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Abstract
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mension five and those of dimension six with small Betti numbers
from the point of view of their rational cohomology structure. We
also prove that a geometrically formal rationally elliptic six-dimen-
sional manifold, whose second Betti number is two, is rational co-
homology S? x CP?. An infinite family of six-dimensional simply
connected biquotients whose second Betti number is three, different
from Totaro’s biquotients, is considered and it is proved that none of
the biquotients from this family is geometrically formal.
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GEOMETRIJSKA FORMALNOST RACIONALNO
ELIPTICKIH MNOGOSTRUKOSTI MALIH
DIMENZIJA

ITzvod

U radu su, sa stanovista racionalne kohomoloske strukture, klasi-
fikovane racionalno elipticke mnogostrukosti u dimenziji pet i one u di-
menziji Sest sa malim Betijevim brojevima. Pokazano je da je ge-
ometrijski fomalna racionalno elipticka Sestodimenziona mnogostrukost
¢iji je drugi Betijev broj dva, racionalno kohomologna proizvodu S? x
CP?. Razmatrana je i beskonac¢na familija Sestodimenzionih prosto
povezanih bi-koli¢nika ¢iji je drugi Betijev broj tri, a koji nijesu To-
tarovi bi-koli¢nici, i pokazano je da nijedan od ovih bi-koli¢nika nije
geometrijski formalna mnogostrukost.

1. INTRODUCTION

Geometric formality of a compact smooth manifold M is the notion
introduced in [8] and it is concerned with an existence of a Riemannian
metric on M such that the related harmonic forms form an algebra.
Such a metric is called formal. Geometrically formal manifolds are
formal in the sense of rational homotopy theory. Moreover, the original
proof of the rational formality of symmetric spaces, which are one of
the first non-trivial examples of such spaces, implicitly used the fact
that the invariant metric on symmetric spaces is formal. But, it turns
out that the notion of geometric formality is much more restrictive. It
is proved in [8| that in dimension less or equal four, a geometrically
formal manifold must have real cohomology of a symmetric space.
Besides that, in [10] are provided a lot examples of homogeneous spaces
which are rationally formal and which from cohomological reasons are
not geometrically formal.

Therefore, the investigation of geometric formality in general, as
well as for some family of spaces or particular examples remains un-
solved, interesting and important problem for many applications in
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pure mathematics and mathematical physics. In the recent time as
well in the focus of mathematical interest is the connection between ge-
ometric formality property and different differential geometrical prop-
erties of manifolds such as sectional and scalar curvature [9], [1].

As noted, this problem should be studied in the category of ratio-
nally formal spaces. Besides that, the Hodge theory gives that for ge-
ometrically formal spaces the algebra structure of the harmonic forms
is the same as its real cohomology algebra structure. It suggests that
one can hardly expect the positive answer to the question of geometric
formality for the manifolds with many cohomology relations. In this
paper, from these reasons, we study rationally elliptic manifolds in
the next two unsolved dimensions five and six. For these manifolds
it is known to comprise simply connected homogeneous spaces and
biquotients in corresponding dimensions.

2. GENERAL BACKGROUND

2.1. Rational homotopy theory

We refer to [6] for a comprehensive general reference for rational ho-
motopy theory.

Let (A,d4) be a connected (H°(A,d4) = k) and simply con-
nected (H'(A,d4) = 0) commutative N-graded differential algebra
over a field k of characteristic zero. Let us consider the free N-graded
commutative differential algebra (AV,d) for a N-graded vector space
V over k. It is said that (AV,d) is a minimal model for (A, d4) if
d(V) C A2V and there exists a morphism

[ AV, d) = (A da)

which induces an isomorphism in cohomology.

Let X be a simply connected topological space of finite type. The
minimal model p(X) for X is defined to be to be the minimal model
for the algebra Apr,(X) of piece-wise linear forms on X. One says that
two simply connected manifolds have the same rational homotopy type
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if and only if there is a third space to which they both map by maps in-
ducing isomorphism in rational cohomology. Then the following facts
are well known. The minimal model p(X) of a simply connected topo-
logical space X of finite type is unique up to isomorphism (which is
well defined up to homotopy), it classifies the rational homotopy type
of X and, furthermore, it contains complete information on the ranks
of the homotopy groups of X. More precisely,

rkm (X) = dim(u(X)/p" (X) - p " (X))r, 7> 2, (2.1)

where by uT(X) we denote the elements in u(X) of positive degree
and - is the usual product in pu(X). One of the equivalent definition
of formality is that X is formal in the sense of Sullivan if its minimal
model coincides with the minimal model of its cohomology algebra
(H*(X,Q),d =0) (up to isomorphism).

