ЦРНОГОРСКА АКАДЕМИЈА НАУКА И УМЈЕТНОСТИ ГЛАСНИК ОДЈЕЉЕЊА ПРИРОДНИХ НАУКА, 6, 1988. ЧЕРНОГОРСКАЯ АКАДЕМИЯ НАУК И ИСКУССТВ ГЛАСНИК ОТДЕЛЕНИЯ ЕСТЕСТВЕННЫХ НАУК, 6, 1988. THE MONTENEGRIN ACADEMY OF SCIENCES AND ARTS GLASNIK OF THE SECTION OF NATURAL SCIENCES, 6, 1988.

UDK 539.183.2

S. JOVANOVIĆ* P. VUKOTIĆ*

PRIKAZ IZOTOPA KOJI SU OD ZNAČAJA U 'NEUTRONSKOJ AKTIVACIONOJ ANALIZI, SA ASPEKTA UTICAJA NESAVRŠENOSTI EPITERMALNOG NEUTRONSKOG FLUKSA NA REZULTAT ANALIZE

A SURVEY OF THE ISOTOPES WHICH ARE OF INTEREST IN NEUTRON ACTIVATION ANALYSIS, ACCORDING TO THE IMPACT OF THE EPITHERMAL NEUTRON FLUX NONIDEALITY ON THE ANALYTICAL RESULT

IZVOD

Prilikom primjene monokomparatorskih metoda neutronske aktivacione analize (npr. k_0) neophodno je voditi računa o »nesavršenosti« spektra epitermalnih neutrona. U radu je dat prikaz uticaja ove nesavršenosti na rezultat analize, kao i praktična tabela za procjenu ovog uticaja na 126 izotopa koji su od značaja u neutronskoj aktivacionoj analizi.

ABSTRACT

When applying a monocomparator method of neutron activation analysis (e. g. k_o), the epithermal spectrum »nonideality« should be taken into account. A survey of the impact of this nonideality on the analytical result is given, as well as a user priented table to evaluate this impact for 126 isotopes which are of interest in neutron activation analysis.

^{*} Institut za matematiku i fiziku, Univerzitet »Veljko Vlahović«, Titograd.

UVOD

U teoriji termalnog nuklearnog reaktora se obično pretpostavlja da je fluks epitermalnih neutrona obrnuto proporcionalan energiji neutrona /1/:

$$\varphi'_{e}(E) = \frac{\mathscr{Q}_{e}}{E}$$
 (1)

gdje je konstanta $Ø_{\circ}$ tzv. »epitermalni fluks«. Relacija (1) izvedena je iz pojednostavljenog modela procesa moderacije: homogeni, beskonačni medijum, homogen raspored goriva u moderatoru, zanemarena apsorpcija, neelastično i anizotropno elastično rasijanje neutrona itd. Stvarni uslovi moderacije u reaktoru odstupaju, u manjoj ili većoj mjeri, od navedenih, pa se epitermalni fluks može tačnije opisati semiempirijskom relacijom /2,3/:

$$\varphi'_{e}$$
 (E) $= \frac{\omega_{e}}{E^{1+a}}$ (1eV)^a (2)

 α je parametar koji karakteriše poziciju u reaktoru i moguće ga je eksperimentalno odrediti /4,5/. Iz (1) i (2) vidimo da α predstavlja mjeru odstupanja stvarnog epitermalnog fluksa od idealizovanog. α može imati i pozitvne i negativne vrijednosti; na primjer, reaktor THETIS (lakovodni, sa grafitnim jezgrom i reflektorom, 250 kW) Instituta za nuklearne nauke u Gentu, Belgija, ima izuzetno širok raspon α u svojih 17 kanala za ozračivanje: od — 0.028 do + 0.110 /6/.

Inače, može se pokazati da $1/E^{1+a}$ aproksimacija zadovoljava sa stanovišta pouzdanosti NAA /15/.

