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A b s t r a c t

Recent analysis [1] of the pressurized radially nonuniform, curvilinearly

anisotropic hollow disk, cylinder, and sphere is extended to encompass the

displacement and two types of mixed boundary conditions. The pressurized

solid disk, cylinder, and sphere are then considered, with a small pith around

their centers, made of a material with elastic properties different from the

surrounding material, to eliminate the stress and displacement singularities

at the center. The results are applied to a thin cylindrically orthotropic

disk made of hardwood red oak. The discontinuity in hoop stress across the

pith-interface is discussed.

ELASTIČNOST NEHOMOGENOG, KRIVOLINIJSKI

ANIZOTROPNOG DISKA, CILINDRA I KUGLE

I z v o d

U radu je proširena ranija autorova analiza [1] nehomogenog, krivolin-

ijski anizotropnog šupljeg diska, cilindra i kugle pod uticajem ravnom-

jernog pritiska po unutrašnjoj i spoljnoj površini, uključivanjem u analizu

∗Prof. dr V. A. Lubarda, The Montenegrin Academy of Sciences and Arts, 81000

Podgorica, Montenegro, and University of California, San Diego, CA 92093-0411, USA.

ЦРНОГОРСКА АКАДЕМИЈА НАУКА И УМЈЕТНОСТИ
ГЛАСНИК ОДЈЕЉЕЊА ПРИРОДНИХ НАУКА, 20, 2014.

ЧЕРНОГОРСКАЯ АКАДЕМИЯ НАУК И ИСКУССТВ
ГЛАСНИК ОТДЕЛЕНИЯ ЕСТЕСТВЕННЫХ НАУК, 20, 2014

THE MONTENEGRIN ACADEMY OF SCIENCES AND ARTS
GLASNIK OF THE SECTION OF NATURAL SCIENCES, 20, 2014.

UDK 539.319

Vlado A. Lubarda*

ELASTIC RESPONSE OF CURVILINEARLY 
ANISOTROPIC NONUNIFORM SOLID OR HOLLOW 

DISK, CYLINDER AND SPHERE



108 Vlado A. Lubarda
2 V.A. Lubarda

graničnih uslova po pomjeranjima i mješovitih graničnih uslova. Dobijeni

rezultati su primijenjeni na naponsku i deformacionu analizu punog diska,

cilindra i kugle, sa centralnim jezgrom (inkluzijom) od materijala različitih

elastičnih svojstava od okolnog materijala, neophodnog da bi se izbjegla

singularnost napona i pomjeranja u centru. Diskutovan je diskontinuitet

transverzalne komponente normalnog napona, zavisno od diskontinuiteta

modula elastičnosti, sa primjenom na model hrastovog drveta. Rezultati su

takodje od značaja za mehaničku analizu kortikalnih kostiju.

1. INTRODUCTION

In a recent paper we presented a unified analysis of elastic response

of a pressurized cylindrically anisotropic (locally orthotropic) hollow disk

(plane stress) or hollow cylinder (plane strain), and a spherically anisotropic

(locally transversely isotropic) hollow sphere, made of a material which is

nonuniform in the radial direction according to a power law relationship.

Such analysis is of importance for the evaluation of stress amplification or

shielding caused by curvilinear anisotropy or radial nonuniformity of the

material. The results can be used for material tailoring and optimization of

machine components and structural elements made from functionally graded

materials. The effects of curvilinear anisotropy and radial nonuniformity on

the stress response in structural mechanics have been studied extensively

in the past. The early work includes the contributions [2-6]. The topic re-

gained attention in the sequence of publications [7-24]. In the present paper

we extend the analysis from [1], which was restricted to stress boundary

conditions, to encompass the hollow disks, cylinders and spheres under dis-

placement and two types of mixed boundary conditions. Further extension

of the analysis to a generalized plane stress and generalized plane strain is

also possible. The solid disk, cylinder, and sphere are then considered, with

a small pith around their centers having different elastic properties from the

surrounding material, to eliminate the stress and displacement singularities

at the center. The results are applied to a pressurized thin disk made of

hardwood red oak. The discontinuity in hoop stress across the pith-interface

is discussed.
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2. CURVILINEAR ANISOTROPY AND RADIAL

