ЦРНОГОРСКА АКАДЕМИЈА НАУКА И УМЈЕТНОСТИ ГЛАСНИК ОДЈЕЉЕЊА ПРИРОДНИХ НАУКА, 19, 2011.
 ЧЕРНОГОРСКАЯ АКАДЕМИЯ НАУК И ИСКУССТВ
 ГЛАСНИК ОТДЕЛЕНИЯ ЕСТЕСТВЕННЫХ НАУК, 19, 2011
 THE MONTENEGRIN ACADEMY OF SCIENCES AND ARTS
 GLASNIK OF THE SECTION OF NATURAL SCIENCES, 19, 2011.

UDK 512.643

Žana Kovijanić Vukićevič*

KÖNIG'S GRAPHS IN THE PROBLEM OF LINEAR INDEPENDENCE OF MATRICES

Abstract

This paper proves conjecture (see [1]) of linear independence for special type of $(0,1)$-matrices that appear in Brauer's representation of Temperley-Lieb Algebras, considering, instead of matrices, the appropriate graphs assigned to them.

KÖING-OVI GRAFOVI U PROBLEMU LINEARNE NEZAVISNOSTI MATRICA

Sažetak

U radu je dokazana pretpostavka ([1]) o linearnoj nezavisnosti jednog tipa $(0,1)$-matrica koje se pojavljuju u Brauerovoj reprezentaciji Temperley-Lieb algebri. (0,1)-matricama su pridruženi odgovarajući bipartitni grafovi, pa je pitanje linearne nezavisnosti matrica nadalje tretirano aparatom teorije grafova.

[^0]
1. INTRODUCTION

Let A_{2} be the matrix

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

and A_{2}^{T} its transpose. The matrix $a_{2}=A_{2} A_{2}^{T}$ is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

For each $n \in N$ and each $k \in\{0,1, \ldots, n-1\}$ let

$$
h_{k}^{n}=\mathbf{1}_{2^{n-k-1}} \otimes a_{2} \otimes \mathbf{1}_{2^{k-1}}
$$

where $\mathbf{1}_{n}$ is $n \times n$ identity matrix and \otimes is the Kronecker product of matrices. Matrices $\mathbf{1}_{2^{n}}, h_{0}^{n}, h_{1}^{n}, \cdots, h_{n-1}^{n}$ are elementary n-matrices . Denote by \mathcal{M}_{n} the set of all matrices that can be obtained as a finite product of some, not necessary distinct, elementary n-matrices. Let \sim be a binary relation over \mathcal{M}_{n} such that for each two matrices $A, B \in \mathcal{M}_{n}$:
$A \sim B$ iff there is a rational number α such that $A=\alpha B$
This paper proves conjecture (see [1]) of linear independence for matrices from $\mathcal{M}_{n / \sim}$. It will be done by listing them all, and by finding for each an entry with 1 where the others in front of it have 0 .

2. KÖNIG'S GRAPHS

In this section we introduce König's graphs, a well known graphtheoretic representation of matrices (see [2]). It will make it possible for us to prove the main theorem of linear independence considering, instead of matrices, the appropriate graphs assigned to them.

To each matrix \mathbf{A} assign a complete bipartite weight-graph $G(\mathbf{A})$ on 2 n vertices colored by black and white color. Black vertices are in one-to-one correspondence with the rows of matrix \mathbf{A} and they are labelled by $i_{\bullet}, i=\overline{1, n}$. White vertices correspond to the columns of matrix \mathbf{A} and they are labelled by $i_{0}, i=\overline{1, n}$. To each edge $\rho=\left(i_{\bullet}, j_{0}\right)$ assign (i, j)-entry of matrix \mathbf{A}. It is called a weight of edge ρ. Bipartite graph $\mathrm{G}(\mathrm{A})$ is a König's graph of matrix A.

Let G_{1} and G_{2} be some König's graphs. Composition of the graphs G_{1} and G_{2} is a 3-partite graph $G_{1} * G_{2}$ obtained from the G_{1} and G_{2} identifying each white vertex i_{\circ} of graph G_{1} with the black vertex i_{\bullet} of graph G_{2}. Vertices obtained by identification are gray.