The procedure for minimal model construction is given, see [6],
through the proof of the theorem which states the existence (and also
the uniqueness up to isomorphism) of the minimal model for any such
algebra. We briefly describe this procedure here, since we are going to
apply it explicitly.

2.1.1 Procedure for minimal model construction. In the pro-
cedure for the construction of the minimal model for a simply con-
nected commutative differential N-graded algebra (A, d) one starts by
choosing pa and mo : (u2,0) — (A, d) such that méz) g — H?(A, d)
is an isomorphism. In the inductive step, supposing that p; and
my : (pg,d) — (A,d) are constructed we extend it to ppi1 and
M+t : (Hks1,d) — (A, d) with

k41 = pg @ 'C(uia Uj) ) (22)

where L(u;,vj) denotes the vector space spanned by the elements u;
and v; corresponding to y; and z; respectively. The latter are given
by

H Y (4) = sm™ & L(y) (2.3)

and
Ker m,gk”) = L(zj) . (2.4)
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Then we have that my(z;) = dw; for some w; € A and the homomor-
phism my 1 is defined by myy1(u;) = vi, me41(vj) = w; and du; =0,
dvj = ZzZj.

Remark 1. In general, for a simply connected topological space X
we have that A = Apr(X) and, obviously, by (2.2), we see that
rk741(X) is the number of generators in the above procedure we
add to pr(X), in order to obtain py1(X) .

Remark 2. For some spaces with special cohomology one can easily
compute their minimal models. Namely, assume that the rational
cohomology algebra for X is given by

H*(X,@> gQ[:L’l,...,l,‘n]/(Pl,...,Pk) s

where the polynomials Py, ..., Py are without relations in Q[x1, . . ., 2]
meaning that (P, ..., Py) is a Borel ideal. Then in [2] it is proved that
such a space X is formal and its minimal model is given by

/U(X) :Q[.fl?l,...,l'n] ®/\(?Jl»7yk) )
dl’i :0, dyi :Pi .

Note that for a formal X, the algebra ;i(X)®g#k coincides with the
minimal model of the cohomology algebra (H*(X,k),d = 0) for any
field k of characteristic zero. The converse is also true. If there exists a
field k of characteristic zero for which p(X)®gqk is the minimal model
for the cohomology algebra (H*(X,k),d = 0), then X is formal. By
the result of [12], all simply connected manifolds of dimension < 7 are
formal in the sense of rational homotopy theory.

Remark 3. Obviously, (2.2) implies that for the purpose of calculating
the ranks of the homotopy groups of X we can use u(X) ®g R as
well. In the case of formal X it means that we can apply the above
procedure to H*(X,R).

2.1.2. Rationally elliptic spaces. Suppose that X is a simply
connected topological space with rational homology of finite type. It
is said that X is rationally elliptic if dim m,(X)®Q is finite. The ranks
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of the homotopy groups of a rationally elliptic space X of dimension
n satisfy [6]:

> 2krkmop(X) <n, > (2k+1)rkmy(X) <2n— 1. (2.5)
k k

Example 1. For the spaces whose cohomology is given by Remark 2
we see that (2.2) implies that they are rationally elliptic. Among the
examples of such spaces are compact homogeneous spaces of positive
Euler characteristic and biquotients of compact Lie groups.

2.2. Geometric formality

The notion of geometric formality is introduced in [8]. A smooth
manifold M is said to be geometrically formal if it admits Rieman-
nian metric for which the wedge product of any two harmonic forms is
again harmonic form. Recall [3] that a differential form w € Qpr(M)
is harmonic if Aw = 0, where A is the Laplace-de Rham operator
on Qpr(M). Using Hodge theory it is proved [3]| that any harmonic
form is closed and that no harmonic form is exact. Moreover any real
cohomology class for M contains unique, up to constant, harmonic
representative. It implies that manifolds which are rational homology
spheres are trivially geometrically formal, they have just one, up to
constant, harmonic form. The Hodge theory also implies that a geo-
metrically formal manifold is formal in the sense of rational homotopy
theory. The vice versa is not true, it turns out that the notion of ge-
ometric formality is much more restrictive then the rational formality
notion.

The first non-trivial and up to now the widest class of examples
of geometrically formal manifolds are compact symmetric spaces [4].
They are as well one of the first examples of rationally formal spaces
and the proof of their formality is based on the fact that on symmetric
spaces harmonic forms related to an invariant metric form an algebra.