NONUNIFORMITY

Consider a cylindrically anisotropic disk (plane stress) or cylinder (plane

strain), made of the material which is locally orthotropic, with the principal

axes of orthotropy in the (r, θ, z) directions, and a spherically anisotropic

sphere which is at any point transversely isotropic around the radial di-

rection. The corresponding stress-strain relations for infinitesimally small

elastic deformations are

ϵr =
1

Eθ
(ασr − jβσθ) , ϵθ =

1

Eθ
(γσθ − βσr) , (2.1)

where j = 1 for a disk and cylinder, and j = 2 for a sphere. The material

parameters (α, β, γ) were introduced in [1] as

α =




k,

k(1− νrzνzr),

k,

β =




νθr, for a disk,

νθr + νθzνzr, for a cylinder,

νθr, for a sphere,

(2.2)

and

γ =




1, for a disk,

1− νzθνθz, for a cylinder,

1− νϕθ, for a sphere.

(2.3)

The coefficient k = Eθ/Er specifies the degree of in-plane anisotropy of

elastic moduli. The coefficient of lateral contraction νθr stands for the coeffi-

cient of lateral contraction in the r-direction due to stress in the θ-direction,

and likewise for other coefficients of lateral contraction. In the case of cylin-

drical anisotropy, the coefficients of lateral contraction are related by the

symmetry relations Erνθr = Eθνrθ, Eθνzθ = Ezνθz, and Ezνrz = Erνzr.

By the positive-definiteness of the strain energy function, the elastic

moduli are positive and the coefficients of lateral contraction are constrained

by

0 < νrθνθr < 1 , 0 < νθzνzθ < 1 , 0 < νzrνrz < 1 ,

νrθνθr + νθzνzθ + νzrνrz + νrzνzθνθr + νzrνθzνrθ < 1 .
(2.4)
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The constraint 0 < νrθνθr < 1 sets the bounds on νθr and νrθ to be |νθr| <
k1/2 and |νrθ| < k−1/2, both coefficients being simultaneously either positive

or negative. For spherical anisotropy, the conditions (2.4) reduce to

−1 < νϕθ < 1 , νrθνθr < 1 , νϕθ + 2νrθνθr < 1 . (2.5)

In addition to the described anisotropy properties, it will be assumed

that a considered disk, cylinder or sphere are made of a material which is

nonuniform in the radial direction, such that its elastic moduli vary in the

radial direction according to the power-law relations

Er = Eb
r

(r
b

)m
, Eθ = Eb

θ

(r
b

)m
, Ez = Eb

z

(r
b

)m
. (2.6)

The exponent m is a real number, reflecting the degree of nonuniformity of

the material, and (Eb
r , E

b
θ, E

b
z) are the elastic moduli at the outer boundary

r = b. The same m is used for all three muduli, so that the ratios of the

moduli in different directions are constant, e.g., Eθ/Er = Eb
θ/E

b
r = k =

const. All coefficients of lateral contraction are assumed to be independent

of r, which considerably simplifies the mathematical aspects of the analysis

and is in accord with the assumption commonly used in the mechanics of

functionally graded materials [12,18,23].

3. GOVERNING DIFFERENTIAL EQUATION

In the absence of body force, the equilibrium equation is

dσr
dr

+ j
σr − σθ

r
= 0 . (3.1)

Denoting by u = u(r) the radial displacement, the strain-displacement re-

lations are ϵr = du/dr and ϵθ = u/r. The corresponding Saint-Venant

compatibility condition is

dϵθ
dr

+
ϵθ − ϵr

r
= 0 . (3.2)

By substituting the stress-strain relations (2.1) into (3.2), and by using the

equilibrium equation (3.1), the Beltrami–Michell compatibility condition is

found to be
dσθ
dr

+
1

r
[(1−m)σθ − φσr] = 0 , (3.3)
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where

φ =
1

γ
[α+ β(1− j)]−m

β

γ
. (3.4)

The parameter φ accounts for the combined effects of the state of anisotropy,

represented by the parameters (α, β, γ) and the degree of nonuniformity,

represented by the parameter m [1].