Product of the König's graphs G_{1} and G_{2} is a complete bipartite weight-graph $G_{1} G_{2}$ obtained from $G_{1} * G_{2}$ deleting all of its edges and gray vertices and adding new edges between black and white vertices. The weight of edge $\left(i_{\bullet}, j_{\circ}\right)$ is the sum of weights of all paths length two between i_{\bullet} and j_{\circ} in $G_{1} * G_{2}$, while the weight of path is the product of weights of edges belonging to that path.

The next lemma provides the question whether the set $\mathcal{M}_{n / \sim}$ is linearly independent or not, to be considered using the König's graphs of elementary matrices and their products.

Theorem 1 ([2]) Let A and B be square matrices of the same type. Then

$$
G(A B)=G(A) G(B)
$$

In the sequel, matrices and their König's graphs will be identified and denoted by the same symbols. The useful property of König's graphs is that the edges with weight 0 may be removed. Further, if the all nonzero entries of matrix are 1 , as in the our case, the weights will be no emphasized in the figure of the graph.

König's graphs of matrices $a_{2}, h_{1}^{3}, h_{2}^{3}$ and $h_{2}^{3} h_{1}^{3}$ are illustrated in the next figure.

a_{2}

h_{1}^{3}

h_{2}^{3}
$h_{2}^{3} h_{1}^{3}$

Each square matrix may be imagined as square properly filled by some numbers. Identity matrices and matrix a_{2} are centrally symmetric about the center of own imagined square and, furthermore for each matrix A holds: $\mathbf{1}_{2^{2}} \otimes A=A \oplus A$, where \oplus is sum of matrices defined as follows

$$
\left[\begin{array}{c|c}
\mathrm{A} & 0 \\
\hline 0 & \mathrm{~A}
\end{array}\right]
$$

The König's graph of the sum $A \oplus A$ is the union of two copies of graph A defined in standard way.

Hence, from the definition of Kronecker product \otimes we have that each matrix A from \mathcal{M}_{n} is centrally symmetric about the center of own imagined square. Equivalently, if $\rho=\left(i_{\bullet}, j_{\circ}\right)$ as an edge of the König's graph A and for each $i \in\left\{1,2, \ldots, 2^{n}\right\}, \mathcal{S}_{n}(i)=2^{n}-i+1$ is a number symmetric to i about the number $\frac{2^{n}+1}{2}$, then

$$
\mathcal{S}_{n}(\rho)=\left(\mathcal{S}_{n}(i)_{\bullet}, \mathcal{S}_{n}(j)_{\circ}\right)
$$

is an edge of the same graph. This property will be called the symmetry about the vertical axis.

3. NORMAL FORMS IN \mathcal{M}_{n}

Definition

The essential part of the proof of linear independence in $\mathcal{M}_{n / \sim}$ is the definition of unique normal form for its elements.

For $1 \leq j \leq i \leq n-1$ let the block $\mathbf{h}_{[\mathbf{i}, \mathbf{j}]}^{\mathrm{n}}$ be defined as

$$
h_{i}^{n} h_{i-1}^{n} \ldots h_{j+1}^{n} h_{j}^{n}
$$

We say that an product from \mathcal{M}_{n} is in normal form if it is either the identity matrix or it looks as follows:

$$
h_{\left[b_{1}, c_{1}\right]}^{n} h_{\left[b_{2}, c_{2}\right]}^{n} \ldots h_{\left[b_{m}, c_{m}\right]}^{n}
$$

where $b_{1}<b_{2}<\ldots<b_{m}$ and $c_{1}<c_{2}<\ldots<c_{m}$.

It is known ([1]) that:

$$
\begin{array}{r}
h_{i} h_{j}=h_{j} h_{i}, \quad \text { for }|i-j| \geq 2 \\
h_{i} h_{ \pm 1} h_{i}=h_{i} \\
h_{i} h_{i}=2 h_{i} \tag{3.3}
\end{array}
$$

Then, by [1], we have the next lemma:
Lemma 1 Every element of \mathcal{M}_{n}, i.e. every finite product of elementary n-matrices, is equivalent with a product in normal form.

Set of Kónig's graphs of normal forms will be denoted by \mathcal{I}_{n}. We are going to list them all and to find for each an edge that the others in front it in the list have no.