The non-involutive symmetries of higher order do not have any
more such properties. It is proved in [10] that the generalized sym-
metric spaces are formal, while for most of them it is proved that they
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are not geometrically formal. The examples of non-symmetric geomet-
rically formal homogeneous spaces that are not cohomology sphere are
provided in [11].

3. RATIONALLY ELLIPTIC MANIFOLDS OF DIMENSION
FIVE OR SIX

We consider rationally elliptic manifolds of dimension 5 and 6. In
dimension 5 we prove the following.

Proposition 1. Let M be a smooth, compact, simply connected five-
dimensional rationally elliptic manifold. Then M is rational cohomol-
ogy sphere S° or it is rational cohomology product of spheres S? x S3.

Proof. Since M is simply connected and rationally elliptic for its Betti
numbers it holds that by(M) = b1 (M) = 0 and 2by(M ) +4rkma(M) <
5 and 3rkwg(M) + 5rkws(M) < 9. Therefore we must have

by <2 and rkmg(M) < 3. (2.1)

Now using described procedure for minimal model construction
we obtain that ps = H?(M) and mg?’) : H3(ua,R) — H3(M,R),
m$?  Hi(up,R) — H4(M,R). Since H3(j3,R) = H4(M,R) = 0
it follows that Immgs) = 0 and Ker m§4) = 3. It implies that
3 = pa ® £(uji, vj), where u; correspond to the basis y; in H3(M,R),
while v; correspond to the basis z; in ,u%. The homomorphism ms is
an extension of my defined by ms(u;) = y; and mg(v;) = 0. It in
particular gives that

bg(bg + 1)

rk w3 (M) = b3(M) + dim pj = by (M) + 5

(2.2)
Together with (2.1) it implies by(M) =0 or ba(M) = 1.

For bo(M) = 0 it immediately follows that M is rational cohomol-
ogy sphere S°.

For by(M) = 1, using Poincaré duality we deduce that M is ratio-
nal cohomology product of spheres S% x §3.
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Any six-dimensional simply-connected rationally elliptic space M
satisfies by (M) = bs(M) = 0 and

2bo(M)+4rkmy(M)+6rkmg(M) <6, 3rkms(M)+5rknms(M) < 11.
This implies that
by <3, rtkmy(M)<1, rkms(M) < 3. (2.3)
When the second Betti number is one or zero we prove:

Proposition 2. Let M be a smooth, compact, simply-connected and
rationally elliptic siz-manifold whose second Betti number is less or
equal one. Then M is rational cohomology sphere S8, the product of
spheres S? x S* or S3 x 83, the complex projective space CP3.

Proof. If by = 0 then by = 0 and Hurewitz theorem gives that rk w3 =
bs. Since, by Poincaré duality, b3(M) has to be even we might have
bs = 0 or bg = 2. For b3(M) = 0 all Betti numbers b;(M) = 0,
1 < ¢ < 4 are trivial what implies that M is rational cohomology
sphere S%. For b3 = 2 the Poincaré duality implies that M is rational
cohomology product of spheres S x 3.

For by = 1 we claim that b3 = 0. First uz = £(x) ® £(u;,v),
where  is the generator for H2(M,R), then u; correspond to the
basis for H3(M) and v corresponds to the generator z for Kermj.
Also the differential d in u3 is given by d(u;) = 0 and d(v) = z. It
means that rkm3(M) > b3(M) implying b3(M) < 2. For bs(M) =
2, since b5(M) = 0, we would have that Kermg5) = H%(us,d) =
L(zuy, xug) is two-dimensional what would imply that rk 4 (M) > 2.
This contradicts with (2.3).

Thus, let by = 1 and € H?(M,R). If 22 = 0, we have in H*(M)
a generator of degree 4 and thus in this case M is rational cohomology
52 x % If 22 # 0, then M is rational cohomology complex projective

space CP3.
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4. GEOMETRIC FORMALITY AND RATIONAL
ELLIPTICITY IN DIMENSION SIX

We consider in this section geometrically formal six-dimensional
rationally elliptic manifolds whose second Betti number is 2 or 3. For
those whose second Betti number is 2 we obtain rational cohomology
description, while among those whose second Betti number is 3, we
study the class of homogeneous spaces and biquotients.

Theorem 1. Let M be a smooth, compact, simply connected rationally
elliptic siz-manifold such whose second Betti number is 2. If M is
geometrically formal then M is rational cohomology S* x CP?2.