UTICAJ NESAVRŠENOSTI EPITERMALNOG FLUKSA NA REZULTAT NEUTRONSKE AKTIVACIONE ANALIZE

Poslednjih desetak godina u porastu je upotreba monokomparatorskih metoda neutronske aktivacione analize (NAA) /7/. Zajedničko je za ove metode da se pri izračunavanju koncentracije (ρ) nekog elementa u uzorku javlja kao faktor proporcionalnosti izraz (f+Q*_o)/(f+Q_o) /8/. Ovdje je f odnos termalnog prema epitermalnom fluksu (f=Ø_t/Ø_e), a Q_o odnos rezonantnog integrala prema presjeku za radijacioni zavat (n, γ) na 2200 m/s (Q_o=I_o/ δ_o) onog izotopa preko kojeg se određuje koncentracija elementa u uzorku. Znak * se odnosi na monitor fluksa kojeg ozračavamo zajedno sa uzorkom.

Rezonantni integral nekog izotopa se definiše za idealni epitermalni spektar:

$$I_{o} = \int_{E_{cd}}^{\infty} \delta(E) \frac{1}{E} dE \qquad (3)$$

gdje je δ (E) energetska funkcija presjeka za radijacioni zahvat (n, γ), a E_{cd} granična energija kadmijuma (= 0.55 eV). Ovako definisane i u idealnim uslovima određene vrijednosti rezonantnih integrala nalazimo u literaturi.

Uzimajući u obzir »nesavršenost« ($\alpha \neq 0$) epitermalnog fluksa u poziciji u kojoj ozračavamo uzorak, stvarni rezonantni integral biće zavisan od α :

$$I_{o} (\alpha) = \int_{E_{cd}}^{\infty} \delta(E) \frac{(1eV)^{a}}{E^{1+a}} dE$$
(4)

Uvođenjem pojma efektivne rezonantne neregije $(\overline{E_r})$ /9,10/ omogućena je konverzija $I_o \rightarrow I_o$ (α) i time upotreba literaturnih I_o vrijednosti u realnim uslovima:

$$I_{o} (\alpha) = \left[\frac{I_{o} - 0.429 \, \delta_{o}}{\frac{1}{E_{r}}^{a}} + \frac{0.429 \, \delta_{o}}{(2\alpha + 1) \, E_{cd}} \right] (\text{leV})^{a}$$
(5)

 $\overline{\mathbf{E}_{\mathbf{r}}}$ je karakteristika izotopa i može se naći u ref. /11/, a eventualno i eksperimentalno odrediti /12, 13/.

Iz prethodno izloženog je jasno da se zanemarivanjem nesavršenosti epitermalnog fluksa unosi greška u rezultat NAA. Ako sa ρ' označimo koncentraciju dobijenu ne uzimajući α u obzir, a sa ρ koncentraciju sa urađenom korekcijom [relacija (5)], onda zanemarivanjem α pravimo grešku:

$$s_{\rho} = \left| \frac{\rho - \rho'}{\rho} \right|, 100 = \left| 1 - \frac{f + Q_o^*}{f + Q_o^*(\alpha)} \cdot \frac{f + Q_o(\alpha)}{f + Q_o} \right| \cdot 100 \quad (6)$$

Vidimo da greška zavisi od uslova ozračivanja (f, α) i od karakteristika samog izotopa $(Q_o, \overline{E_r})$. Takođe je bitno da li se uzorak ozračava sa ili bez kadmijumskog filtera. U slučaju ozračivanja sa kadmijumskim filterom (epikadmijumska neutronska aktivaciona analiza, ENAA), filter uklanja termalne neutrone (čije su energije ispod 0,55 eV), pa je f=0. Detaljna analiza greške za 126 izotopa koji su od interesa u NAA i za ekstremne uslove ozračivanja, data je u ref. /14/.

Za date uslove ozračivanja, greška uglavnom raste sa porastom faktora Q_0 , pa je izotope moguće podijeliti u tri grupe sa arbitrarnim granicama:

— niske vrijednosti Q_o ($Q_o < 1$)

— srędnje vrijednosti Q_o $(1 < Q_o < 10)$

— visoke vrijednosti Q. (Q.>10).