Linear order over the set \mathcal{T}_{n}.

We first introduce some terminology and notations for later use.
For each $n \in N, n \geq 2$, let $L^{n}=\left\{1,2, \ldots, 2^{n-1}\right\}$ and $R^{n}=\left\{2^{n-1}+\right.$ $\left.1,2^{n-1}+2, \ldots, 2^{n}\right\} . L^{n}$ is a left half of the set $\left\{1,2, \ldots, 2^{n}\right\}$ and R^{n} is the right half of that set.

The edge $\rho=\left(i_{\bullet}, j_{\circ}\right)$ is the long edge in some graph if its endpoints belong to distinct halves of the set $\left\{1,2, \ldots, 2^{n}\right\}$.

Denote by S_{0}^{n} the left sight of L^{n}, that is the set $\left\{1,2, \ldots, 2^{n-2}\right\}$, and by X_{0}^{n} the right half of L^{n}, that is the set $\left\{2^{n-2}+1,2^{n-2}+\right.$ $\left.2, \ldots, 2^{n-1}\right\}$. For each $1 \leq k \leq n-2$ let:

$$
X_{k}^{n}=\left\{\begin{array}{lll}
\text { left half of } X_{k-1}^{n} & , & \mathrm{k} \text { is odd } \\
\text { right half of } X_{k-1}^{n} & , \mathrm{k} \text { is even }
\end{array}\right.
$$

and

$$
S_{k}^{n}=\left\{\begin{array}{lll}
\text { right half of } X_{k-1}^{n} & , & \mathrm{k} \text { is odd } \\
l \text { left half of } X_{k-1}^{n} & , & \mathrm{k} \text { is even }
\end{array}\right.
$$

We can check easily that for any $k, 1 \leq k \leq n-2$, worth:

$$
\begin{equation*}
\left|S_{k}^{n}\right|=\left|X_{k}^{n}\right|=2^{n-k-2} \tag{3.4}
\end{equation*}
$$

$$
\begin{array}{r}
X_{1}^{n} \supset X_{2}^{n} \supset \ldots \supset X_{n-2}^{n} \\
S_{k}^{n} \cap X_{k}^{n}=\emptyset \\
S_{k}^{n} \subset X_{k-1}^{n}=\emptyset \tag{3.7}
\end{array}
$$

For each $0 \leq k \leq n-2$, by C_{k}^{n} and Y_{k}^{n} will be denoted subsets of the set $\left\{1,2, \ldots, 2^{n}\right\}$ centrally symmetric to S_{k}^{n} and X_{k}^{n} about the number $\frac{2^{n}+1}{2}$, that is

$$
C_{k}^{n}=\left\{\mathcal{S}_{n}(i) \mid i \in S_{k}^{n}\right\} \quad \text { and } \quad Y_{k}^{n}=\left\{\mathcal{S}_{n}(i) \mid i \in X_{k}^{n}\right\}
$$

Then, C_{0}^{n} is the right half of R^{n}, that is the set $\left\{3 \cdot 2^{n-2}+1,3 \cdot 2^{n-2}+\right.$ $\left.2, \ldots, 2^{n}-\right\}, Y_{0}^{n}$ the left half of R^{n}, that is the set $\left\{2^{n-1}+1,2^{n-1}+\right.$ $\left.2, \ldots, 3 \cdot 2^{n-2}\right\}$ and for each $1 \leq k \leq n-2$:

$$
\begin{aligned}
& Y_{k}^{n}=\left\{\begin{array}{lll}
\text { right half of } Y_{k-1}^{n} & , \mathrm{k} \text { is odd } \\
\text { left half of } Y_{k-1}^{n} & , \mathrm{k} \text { is even }
\end{array}\right. \\
& C_{k}^{n}=\left\{\begin{array}{cl}
\text { left half of } Y_{k-1}^{n}, & \mathrm{k} \text { is odd } \\
\text { right half of } Y_{k-1}^{n} & ,
\end{array} \mathrm{k} \text { is even. } . ~ \$\right.
\end{aligned}
$$

Then it is easy establish the following: for each $n \in N, R^{n}=X_{0}^{n+1}$ and for each $k \leq n-2$

$$
\begin{equation*}
C_{k}^{n}=S_{k+1}^{n+1} \tag{3.8}
\end{equation*}
$$

The whole construction has made so that the next is satisfied: for any n-elementary graph h_{i}^{n} there is no edge with white vertex belonging to the union $X_{n-i-1}^{n} \cup Y_{n-i-1}^{n}$.

