's, the Fermi's, the Niels Bohr's of tomorrow and the day after. They will not devise ways to build better mousetraps but they learn to think in terms of original solutions."

The Trieste centre attracted top scientists from all over the world. The main equipments – chalks and blackboards – produced more than 130 scientific papers a year in the field of elementary particles such as 'High-energy physics, field theory, nuclear physics, solid state physics and plasma physics'.

The gist of developing the ICTP was based on Abdu's own experience of isolation he suffered in Pakistan. "You can understand why I feel so grateful to Allah for giving me this opportunity in such a mysterious way that I was able to conduct research in a time when there was no visible means of doing so. When in Pakistan I was the only theoretical physicist in the country. The nearest colleague was in Bombay... You have no idea of what that can be like. A theoretical physicist has got to be able to talk, to discuss, to shout if needed."

Abdus was a strong believer that "... scientific thought is the common heritage of mankind." He added: "Developing nations need to help themselves and invest in their own scientists to boost in development and reduce the gap between the Global South and the Global North, thus contributing to a more peaceful world."

And so the concept of the Third World Academy of Sciences (TAWS) was conceived and in 1983, Abdus Salam invited a group of eminent scientists from all over the world to work out the guidelines for the Academy:

- To recognize, support and promote excellence in scientific research in the South.
- To provide promising scientists in the South with research facilities necessary for the advancement of their work.
- To facilitate contacts between individual scientists and institutions in the South.
- To Encourage South-North cooperation between individuals and centres of scholarship.
- To promote scientific research on major problems of developing countries.

The Academy was officially opened in Trieste in 1985 by the Secretary General of the UN.

(The Academy later changed names to the Academy of Sciences for the developing world.)

In 2011, TAWS had close to 1,000 members from 90 nations.

During a TAWS meeting in 1985, I happened to sit beside Abdus and asked him: "What does "coinage" mean?" He looked a bit surprised, but smiled and said:

"Oh dear me – coinage it is to put words together and coin a new word – like the word 'Pakistan'," He scribbled with his pen and said: "Look here: Punjab, Afghan border states, Kashmir, Sind and Baluchistan. That makes Pakistan.

You invent a new word by putting old words together. I know because I was born into that coinage!" Abdus smiled and we started to discuss the agenda for the day.

On another occasion, when we met in the Royal Swedish Academy of Sciences, Abdus Salam seemed to be in a tranquil mood. I asked him," Do you have a credo, Abdus?" He looked at me and said: "My Credo? It is the same as yesterday and tomorrow: "Scientific thought is the common heritage of mankind." Abdus asked about the founder of the Academy.

I told him about the world-famous botanist Carl Linnaeus (1707–1778) who through his script *Systema Naturae* changed the world of Botany. When I said that Linnaeus's global classification of plants had philosophical and religious roots, Abdus became very interested. I showed him a reprint of the '*Systema Naturae*' and added that in the 1700 s the relation between God-Nature-Man was a divine triangle for many of leading European scientists – among them Isaac Newton (1642–1727).

Latin was the language of Science and Linnaeus writes in the preface to *Systema Naturae*: "Creationis telluris est Gloria Dei ex opera Naturae per Hominem solum." in English "The Creation of Earth is the Glory of God, as seen from the works of Nature by Man alone." Linneus believed that the study of Nature reveals the Divine Order of God's Creation. It was his assignment to write "Systema Naturae" – a classification of Nature which was to reveal the Order of the Universe. Linnaeus was firmly convinced that when he was wandering in Nature with his herbarium to classify flowers, the Creator was sitting on his shoulders.

"Linnaeus's thoughts are my thoughts" Abdus smiled and gave me his Qur'an, saying, "This is for you – and your friends."

Until the end of his life Andus Salam continued to purify the lead of information into the gold of knowledge for Science in the developing world. In November 1996, Abdus Salam died peacefully in Oxford at the centre of his family at the age of 70. The Government of Pakistan issued a commemorative stamp to honour of his services.

Abdus Salam was a member of The World Academy of Art and Science, WAAS.

REFERENCES

- [1] Constantinescu, Emil: "A modern Alchemy; From the lead of Information to the Gold of knowledge." Abstracts, WAAS International Conference: "Humanities and the Contemporary World", Podgorcia, Montenegro. June 2012
- [2] Ellis, John: "The Abdus Salam Memorial Meeting: Trieste", River Edge, 1997
- [3] Ghani Abdul: "Biography, Abdus Salam", Karachi, 1966
- [4] Hassan Z & Lai CH: "Ideals and Realities. Selected Essays of Abdus Salam", Singapore, 1984
- [5] Lewis, Miriam: "Abdus Salam, The Nobel Prize in Physics in 1979", Stockholm 1979.
- [6] Odelberg, Wilhelm (editor): "Les Prix Nobel", Stockholm, 1979