Proof. Let x and y be the generators in H*(M) of degree 2. By (2.3)
we have that rkmy(M) = 0 what implies that there is no generator
of degree four in the cohomology ring H*(M,R). Since by(M) =
by(M) it further gives that there is exactly one relation in H*(M) of
degree 4. Therefore u3 = H?(M,R) ® £(u;,v), where u; correspond
to the basis y; for H3(M) while v correspond to the non-zero element
z from Ker mé4). We also have that mz(u;) = y;, ms(v) = 0 and the
differential d in pg is given by d(u;) = 0, d(v) = z. Thus Im m:(f) =
H*(M,R) and Ker mgf) = £(xu;,yu;), where x,y are the generators
for H?(M,R) which means that the dimension of Ker m:(f) is 2b3(M).
It gives that pgy = ps ® £(w;), where w; correspond to the generous for
Ker m§5) and consequently rkmy (M) = 2b3(M ). Therefore we obtain
b3(M) = 0. The elements z3, 2%y, 292, 9> are in HS(M,R) which is
one-dimensional. Two relations among these elements come form the
relation in H*(M,R) and, thus, me must have exactly one new relation
in HS(M,R).

The following cases are possible.

a) There exist generator of degree 2 whose square is zero. In this
case Poincaré duality implies that M has cohomology of S? x CP?.

b) There is no generator of degree 2 whose square is zero. In this
case we prove that one can always find generators z and 3 for H2(M)
such that

2 +e? =0 and 72 =0, for e ==+1. (2.1)
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It would thehn imply that z2y = 0 and z3 # 0.

In the cohomology ring H*(M,R) there are exactly two indepen-
dent relations, one in degree four and the other one in degree six.
The relation in degree four is of the form az? + bxy + cy? = 0, where
a? 4+ b% + c® # 0. We differentiate the two cases.

1) If @ = ¢ = 0 this relation writes as xy = 0. It implies that
2%y = xy? = 0 and 22, y? are going to be Poincaré duals to x and y
respectively what gives 23,53 # 0. Thus,the relation of degree six is
of the form y* = az?, a # 0. Put 1 = Yar and consider the new
generators for H*(M,R) given by & = 21 + y and § = 1 — y. Then
72— 2 =0 and 33 = 23 — 3> = 0, satisfying (2.1).

2) If a®> + ¢ # 0 let us, without loss of generality assume that
a # 0. The relation of degree four writes as 22 + bxy + cy®> = 0 for
some new b and ¢ what gives (z + 2y)? + (c — %)y2 = 0. Note that
c— % # (0 since otherwise we would have the generator 1 = x + %y
whose square is zero. Thus, x1 and y satisfy in degree four the relation
2% + by? = 0 for some new b # 0. If we further take y; = /|bly we
obtain the generators x1 and y; for H*(M,R) related in degree four
by 2% + y? = 0. Without loss of generality assume that 22 + y? = 0.
It implies 23 = —21y} and y§ = —23y;. If 23 = 0 or 3§ = 0 we take T
and g to be 1 and x9, and (2.1) will be satisfied. If :L':;’, y% # 0 we will
show that for some a € R the cube of element x + ay has to be zero.
Namely, taking into account relations between x and y we obtain

(z+ay)® = (1 — 3a®)2® + (a® — 3a)y°.

Further in this case the relation in degree six writes as % = az® what
gives
(x4 ay)® = (1 — 3a® + a(a® — 3a))2>.

Therefore (z + ay) = 0 if and only if 1 — 3a% + a(a® — 3a) = 0. The
later one equation, being cube equation in a, always has at least one
solution. Take & = ax —y and y = x + ay. Then

Py =@+ D) +y?) =0, P =0.
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We continue the proof. If we assume M to be geometrically formal,
the relations (2.1) between the cohomology classes will be satisfied for
the harmonic forms w; and wo representing x and y. It would imply
that the form wy has non trivial kernel meaning that there locally
exists non-trivial vector field v such that i,wy = 0. It would also
follow that w? is a volume form on M. But then from (2.1) we deduce
that i,(w?) = 0 as well implying that i,(w;)w; = 0. Therefore

iy(W3) = 3iy(wi)w? =0

what is in the contradiction with the fact that wq is a volume form on
M. Thus such M can not be geometrically formal.

Remark 4. Note that a manifold M which satisfies conditions of The-
orem 1 and which is not rational cohomology S? x CP? can not be
geometrically formal for cohomological reasons. It implies that such
M may not have the cohomology of a symmetric space.

4.1. Homogeneous spaces and biquotients.

It is known [6] that homogeneous spaces and biquotinets of a com-
pact Lie group are rationally elliptic. Together with Theorem 1 it
implies:

Corollary 1. Simply connected siz-dimensional homogeneous space
or biquotient whose second Betti number is two and which is not co-
homology S? x CP? can not geometrically formal.