Next, based on the Normal Form Lemma, we make a sequence of families $\mathcal{H}^{n} \subseteq \mathcal{T}_{n}, n \geq 2$ and define linear order $<$ over \mathcal{H}^{n} as follows.

Let $\mathcal{H}^{2}=\left\{\mathbf{1}_{2^{2}}, h_{1}^{2}\right\}$ and $\mathbf{1}_{2^{2}}<h_{1}^{2}$.
For $n \geq 2$ assume that $\mathcal{H}^{n} \subseteq \mathcal{T}_{n}$ is linearly ordered by relation $<$. We proceed to make $\mathcal{H}^{n+1} \subseteq \mathcal{T}_{n+1}$. It will be done in tree steps for $n+1=3$ and in four steps for $n+1 \geq 4$.
step one: Let

$$
H_{0}^{n+1}=\left\{h_{\left[b_{1}, c_{1}\right]}^{n+1} h_{\left[b_{2}, c_{2}\right]}^{n+1} \ldots h_{\left[b_{m}, c_{m}\right]}^{n+1} \mid b_{m} \leq n-1\right\}
$$

or equivalently,

$$
H_{0}^{n+1}=\left\{f \oplus f \mid f \in \mathcal{H}^{n}\right\}
$$

Linear order over the se H_{0}^{n+1} is defined by taking that

$$
f \oplus f<g \oplus g \text { iff } f<g
$$

for each $f, g \in \mathcal{H}^{n}$.
step two: Let

$$
H_{1}^{n+1}=\left\{f^{\prime} h_{[n, n]}^{n+1} \mid f^{\prime} \in H_{0}^{n+1}\right\}
$$

that is

$$
H_{1}^{n+1}=\left\{\left(f^{*} \oplus f^{*}\right) h_{[n, n]}^{n+1} \mid f^{*} \in \mathcal{H}^{n}\right\}
$$

Linear order over the union $H_{0}^{n+1} \cup H_{1}^{n+1}$ is defined as extension of the order $<$ over the family H_{0}^{n+1} and by taking that for each $f, g \in H_{1}^{n+1}$

$$
f<g \text { iff } f^{*}<g^{*}
$$

and for each $f \in H_{0}^{n+1}$ and each $g \in H_{1}^{n+1}$

$$
f<g
$$

step three: Let

$$
H_{2}^{n+1}=\left\{h_{\left[b_{1}, c_{1}\right]}^{n+1} \ldots h_{\left[b_{m-1}, c_{m-1}\right]}^{n+1} h_{\left[n, c_{m}\right]}^{n+1} \mid c_{m} \leq n-1, b_{m-1} \leq n-2\right\}
$$

and for each $f \in H_{0}^{n+1} \cup H_{1}^{n+1}$ and each $g \in H_{2}^{n+1}$

$$
f<g
$$

Further, for any

$$
f=h_{\left[b_{1}, c_{1}\right]}^{n+1} \ldots h_{\left[b_{m-1}, c_{m-1}\right]}^{n+1} h_{\left[n, c_{m}\right]}^{n+1} \in H_{2}^{n+1}
$$

let

$$
f^{\prime}=h_{\left[b_{1}, c_{1}\right]}^{n+1} \ldots h_{\left[b_{m-1}, c_{m-1}\right]}^{n+1} h_{\left[n-1, c_{m}\right]}^{n+1}
$$

be obtained from f omitting the elementary matrix h_{n}^{n+1}. Then $f^{\prime}=$ $f^{*} \oplus f^{*}$, for $f^{*}=h_{\left[b_{1}, c_{1}\right]}^{n} \ldots h_{\left[b_{m-1}, c_{m-1}\right]}^{n} h_{\left[n-1, c_{m}\right]}^{n}$ Using this notation, we say that for each $f, g \in H_{2}^{n+1}$

$$
f<g \text { iff } f^{*}<g^{*}
$$

step four: If $n+1 \geq 4$ for each $k \in N, 2 \leq k \leq n-1$, let

$$
\begin{aligned}
H_{3, k}^{n+1}=\left\{f^{\prime} h_{[n, k]}^{n+1} \mid \quad\right. & f^{\prime} \in H_{0}^{n+1} \text { and the last block in } \mathrm{f}^{\prime} \text { is } \\
& \left.h_{[n-1, c]}^{n+1}, c \leq k-1\right\}
\end{aligned}
$$