U Tabeli 1. dati su primjeri greške za izotope ⁵¹Cr, ¹⁶⁰Gd i ⁹⁶Ru, kao predstavnike pomenute tri grupe. Razmatrano je 6 kanala za ozračivanje reaktora THETIS sa veoma velikim rasponom vrijednosti f i $|\alpha|$.

Treba napomenuti da se ENAA ne praktikuje za izotope sa niskim Q_o - vrijednostima (zbog slabe epitermalne aktivacije), a rijetko se koristi i za izotope sa srednjim Q_o .

Tabela 2. daje prikaz maksimalnih grešaka koje se mogu očekivati za pojedine izotope u već pomenutom širokom opsegu f i α vrijednosti (f=15÷156, $\alpha = -0.028 \div 0.110$, reaktor THETIS). Ovim se dobija predstava o tome koliko su NAA i ENAA pojedinog izotopa osjetljive na nesavršenost epitermalnog spektra.

ZAKLJUČAK

Praktični značaj ovog rada, čiji su najvažniji rezultati sažeti u Tabeli 2, je u tome što istraživač koji primjenjuje monokomparatorsku metodu neutronske aktivacione analize može, za svaki izotop posebno, procijeniti uticaj nesavršenosti epitermalnog spektra na rezultat analize. Iz tabele se vidi da za određeni broj izotopa korekcija nije neophodna. Ako je, s obzirom na grešku koju dozvoljava cilj analize, potrebna korekcija, ovo podrazumijeva eksperimentalno određivanje parametra α i odgovarajući proračun I_o (α) i ρ .

. .

Projekat iz kojeg je proistekao ovaj rad finansiran je od strane SIZ-a za naučne djelatnosti SR Crne Gore. Autori izražavaju zahvalnost na pomoći.

THETI Kanal	S/6/	17	3	5	6	7	8	
	×	-0,028	0,015	0,052	0,084	0,096	0,110	
Qo	Er(eV)	15	25	42	73	130	158	Tip analize
0,53	7530	2,17	o,91 ne	2,23 praktik	2,30 uje se	1,58	1,51	NAA ENAA
9,45	480	4,39 12,63	1,37 6,14	2,60 19,64	2,15 29,62	1,31 33,01	1,15 36,73	NAA ENAA
26,50	776	10.12 14.55	3,88 7,01	9,06 22,23	9,10 33,33	6,36 37,05	5,90 41,13	NAA ENAA
	THETI Kanal Qo 0,53 9,45 26,50	THETIS Kanal /6/ QO Er(eV) 0,53 7530 9,45 480 26,50 776	THETIS 17 Kanal 0' -0.028 Qo I 15 Qo I 15 Qo I 15 Qo I 17 9,45 480 4,39 12,63 12,63 26,50 776 10.12 14.55 10.12	THETIS 17 3 Kanal 01 17 3 01 -0.028 0.015 02 Ep(eV) 15 25 0.53 7530 2,17 0,91 0.53 7530 2,17 0,91 9,45 480 4,39 1,37 12,63 6,14 26,50 776 10.12 3,88	THETIS 17 3 5 Kanal 17 3 5 OX -0.028 0.015 0.052 Qo I 15 25 42 Qo Er(eV) 2,17 0.91 2,23 0.53 7530 2,17 0.91 2,23 9.45 480 4,39 1.37 2,60 12.63 6,14 19,64 26,50 776 10.12 3,88 9,06	THETIS 17 3 5 6 Kanal 0 -0,028 0,015 0,052 0,084 Qo I 15 25 42 73 0,53 7530 2,17 0,91 2,23 2,30 0,53 7530 2,17 0,91 2,23 2,30 9,45 480 4,39 1,37 2,60 2,15 12,63 6,14 19,64 29,62 26,50 776 10.12 3,88 9,06 9,10 14.55 7,01 22,23 33,33	THETIS 17 3 5 6 7 Kanal 0/ -0.028 0.015 0.052 0.084 0.096 Qo f 15 25 42 73 130 Qo Fr(eV) 2.17 0.91 2.23 2.30 1.58 0.53 7530 2.17 0.91 2.23 2.30 1.58 9.45 480 4.39 1.37 2.60 2.15 1.31 12.63 6.14 19.64 29.62 33.01 26.50 776 10.12 3.88 9.06 9.10 6.36	THETIS 17 3 5 6 7 8 Kanal 0 -0.028 0.015 0.052 0.084 0.096 0.110 Q0 E 1 15 25 42 73 130 158 Q0 E (eV) 2,17 0.91 2,23 2,30 1,58 1,51 0.53 7530 2,17 0.91 2,23 2,30 1,58 1,51 9.45 480 4,39 1,37 2,60 2,15 1,31 1,15 12,63 6,14 19,64 29,62 33,01 36,73 26,50 776 10.12 3,88 9,06 9,10 6.36 5,90 14.55 7,01 22,23 33,33 37,05 41,13