Upon differentiating (3.1) and by using (3.3), there follows

r2
d2σr
dr2

+ (2 + j −m)r
dσr
dr

+ j(1−m− φ)σr = 0 . (3.5)

The solution of (3.5) is

σr = Ar−n1 +Br−n2 , (3.6)

where A and B are the integration constants, and

n1,2 =
1

2
(1 + j −m∓ s) , s =

[
(1 + j −m)2 − 4j(1− φ−m)

]1/2
. (3.7)

Having established the expression (3.6) for the radial stress, the circum-

ferential stress follows from (3.1) as

σθ =

(
1− n1

j

)
Ar−n1 +

(
1− n2

j

)
Br−n2 . (3.8)

The substitution of (3.6) and (3.8) into the second of (2.1) yields an expres-

sion for the circumferential strain ϵθ, and thus the displacement expression

as u = rϵθ. The result is

u =
b

Eb
θ

(
b

r

)m−1 (
η1Ar

−n1 + η2Br−n2
)
. (3.9)

where

η1 = γ

(
1− n1

j

)
− β , η2 = γ

(
1− n2

j

)
− β . (3.10)

For uniform isotropic material, the parameters η1 and η2 become

η1 = γ

(
1 +

1

j

)
+ η2 , η2 = −1

j
(1 + ν) , (3.11)

Elastic Response of Curvilinearly anisotropic nonuniform solid…
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where γ = 1 for a disk, γ = 1−ν2 for a cylinder, and γ = 1−ν for a sphere.

In the case of a thin disk under plane stress conditions, the resulting

strain ϵz is in general not constant (as in the case of uniform isotropic disk),

but r-dependent, which means that the obtained plane stress solution is

only approximate. The degree of approximation, and the extension of the

analysis to generalized plane stress and generalized plane strain conditions

are examined in detail in [1].

4. PRESCRIBED PRESSURE AT BOTH BOUNDARIES

When the uniform pressures p and q are applied at the inner and outer

boundary, σr(a) = −p and σr(b) = −q, the integration constants in (3.6)

become

A =
pcn2 − q

1− cs
bn1 , B =

pcn1 − q

1− c−s
bn2 , (4.1)

where c = a/b. Consequently, the radial and hoop stresses are

σr(r) =
pcn2 − q

1− cs

(
b

r

)n1

+
pcn1 − q

1− c−s

(
b

r

)n2

, (4.2)

σθ(r) =

(
1− n1

j

)
pcn2 − q

1− cs

(
b

r

)n1

+

(
1− n2

j

)
pcn1 − q

1− c−s

(
b

r

)n2

. (4.3)

The corresponding radial displacement is

u(r) =
b

Eb
θ

[
η1

pcn2 − q

1− cs

(
b

r

)m+n1−1

+ η2
pcn1 − q

1− c−s

(
b

r

)m+n2−1
]
. (4.4)

4.1. Internal Pressure Only

By substituting q = 0 in the general expressions (4.2)–(4.4), the stresses

are found to be

σr(r) =

[
cs

1− cs

(a
r

)n1

+
c−s

1− c−s

(a
r

)n2
]
p , (4.5)

σθ(r) =

[(
1− n1

j

)
cs

1− cs

(a
r

)n1

+

(
1− n2

j

)
c−s

1− c−s

(a
r

)n2
]
p . (4.6)
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Figure 1: The variation of the radial stress for (a) k = 0.75 and (b) k = 1.25,

in the case of internal pressure alone (q = 0). The aspect ratio of the disk

is c = a/b = 0.5 and the parameters β = 0.35 and γ = 1.
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Figure 2: The variation of the circumferential stress for (a) k = 0.75 and

(b) k = 1.25, in the case of internal pressure alone (q = 0). The aspect ratio

of the disk is c = a/b = 0.5 and the parameters β = 0.35 and γ = 1.

Elastic Response of Curvilinearly anisotropic nonuniform solid…
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Figure 3: The variation of the radial displacement for (a) k = 0.75 and (b)

k = 1.25, in the case of internal pressure alone (q = 0). The aspect ratio of

the disk is c = a/b = 0.5 and the parameters β = 0.35 and γ = 1.