Finally, let

$$
H_{3}^{n+1}=\bigcup_{k=2}^{n-1} H_{3, k}^{n+1}
$$

and

$$
\mathcal{H}^{n+1}=H_{0}^{n+1} \cup H_{1}^{n+1} \cup H_{2}^{n+1} \cup H_{3}^{n+1}
$$

Let us extent linear order $<$ defined over the union $H_{0}^{n+1} \cup H_{1}^{n+1} \cup H_{2}^{n+1}$ in the first tree steps onto the \mathcal{H}^{n+1} as follows:
if $f \in H_{0}^{n+1} \cup H_{1}^{n+1} \cup H_{2}^{n+1}$ and $g \in H_{3}^{n+1}$ let $f<g$, for each $i \neq j$, if $f \in H_{3, i}^{n+1}$ and $g \in H_{3, j}^{n+1}$, let $f<g$ iff $i>j$
if $f=f^{\prime} h_{[n, i]}^{n+1} \in H_{3, i}^{n+1}$ and $g=g^{\prime} h_{[n, i]}^{n+1} \in H_{3, i}^{n+1}$ for some $i \in$ $\{2,3, \ldots, n-1\}$, let $f<g$ iff $f^{\prime}<g^{\prime}$.

By the construction and the definition of normal form, the reader will have no difficulty in showing that for each $n \in N$.

$$
\mathcal{H}^{n}=\mathcal{T}_{n}
$$

4. MAIN THEOREM

The edge $\rho=\left(i_{\bullet}, j_{\circ}\right)$ of some graph $f \in \mathcal{H}^{n}$ will be called the new edge in f if ρ is no edge of any graph $g \in \mathcal{H}^{n}$ less than f.

Theorem 2 Let $n \in N, n \geq 2$. In any König's graph $f \in \mathcal{H}^{n}$ there are new edges ρ and $\hat{\rho}$ such that if the last block of graph f is $h_{[n-1, s]}^{n}$ then ρ is the long edge and its white vertex j 。belongs to the set S_{n-1-s}^{n} and $\hat{\rho}$ is the long edge and its white vertex belongs to the set C_{n-1-s}^{n}.

Proof: The proof is by induction on $n \geq 2$. The basis of induction is true by definition of the family \mathcal{H}^{2} and linear order over it. Let us assume that $n \geq 2$ and the assertion is true for any graph of family \mathcal{H}^{n}. We prove that in any $f \in \mathcal{H}^{n+1}$ there are new edges $\rho=\left(i_{\bullet}, j_{0}\right)$ and $\hat{\rho}=\left(l_{\bullet}, m_{\circ}\right)$ such that if the last block of graph f is $h_{[n, s]}^{n+1}$ then ρ is the long edge and its white vertex j 。 belongs to the set S_{n-s}^{n+1} and $\hat{\rho}$ is the long edge and its white vertex m_{\circ} belongs to the set C_{n-s}^{n+1}. As the constructing procedure of the family \mathcal{H}^{n+1}, the proof is going to be developed in four steps:
step one: For $f \in H_{0}^{n+1}$ the claim is true by inductive hypothesis. step two: Let $f \in H_{1}^{n+1}$. Then,

$$
f=\left(f^{*} \oplus f^{*}\right) h_{[n, n]}^{n+1}
$$

for some $f^{*} \in \mathcal{H}_{0}^{n}$ and there is edge $\rho^{*}=\left(i_{\bullet}, j_{\circ}\right)$ so that ρ^{*} is the new edge in f^{*}. Because of the property of symmetry about the vertical axis, we may suppose that $j_{\circ} \in S_{0}^{n}=\left\{1,2, \ldots, 2^{n-2}\right\}$, or $j_{\circ} \in Y_{0}^{n}=\left\{2^{n-1}+1,2^{n-1}+1, \ldots, 3 \cdot 2^{n-2}\right\}$.