Tabela 1. Greška analize (s) u slučaju zanemarivanja nesavršenosti ρ epitermalnog fluksa u nekoliko kanala za ozračivanje reaktora THETIS (Gent, Belgija), za izotope ⁵¹Cr, ¹⁶⁰Gd i ⁹⁶Ru. Fluks monitor:

197
Au (Q,* = 15,7; E,* = 5,65 eV).

Tabela 2. Maksimalne greške koje se mogu očekivati u rezultatu NAA i ENAA' usljed zanemarivanja nesavršenosti epitermalnog fluksa, za 126 analitički interesantnih izotopa. Razmatrani su ekstremni uslovi ozračivanja, navedeni u Tabeli 1; fluks monitor: ¹⁹⁷Au; * = ENAA se ne praktikuje.

			S	(°/o)
			p, max	
zotop	Q	E _r (eV)	NAA	ENAA
18O	5,44	1140000	9,0	68
¹⁹ F	2,35	44700	1,4	50
²³ Na	0,59	3380	2.3	
²⁶ Mg	0,68	257000	2.2	•
27A1	0,74	11800	2.1	
³⁰ Si	6,64	2280	4.4	45
31P	0.49	38500	2.3	*
37C1	0.69	13700	2.2	•
40Ar	0,62	31000	2.2	•
41K	0,97	2960	2.0	•
⁴⁸ Ca	0.45	1330000	2.4	*
45Sc	0.45	5130	2.4	•
50Ti	0.68	63200	2.2	
51V	0.55	7230	2.3	
⁵¹ Cr	0.53	468	2.3	•
⁵⁵ Mn	1.05	7530	2.0	20

7

			S	(%)
	~		p, max	-
izotop	Qo	E _r (eV)	NAA	ENAA
⁵⁸ Fe	1.30	637	1.9	25
59Co	2.02	136	1.6	22
64Ni	0.64	14200	22	*
63C11	1.14	1040	19	25
65C11	1.06	766	20	23
647.n	1 96	013	1.5	32
687.n	3,82	500	0.91	35
69Ca	0,02	201	2.2	21
71Ga	6 64	154	3,3	20
74Ge	1 96	2540	1,9	20
76 C.e	1,30	5040	1,3	38
75 4 6	14.0	000	5,8	38
7450	10.0	100	4,0	27
7650	10,9	29,4	1,5	16
7850	0,50	577	2,3	-
8050	10,7	501	5,0	37
82G o	3,28	2940	1,4	43
⁰² 5e	0,90	8540	2,0	*
"Br	11,5	69,3	2,7	23
⁶¹ Br	19,3	152	5,7	30
⁶⁰ Br	11,3	1250	6,5	43
°'Br	23,3	364	8,0	36
°*Sr	12,2	469	5,5	37
⁸⁰ Sr	4,6	795	1,9	38
⁸⁹ Y	0,78	4300	2,1	20
⁹⁴ Zr	5,88	6260	4,7	49
%Zr	282	338	29	36
⁹³ Nb	7,39	574	3,5	37
⁹⁸ Mo	93,1	151	12	30
¹⁰⁰ Mo	19,3	312	7.0	35
%Ru	26,5	776	10	41
¹⁰² Ru	3,63	181	0.87	37
¹⁰⁴ Ru	12,8	495	5.8	37
¹⁰³ Rh	7.59	1,45	2.1	15
106Pd	18,8	282	6.7	34
¹⁰⁸ Pd	28,8	39,7	5.2	19
11cPd	13,7	950	7.1	42
107Ag	2,66	38.5	1.6	15
¹⁰⁹ Ag	16,4	6.08	0.19	0.79
108Cd	9,54	243	3.6	32
110Cd	2,19	125	1.6	22
114Cd	68,5	207	15	33
116Cd	17,7	726	80	40
¹¹³ In	26,9	6.41	1.5	14
115In	16,3	1.56	1.8	15
112Sn	49.1	107	11	27
116Sn	91,1	128	17	29
122Sn	4.48	213	0.01	20
¹²⁴ Sn	59.7	29 4	80	17
¹²¹ Sb	32,4	13.1	3.6	20
¹²³ Sb	30.1	28.2	4.8	16
¹²² Te	23,4	93.3	5.5	26
¹²⁴ Te	0.88	1910	0,0	20
126Te	7 60	1210	2,1	
~~	1,09	285	3.0	33