The radial displacement is

u(r) =

[
η1

cs

1− cs

(a
r

)m+n1−1
+ η2

c−s

1− c−s

(a
r

)m+n2−1
]
pa

Ea
θ

. (4.7)

While the radial dependence of stress is governed by the exponents n1 and

n2, the radial dependence of the displacement response is governed by the

exponents m + n1 − 1 and m + n2 − 1. Figures 1–3 show the plots of the

normalized stress components and the displacement versus the normalized

radius in a hollow disk with the aspect ratio c = a/b = 0.5. The state

of elastic anisotropy is such that β = 0.35 and γ = 1. Parts (a) of the

figures are for α = k = 0.75 and parts (b) for α = k = 1.25. The three

curves in each plot correspond to three selected values of the nonuniformity

parameter m. As seen from the figures, the hoop stress σθ(a) decreases with

the increasing value of m, and is in each case greater for k = 1.25 than for

k = 0.75. On the other hand, the radial displacement increases with the

increasing value of m, and u(a) in each case is greater for k = 1.25 than for

k = 0.75. A more general parametric study could be performed by varying

the value of s around s = 2, for each value of m around m = 0. Such study

may be of interest for the material and structural optimization analysis [8].
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Figure 4: The variation of the radial stress for (a) k = 0.75 and (b) k = 1.25,

in the case of external pressure alone (p = 0).

4.2. External Pressure Only

If p = 0 is substituted in (4.2)–(4.4), the stresses become

σr(r) =

[
1

cs − 1

(
b

r

)n1

+
1

c−s − 1

(
b

r

)n2
]
q , (4.8)

σθ(r) =

[(
1− n1

j

)
1

cs − 1

(
b

r

)n1

+

(
1− n2

j

)
1

c−s − 1

(
b

r

)n2
]
q , (4.9)

while the radial displacement is

u(r) =

[
η1

1

cs − 1

(
b

r

)m+n1−1

+ η2
1

c−s − 1

(
b

r

)m+n2−1
]
qb

Eb
θ

. (4.10)

Figures 4–6 show the stress and displacement variations for the same ma-

terial parameters as used to construct Figures 1–3. The magnitude of the

hoop stress σθ(a) decreases with the increasing value of m, and in each case

is smaller for k = 1.25 than for k = 0.75.
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Figure 5: The variation of the circumferential stress for (a) k = 0.75 and

(b) k = 1.25, in the case of external pressure alone (p = 0).
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The normalized circumferential stress and the (inward) displacement at

r = a are

σθ(a)

q
=

s

j

c−n1

cs − 1
, −u(a)

a
=

γs/j

1− cs
c−(n1+m) q

Eb
θ

. (4.11)

For a very small hole (c ≪ 1), they become

σθ(a)

q
≈ −s

j
c−n1 , −u(a)

a
=

γs

j
c−(n1+m) q

Eb
θ

. (4.12)

Consequently, if n1 < 0 the stress concentration factor diminishes to zero

(stress shielding); if n1 > 0, the stress concentration factor increases to

infinity (stress amplification). If n1 = 0, the stress concentration factor

approaches the value s/j. The material interpenetration, in the sense of

[25], does not occur if n1 +m < 0.

5. PRESCRIBED DISPLACEMENT AT BOTH BOUNDARIES

If the displacements are prescribed at both boundaries, such that u(a) =

ua and u(b) = ub, the integration constants in (3.9) are found to be

A =
1

η1

1

as − bs

[
an2Ea

θ (ua/a)− bn2Eb
θ(ub/b)

]
,

B = − 1

η2

asbs

as − bs

[
an1Ea

θ (ua/a)− bn1Eb
θ(ub/b)

]
,

(5.1)

where Ea
θ = (a/b)mEb

θ. Figures 7–9 show the results for ua = ub = 10−3b

and for the same material properties as used to construct other figures in

this paper. For example, in case (m = −0.5, k = 0.75), the radial stress

σr(a) is tensile, while in case (m = −0.5, k = 1.25) it is compressive. In

all cases shown in Fig. 7 the radial stress σr(b) is tensile, as expected for

the prescribed positive (outward) displacements ua = ub = 10−3b. Figure

9 shows that the minimum radial displacement in the disk is smaller for

k = 1.25 than for k = 0.75. Clearly, one can optimize the material properties

in order to achieve a desired stiffness or compliance in the response of the

disk.
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Figure 7: The variation of the radial stress for (a) k = 0.75 and (b) k = 1.25

under prescribed displacements ua = ub = 10−3b.
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Figure 9: The variation of the radial displacement for (a) k = 0.75 and (b)

k = 1.25 under prescribed displacements ua = ub = 10−3b.