In the first case, when $j_{\circ} \in S_{0}^{n}=\left\{1,2, \ldots, 2^{n-2}\right\}$, let $k=3$. $2^{n-1}+j$. Then, $\left(j_{\bullet}, k_{\circ}\right)$ is an edge of $(n+1)$-elementary graph h_{n}^{n+1} and hence $\rho=\left(i_{\bullet}, k_{\circ}\right)$ is an edge of f.

Let us prove that ρ is new edge in f.
If $g \in H_{0}^{n+1}, \rho$ is no edge of g because of it is a long edge and that type of edges doesn't exist in any graph of family H_{0}^{n+1}.

Let $g=\left(g^{*} \oplus g^{*}\right) h_{[n, n]}^{n+1}$ and $g<f$. By the definition of products of König's graphs and recalling what are the edges of elementary graph $h_{n}^{n+1}, \rho=\left(i_{\bullet}, k_{\circ}\right)$ is an edge of graph g if and only if either $\left(i_{\bullet}, k_{\circ}\right)$ or $\left(i_{\bullet}, j_{\circ}\right)$ is in the graph $g^{*} \oplus g^{*}$. The first is no true because of it is a long edge. The second is impossible because of the choice of edge $\rho^{*}=\left(i_{\bullet}, j_{\circ}\right)$ as a new edge in f^{*}.

Therefore, $\rho=\left(i_{\bullet}, k_{\circ}\right)$ is a new long edge whose white vertex k_{\circ} belongs to the set C_{0}^{n+1}. Then, $\mathcal{S}_{n+1}(\rho)$ is a new long edge whose white vertex belongs to the set S_{0}^{n+1}.

In the second case, when $j_{0} \in Y_{0}^{n}$, let $j^{\prime}=j+2^{n}$ and $i^{\prime}=i+2^{n}$. Then, $\rho^{\prime}=\left(i_{\bullet}^{\prime}, j_{\circ}^{\prime}\right)$ is the new edge in $f^{*} \oplus f^{*}$. (It is the edge in the second copy of graph $f^{*} \in \mathcal{H}^{n}$ in the sum $\left.f^{*} \oplus f^{*}\right)$. Now, let $k=j^{\prime}-3 \cdot 2^{n-1}$. Then, $\left(j_{\bullet}^{\prime}, k_{\circ}\right)$ is an edge of elementary graph h_{n}^{n+1} and hence $\rho=\left(i_{\bullet}^{\prime}, k_{\circ}\right)$ is an edge of f. As in the previous case, it can be prove that ρ is a long new edge with the white vertex k from the set S_{0}^{n+1}. $\hat{\rho}=\mathcal{S}_{n+1}(\rho)$ is a long new edge with the white vertex from the set C_{0}^{n+1}.
step three: Let $f \in H_{2}^{n+1}$. Then f has a normal form

$$
h_{\left[b_{1}, c_{1}\right]}^{n+1} \ldots h_{\left[b_{m-1}, c_{m-1}\right]}^{n+1} h_{[n, s]}^{n+1}
$$

for some $s \leq n-1$ and $b_{m-1} \leq n-2$. By inequality (3.1), f is the product of König's graph h_{n}^{n+1} and the sum $f^{*} \oplus f^{*}$, where

$$
f^{*}=h_{\left[b_{1}, c_{1}\right]}^{n} \ldots h_{\left[b_{m-1}, c_{m-1}\right]}^{n} h_{[n-1, s]}^{n} .
$$

Let $\rho^{*}=\left(i_{\bullet}, j_{0}\right)$ be a new long edge in graph $f^{*} \in \mathcal{H}^{n}$ such that $i_{\bullet} \in L^{n}$ and $j_{\circ} \in C_{n-1-s}^{n}$. It exists by inductive hypothesis. Then, for $k=3 \cdot 2^{n-1}+i, \rho=\left(k_{\bullet}, j_{\circ}\right)$ is an edge of the graph $f=h_{n}^{n+1}\left(f^{*} \oplus f^{*}\right)$. ρ is a long edge and its white vertex j_{\circ} belongs to the set C_{n-1-s}^{n} that is, using inequalitu (3.8) the same set as S_{n-s}^{n+1}.