			S	(%)
		<u></u>	p, max	2
izotop	ଢ଼	E _r (eV)	NAA	ENAA
¹²⁸ Te	7,72	738	4.0	39
130Te	1.59	2950	1.6	35
127I	24.8	57,6	5,0	22
133Cs	18.4	29,6	2.8	16
130Ba	17.7	69,9	4.1	24
134Ba	11.7	115	3.4	27
136Ba	7,93	545	3.8	37
138Ba	0.80	15700	2.1	•
139La	1.24	76.0	2.0	14
140Ce	0,82	7200	2,1	•
142Ce	1,19	1540	1,9	27
141Pr	1.53	296	1.8	24
146Nd	2,29	874	1,3	34
148Nd	5,60	236	1.7	31
150Nd	11.7	173	4,0	30
152Sm	14.4	8,53	0.46	4.3
154Sm	3,81	142	0.84	26
153Eu	5,67	5,80	1.44	0,03
158Gd	32,0	48,2	6,1	21
¹⁶⁰ Gd	9,45	480	4,4	37
159Tb	17,9	18,1	2,0	12
164Dy	0.13	224	2.7	•
165Ho	10.9	12.3	0.47	7.8
166Er	5.01	59.3	0.63	20
170Er	7,59	129	2.1	27
169Tm	16,4	4.80	0.18	1.75
168Yb	12,2	0.61	3.0	27
174Yb	0,40	602	2.4	•
176Yb	1,68	412	1.7	27
175Lu	26,4	16,1	3.2	11
174Hf	0,78	29,6	2,3	•
177Hf	19,2	2,08	1,3	11
178Hf	23,2	8,01	1,5	3.7
179Hf	15,4	16,2	1,5	11
180Hf	2,52	115	1,5	23
¹⁸¹ Ta	33,3	10,4	3,3	6,5
182W	40,5	9,20	3,8	5,3
186W	13,7	20,5	1,6	13
185Re	15,4	3,4	0,74	5,6
18/Re	3,85	41,1	1,2	17
189Os	21,4	12,3	1,9	8,1
NOS	2,29	114	1,6	22
192Os	2,30	89,7	1,6	20
195Ir	12,2	2,21	1,5	11
Pt	0,47	27,6	2,4	•
190Pt	7,08	291	2,7	33
198Pt	17,0	106	4,6	27
196Hg	0,15	93,5	2,6	•
¹⁹⁸ Hg	35,9	39,3	6,5	19
²⁰² Hg	0,86	1960	2,1	•
²⁰³ Tl	3,77	276	0,70	30