6. MIXED BOUNDARY CONDITIONS

6.1. Prescribed Displacement at the Inner and Pressure at the Outer

Boundary

For the mixed-type boundary conditions when displacement is applied

at the inner and pressure at the outer boundary, u(a) = ua and σr(b) = −q,

the integration constants are

A =
1

η1as − η2bs
[an2Ea

θ (ua/a) + η2b
n2q] ,

B =− asbs

η1as − η2bs
[an1Ea

θ (ua/a) + η1b
n1q] .

(6.1)

Figures 10–12 show the results for ua = 0 and q = 10−3Eb
θ. Higher pressure

at the inner boundary σr(a) is required to keep u(a) = 0 in case k = 0.75

than k = 1.25 (Fig. 10), while larger inward displacement u(b) is produced

in case k = 1.25 than k = 0.75 (Fig. 12). The magnitude of the hoop stress

σθ(a) is greater, while the magnitude of the hoop stress σθ(b) is smaller

for k = 0.75 than for k = 1.25 (Fig. 11). In each case, the magnitude of

the hoop stress σθ(a) is greater for m = 0.5 than for m = −0.5, while the

magnitude of σθ(b) is smaller for m = 0.5 that for m = −0.5.
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Figure 12: The variation of the radial displacement for (a) k = 0.75 and (b)

k = 1.25 under prescribed displacement ua = 0 and pressure q = 10−3Eb
θ.

6.2. Prescribed Pressure at the Inner and Displacement at the Outer

Boundary

The second type of the mixed boundary conditions corresponds to pre-

scribed pressure at the inner and displacement at the outer boundary, such

that σr(a) = −p and u(b) = ub. In this case, the integration constants are

found to be

A =
1

η1bs − η2as

[
η2a

n2p+ bn2Eb
θ(ub/b)

]
,

B = − asbs

η1bs − η2as

[
η1a

n1p+ bn1Eb
θ(ub/b)

]
.

(6.2)

Figures 13–15 show the results for ub = 0 and p = 10−3Eb
θ. Higher pressure

at the outer boundary σr(b) is required to keep u(b) = 0 in case k = 0.75

than k = 1.25 (Fig. 13), while larger outward displacement u(a) is produced

in case k = 1.25 than k = 0.75 (Fig. 15). The hoop stress σθ(a) is greater

for k = 1.25 than k = 0.75 (Fig. 14).

7. SOLID DISK, CYLINDER, AND SPHERE

If there is no central whole (a = 0), the power-law relations (2.6) hold

for r > ao, where ao is the radius of a small circle (pith) around the axis of
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Figure 13: The variation of the radial stress for (a) k = 0.75 and (b) k = 1.25

under prescribed pressure p = 10−3Eθ and displacement ub = 0.
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Figure 14: The variation of the circumferential stress for (a) k = 0.75 and

(b) k = 1.25 under prescribed pressure p = 10−3Eθ and displacement ub = 0.
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Figure 15: The variation of the radial displacement for (a) k = 0.75 and (b)

k = 1.25 under prescribed pressure p = 10−3Eθ and displacement ub = 0.

the disk or cylinder, or a small sphere around the center of a spherical body,

within which the assumption of the cylindrical or spherical anisotropy does

not apply. This radius is a fraction of the maximum possible outer radius,

which is specified by the age of wood, or by technological characteristics

of the manufacturing production of the cylinder or sphere.† Otherwise, the

anisotropy would be singular at the center (concentration of anisotropy), the

elastic modulus in every direction at the center being simultaneously equal

to Er and Eθ, which is physically impossible, and which gives rise to stress

singularity at the center [5]. For certain combination of material parameters,

the unphysical material overlapping and the displacement singularity could

also occur at the center [25-28]. To circumvent this, a small region r ≤ ao
around the center is replaced by a transversely isotropic core in the case of

a disk or cylinder, or by isotropic core (pith) in the case of a sphere [19,29].

†If a cylinder is produced by deep drawing from a transversely isotropic sheet of metal,

there is a minimum possible inner radius of the cylinder specified by the drawing tool and

the ductility of the sheet. The outer radius b depends on the thickness of the sheet.
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Introducing the parameters

α0 =




1,

1− ν0rzν
0
zr,

1,

β0 =




ν0, for a disk,

ν0 + ν0rzν
0
zr, for a cylinder,

ν0, for a sphere,

(7.1)

and

γ0 =




1, for a disk,

1− ν0rzν
0
zr, for a cylinder,

1− ν0, for a sphere,

(7.2)

it readily follows that, within the core, σr = σθ = −p0, and

u(r) = −η0p0
E0

r , (r ≤ a0) . (7.3)

The modulus of elasticity and the Poisson coefficient within a cylindrical

core in the plane of isotropy of a disk or cylinder, or within a spherical core

in the case of a pressurized solid sphere, are denoted by E0 and ν0. The

parameter η0 is defined by

η0 =




1− ν0, for a disk,

1− ν0 − 2ν0rzν
0
zr, for a cylinder,

1− 2ν0, for a sphere.