It remains to prove that ρ is a new in f. Obviously, ρ is no edge of any graph element of H_{0}^{n+1}. Because of the fact that j_{\circ} belongs to the set C_{n-1-s}^{n} subset of R^{n}, ρ is no edge of any graph element of H_{1}^{n+1}.

To show that ρ is no edge of any graph $g \in H_{2}^{n+1}$, assume contrary. Then, since g is product of graph h_{n}^{n+1} and the sum $g^{*} \oplus g^{*}$, either $\left(k_{\bullet}, j_{\circ}\right)$ or $\left(i_{\bullet}, j_{\circ}\right)$ are edges in g^{*}. However, the both cases are impossible. The proof of this assertion is the same as in the previous step, so we omit it.
step four: We can prove the following lemma.

Auxiliary Lemma. For any $n \geq 2$ and $k \in\{0,1, \ldots, n-2\}$ there is an increasing function $\alpha_{k}: X_{k}^{n} \rightarrow C_{k+1}^{n+1}$ such that $\left(i_{\bullet}, \alpha_{k}(i)_{\circ}\right)$ is edge in the graph $h_{[n, k+1]}^{n+1}$.
Proof: For any fixed $n \geq 2$ we proceed by induction on k. The basis of induction is $k=0$. Recall that

$$
X_{0}^{n}=\left\{1,2, \ldots, 2^{n-2}\right\}
$$

For each $i \in X_{0}^{n}$ let $m_{i}=3 \cdot 2^{n-1}+i$ and $\alpha_{0}(i)=m_{i}-3 \cdot 2^{n-2}$. Then

$$
\alpha_{0}(i)=3 \cdot 2^{n-2}+i
$$

is an element of the set

$$
C_{1}^{n+1}=\left\{2^{n-1}+i \mid i=1,2, \ldots, 2^{n-2}\right\}
$$

and $\left(i_{\bullet}, m_{i \circ}\right)$ and $\left(m_{i_{\bullet}}, \alpha_{0}(i)_{\circ}\right)$ are edges of the graphs h_{n}^{n+1} and h_{n-1}^{n+1}, respectively. So, $\left(i_{\bullet}, \alpha_{0}(i)_{\circ}\right)$ is an edge of $h_{[n, n-1]}^{n+1}$ and the function α_{0} is an increasing function from X_{0}^{n} to C_{1}^{n+1}.

Assume that the claim is true for $k-1 \geq 0$. We recognize the two cases: the odd and the even k.

If k is odd number, X_{k}^{n} is left half of the set X_{k-1}^{n} and hence $\left\{\alpha_{k-1}(i) \mid i \in X_{k}^{n}\right\}$ is left half of the set C_{k}^{n+1} satisfying condition

$$
\left|C_{k}^{n+1}\right|=\left|Y_{k}^{n+1}\right|=2^{n-k-1} .
$$

For each $i \in X_{k}^{n}$ let

$$
\alpha_{k}(i)=\alpha_{k-1}(i)+3 \cdot 2^{n-k-2} .
$$

Since, C_{k}^{n+1} is the left and Y_{k}^{n+1} the right half of the set Y_{k-1}^{n+1},

$$
\left\{\alpha_{k}(i) \mid i \in X_{k}^{n}\right\}
$$

is the right half of the set Y_{k}^{n+1}, that is the set C_{k+1}^{n+1}.
It just remains to verify the even case of k, which is quite similar with the above.

Let k be an even number. Then, X_{k}^{n} is right half of the set X_{k-1}^{n} and the set $\left\{\alpha_{k-1}(i) \mid i \in X_{k}^{n}\right\}$ is right half of the set C_{k}^{n+1}. For each $i \in X_{k}^{n}$ let

$$
\alpha_{k}(i)=\alpha_{k-1}(i)-3 \cdot 2^{n-k-2}
$$

Then, $\left\{\alpha_{k}(i) \mid i \in X_{k}^{n}\right\}$ is the left half of the Y_{k}^{n+1} that is the set C_{k+1}^{n+1}.