Prikaz izotopa koji su od značaja u neutron. aktivizacionoj analizi 99

			S	(%)	
			p, max		
izotop	Q,	$\overline{E_r}$ (eV)	NĂA	ENAA	
206рЪ	2.84	10500	1,5	47	
208Pb	4.08	14500C	5,0	60	
209Bi	5.62	1210	3,0	41	
232Th	11.4	54,4	2,4	21	
238U	103	16,9	10	11	

S. Jovanović i P. Vukotić

LITERATURA

- /1/ A. M. Weinberg, E. P. Wigner, The Physical Theory of Neutron Chain Reactors, The Univ. of Chicago Press, Chicago 1958.
- /2/ T. B. Ryves, E. B. Paul, J. Nucl. Energy 22 (1968) 759.
- /3/ T. B. Ryves, Metrologia 5 (1969) 119.
- /4/ F. De Corte, L. Moens, K. Sordo-El Hammami, A. Simonits, J. Hoste, J. Radioanal. Chem. 52 (1979) 305.
- /5/ F. De Corte, K. Sordo-El. Hammami, L. Moens, A. Simonits, A. De Wispelaere, J. Hoste, J. Radioanal. Chem. 62 (1981) 209.
- /6/ F. De Corte, S. Jovanović, A. Simonits, L. Moens, J. Hoste, Kernenergie, Kerntechnik, Suppl. to Vol. 44 (1984) 641.
- /7/ F. De Corte, The k_o-standardization Method, a Move to the Optimization of Neutron Activation Analysis, habilitaciona teza, Univ. Gent, Belgija 1987.
- /8/ A. Simonits, L. Moens, F. De Corte, A. De Wispelaere, A. Elek, J. Hoste, J. Radioanal, Chem. 60 (1980) 461.
- /9/ L. Moens, F. De Corte, A. Simonits, A. De Wispelaere, J. Hoste, J. Radioanal. Chem. 52 (1979) 379.
- /10/ S. Jovanović, F. De Corte, L. Moens, A. Simonits, J. Hoste, J. Radioanal. Nucl. Chem., Articles 82 (1984) 379.
- /11/ S. Jovanović, F. De. Corte, A. Simonits, L. Moens, P. Vukotić, J. Hoste, J. Radioanal. Nucl. Chem., Articles 113 (1987) 177.
- /12/ A. Simonits, S. Jovanović, F. De Corte, L. Moens, J. Hoste, J. Radioanal. Nucl. Chem., Articles 82 (1984) 169.
- /13/ S. Jovanović, F. De Corte, A. Simonits, J. Hoste, J. Radioanal. Nucl. Chem., Articles 92 (1985) 399.
- /14/ S. Jovanović, The Effective Resonance Energy as a New Parameter in (n, γ) Activation Analysis with Reactor Neutrons, doktorska teza, Univ. Gent, Belgija 1984.
- /15/ F. De Corte, L. Moens, S. Jovanović, A. Simonits, A. De Wispelaere, J. Radioanal. Nucl. Chem., Articles, 102 (1986) 37.

A SURVEY OF THE ISOTOPES WHICH ARE OF INTEREST IN NEUTRON ACTIVATION ANALYSIS, ACCORDING TO THE IMPACT OF THE EPITHERMAL NEUTRON FLUX NONIDEALITY ON THE ANALYTICAL RESULT

S. JOVANOVIĆ and P. VUKOTIĆ

Summary

The epithermal neutron flux in a thermal nuclear reactor is found to be well described by a E^{1+a} representation (E = neutron energy). Parameter α , characterising the irradiation site, is a measure of the deviation from the idealised 1/E law. The impact of this deviation on the analytical result when applying a single comparator (e.g. k_o) method of NAA is discussed. Three groups of the isotopes can be distinguished in this respect: with low Q_o (= I_o/δ_o) factor, e.g. $Q_o < 1$, being practically not affected by the epithermal nonideality; with medium Q_o , e.g. $1 < Q_o < 10$ for which care should be taken only when applying epicadmium analysis; with high Q_o , e.g. $Q_o > 10$, which are the most sensitive to this impact. A user oriented table is meant for the analyst's easy orientation when judging about this problem.