(7.4)

By imposing the continuity of radial displacement at the interface between

the core and the outer material, i.e., by equating the displacement expres-

sions from (4.4) and (7.3) at r = a0, it follows that

p0 =

η1
c−n1
0

1− cs0
+ η2

c−n2
0

1− c−s
0

η0
Ea0

θ

E0
+ η1

cs0
1− cs0

+ η2
c−s
0

1− c−s
0

q . (7.5)

The applied pressure at the boundary r = b is denoted by q, and c0 = a0/b

is the ratio of the radii of the inner core and the outer boundary. The
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Figure 16: The variation of: (a) radial stress, (b) circumferential stress,

and (c) radial displacement in a pressurized thin red oak disk with a pith of

radius a0 = 0.1b. The three curves in each case correspond to three different

values of the elastic modulus E0, with k = 0.532.
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modulus of elasticity Eθ(a0) in the material just outside the core is denoted

by Ea0
θ .

Although, in general, there is no physical requirement on the continuity

of E0 with either Er or Eθ across the radius r = a0, three appealing partic-

ular cases can be considered by assuming that E0 is equal to either Eθ(a0),

Er(a0), or their arithmetic mean. This yields

Ea0
θ

E0
=




1, if E0 = Ea0
θ ,

k, if E0 = Ea0
r ,

2

1 + k
, if E0 = [Eθ(a0) + Er(a0)]/2.

(7.6)

Other relationships could hold, dictated by experimental observations for

particular materials.

Figure 16 shows the plots of the normalized stresses and the displacement

versus the normalized radius of a disk made of red oak (hardwood), for which

Ez = 9.8 GPa, Er = 0.154Ez, Eθ = 0.082Ez (thus k = 0.532), νzr = 0.35,

νrz = 0.064, νθr = 0.292, νrθ = 0.56, νzθ = 0.448, and νθz = 0.033 [30]. If a

disk is assumed to be spatially uniform (m = 0), this data gives α = φ =

0.532, β = 0.292, n1 = 0.2706, n2 = 1.7294, η1 = 0.4374, and η2 = −1.0214.

The radius of the pith is taken to be a0 = 0.1b, and its inplane Poisson ratio

is assumed to be the arithmetic mean of the inplane Poisson’s ratios of the

wood outside of the pith, i.e., ν0 = (νrθ+νθr)/2 = 0.426. The three curves in

each plot correspond to three specified values of E0, according to (7.6). The

strongest discontinuity in the hoop stress across the interface r = a0 occurs

in case Eθ/E0 = k, and the weakest in case Eθ/E0 = 2/(1 + k) (Fig. 16b).

This is so because k = 0.532, and the discontinuity in the elastic moduli

is E0/Eθ = 1.8797 in the former, and E0/Eθ = 0.766 in the latter case.

This means that a disk is stiffer in the former case, so that the magnitude

of radial stress is greater and the magnitude of radial displacement smaller

than in the latter case (dotted curves in Figures 16a and c).

8. CONCLUSION

We have extended in this paper the analysis from [1], applicable to stress

boundary conditions, and derived the elastic response of anisotropic and
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nonuniform hollow disks, cylinders and spheres under displacement and two

types of mixed boundary conditions. Two parameters introduced in [1] play

a prominent role in the analysis: the material nonuniformity parameter m,

and the parameter ϕ which accounts for the combined effects of the material

anisotropy and nonuniformity. The pressurized solid disk, cylinder, and

sphere are then considered, with a small pith around their centers, made of

the material with elastic properties different from those of the surrounding

material, which eliminates the stress and displacement singularities at the

center. The results are applied to hardwood red oak. The discontinuity

of the hoop stress across the pith-interface is discussed in terms of the

discontinuity of the material properties across the interface. The obtained

results may be of interest for the mechanics of wood and bone [31], and

other functionally graded materials.
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