Now, let's go back to the main theorem, step four. Assume that $2 \leq k \leq n-1$. We are going to prove that in any $f \in H_{[3, k]}^{n+1}$ there is a new long edge $\hat{\rho}$ whose white vertex belongs to the set C_{n-k}^{n+1}. Then, $\rho=\mathcal{S}_{n+1}(\hat{\rho})$ will be a new long edge whose white vertex belongs to the set S_{n-k}^{n+1}.

Let $f \in H_{[3, k]}^{n+1}$. Then $f=\left(f^{*} \oplus f^{*}\right) h_{[n, k]}^{n+1}$ for some

$$
f^{*}=h_{\left[b_{1}, c_{1}\right]}^{n} h_{\left[b_{2}, c_{2}\right]}^{n} \ldots h_{[n-1, s]}^{n}, \quad s \leq k-1
$$

Let $\rho^{*}=\left(i_{\bullet}, j_{\circ}\right)$ be a new long edge in f^{*} satisfying condition $j_{\circ} \in$ S_{n-s-1}^{n}. Because of the "length" of edge ρ^{*}, vertex i_{\bullet} is an element of the set R^{n}. Using the inequality $S_{n-s-1}^{n} \subset X_{n-s-2}^{n}$ and inequality $X_{n-s-2}^{n} \subset X_{n-k-1}^{n}$, for each $s \leq k-1$, we obtain that $j_{\circ} \in X_{n-k-1}^{n}$. The Auxiliary Lemma guarantees that for $p=\alpha_{n-k-1}(j)$,

$$
\hat{\rho}=\left(i_{\bullet}, p_{\circ}\right)
$$

is an edge in graph $h_{[n, k]}^{n+1}$ such that its white vertex p_{\circ} belongs to the set C_{n-k}^{n+1}. We will show that $\hat{\rho}$ is the edge that we are looking for.

Keeping in mind that the last block of any graph from family H_{1}^{n+1} is $h_{[n, n]}^{n+1}$, in any graph from that family there is no edge with white vertex from the union $X_{0}^{n+1} \cup Y_{0}^{n+1}$. Since, $p_{\circ} \in C_{n-k}^{n+1}$ and $C_{n-k}^{n+1} \subset$ $Y_{0}^{n+1}, \hat{\rho}$ is no edge of that type of graphs. We proceed analogously for family H_{2}^{n+1}. By inequality (3.1) we have that in any graph from that family there is no edge with black vertex from the union $X_{0}^{n+1} \cup Y_{0}^{n+1}$. Since, $i_{\bullet} \in R^{n}$ and $R^{n}=X_{0}^{n+1}$, $\hat{\rho}$ is no edge of those graphs. If $k<n-1$ and $i \geq k+1$, let us consider graphs contained in $H_{3, i}^{n+1}$. The last block each of them is $h_{[n, i]}^{n+1}$, and hence, they have no edges with the
white vertex belonging $X_{n-i}^{n+1} \cup Y_{n-i}^{n+1}$. Using inequality (3.5) we have that $Y_{n-i}^{n+1} \supset Y_{n-k-1}^{n+1}$ and then using inequality (3.7) $Y_{n-i}^{n+1} \supset C_{n-k}^{n+1}$. Therefore, $\hat{\rho}$ is no edge any of graph in $H_{3, i}^{n+1}, i \geq k+1$.

To show that $\hat{\rho}=\left(i_{\bullet}, p_{\circ}\right)$ is no edge of any graph g less then f, $g \in H_{3, k}^{n+1}$, assume contrary. Then, $g=\left(g^{*} \oplus g^{*}\right) h_{[n, k]}^{n+1}$ for some $g^{*}<f^{*}$ and either $\left(i_{\bullet}, j_{\circ}\right)$ or $\left(i_{\bullet},\left(j+3 \cdot 2^{n-1}\right)_{\circ}\right)$ are edges in g^{*}. The proof that the both cases are impossible is the same as in the previous steps, so we omit it.

References

[1] K.Došen and Z.Petrić, Self Adjunctions and Matrices, Journal of Pure and Applied Algebra 184(2003), pp. 7-39 (http://arXiv.org/math.GT.0111058).
[2] D. Cvetković and S. Simić, Kombinatorika klasična i moderna, Naučna knjiga, Beograd, 1990.

[^0]: * Department of Mathematics, University of Montenegro, Podgorica, Montenegro