Examples of spaces which satisfy the conditions in Corollary 1 are,
among the others, flag manifold SU(3)/T? and Eschenburg’s biquo-
tients [5]. Therefore these spaces are not geometrically formal. We
want to note that for the flag manifold and some of Eschenburg’s
biquotients it is proved in [10] and [11] that they are not geometri-
cally formal. It is done treating separately each of these examples
by studying their cohomology structure. By Corollary 1 we provide
general proof for all of them.
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Lemma 1. Let M be a simply connected rationally elliptic six-dimensional
manifold . If bo(M) = 3 then M has the rational homotopy groups of
S% x 52 x §2.

Proof. The assumption that bo(M) = 3 and that M is rationally el-
liptic implies that rkme(M) = 3, and rkmor(M) = 0 for k > 2.
We further obtain that Im mgg) = 0 and since by(M) = 3 we must
have dim Ker mgg > 3, what implies that rkm3 > 3. It then follows
from (2.2) that rkm3(M) = 3 and rkmog41 (M) = 0 for £ > 2. Thus
M has the rational homotopy groups of S? x S? x S2.

By the recent results obtained in [13] and [7] it follows that a
biquotinent M which has the same rational homotopy groups as 52 x
S? x §? is diffeomorphic to the biquotient of SU(2) x SU(2) x SU(2)
by some free linear action of S' x S' x S'. On the other hand the
result of [7] says that any free linear action of 7% on (S%)3, up to
reparametrization, is given by

(u, v, w) * ((p1,p2), (@1, 92), (r1,72)) =

ba

((up17 U’al UaQwa3p2)7 (U(IL ublv wbSQ2)7 (’LU?"l, uC1 UC2 wC3 T?))7

where a1, bs, c3 = +1 and the 2 x 2 minors around the diagonal of the
following matrix

ay a2 as
by by b3
Cci C2 C3

as well as the matrix itself have determinant £1. It was shown in [13]
that the conditions on the entries of this matrix are necessary and
sufficient conditions for this action to be free. In [7] all such matrices
are classified and there are obtained, up to equivalences, three infinite
families of matrices and 12 sporadic examples. The infinite families of
matrices are:
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The action of 7% on (S%)? given by the second matrix produces To-
taro’s biquotients studied in [13] as an example of family of 6-manifolds
with nonnegative sectional curvature, but with infinitely many distinct
classes of rational cohomology rings. For them, it is proved in [11] not
to be geometrically formal for cohomological reasons.

We prove here that the family of biquotients given by the third
matrix is not geometrically formal for cohomological reasons.

Theorem 2. The biquotients (S3)3/T3 given by the action

(uvva w) * ((p17p2)7 (QL QZ)7 (7’1, TQ)) =

((up1, ups), (vqr, uPvge), (wry, uv2wry)),

are not geometrically formal.

Proof. Using the standard techniques [13] for computing cohomology
rings one deduce [7] that any biquotient M obtained by the given
action has the following integral cohomology structure :

H*(M) = Z[z1, x,x3)/ <a:% = 0,23 = —biw129, 75 = —C1T123 — Coaw3)

Let us assume that M admits a formal metric. Denote by wi,ws and
w3 the corresponding harmonic representatives of the real cohomology
generators x1,rs and x3. Then these harmonic forms will satisfy the
relations which hold in H*(M,R) between x;, 21 and x3:

2 2 2
wi =0, wy=-bhwwy, wi3=—clwiws — Cawaws. (2.2)

It implies that (%wl +ws)? = 0 and we further consider the harmonic

form @9 = wy + %wl which satisfies (IJ% = 0. Thus w§ = (%102 —
¢1)wiws — cowows and we consider the form

- 1(51 Jor + —a

W3 =w3 — =(—co — c1)wy + =w9,

3 37 5l ajur t gws

whose square satisfies

(I)g = —f(fCQ — Cl)wla)z. (2.3)
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Therefore the form wi@e@3 is a volume form on M and such is Jjg’ =
—%2(%102 — ¢1)wiwows as well.

The kernel foliations for the forms w; and w9 are each of dimension
at least four, so they have a common vector field v (more precisely at
least two) meaning that i,(w;) = i,(02) = 0. Together with (2.3) it
implies

iy (0F) = 2iy(@3)3 =0
and, thus,

iy (03) = 3iy(@3)@3 = 0,
what is in contradiction with the fact that d)g is a volume form on
M.
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