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1. INTRODUCTION

Let A2 be the matrix 


1
0
0
1




and AT
2 its transpose. The matrix a2 = A2A

T
2 is




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 .

For each n ∈ N and each k ∈ {0, 1, . . . , n − 1} let

hn
k = 12n−k−1 ⊗ a2 ⊗ 12k−1 ,

where 1n is n × n identity matrix and ⊗ is the Kronecker product of
matrices. Matrices 12n , hn

0 , hn
1 , · · · , hn

n−1 are elementary n-matrices
. Denote by Mn the set of all matrices that can be obtained as a
finite product of some, not necessary distinct, elementary n-matrices.
Let ∼ be a binary relation over Mn such that for each two matrices
A, B ∈ Mn :

A ∼ B iff there is a rational number α such that A = αB

This paper proves conjecture (see [1]) of linear independence for
matrices from Mn/∼. It will be done by listing them all, and by finding
for each an entry with 1 where the others in front of it have 0.

2. KÖNIG’S GRAPHS

In this section we introduce König’s graphs, a well known graph-
theoretic representation of matrices ( see [2]). It will make it possible
for us to prove the main theorem of linear independence considering,
instead of matrices, the appropriate graphs assigned to them.
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To each matrix A assign a complete bipartite weight-graph G(A)
on 2n vertices colored by black and white color. Black vertices are
in one-to-one correspondence with the rows of matrix A and they are
labelled by i•, i = 1, n. White vertices correspond to the columns
of matrix A and they are labelled by i◦, i = 1, n. To each edge
ρ = (i•, j◦) assign (i, j)-entry of matrix A. It is called a weight of
edge ρ. Bipartite graph G(A) is a König’s graph of matrix A.

Let G1 and G2 be some König’s graphs. Composition of the graphs
G1 and G2 is a 3-partite graph G1 ∗G2 obtained from the G1 and G2

identifying each white vertex i◦ of graph G1 with the black vertex i•
of graph G2. Vertices obtained by identification are gray.

Product of the König’s graphs G1 and G2 is a complete bipartite
weight-graph G1G2 obtained from G1 ∗G2 deleting all of its edges and
gray vertices and adding new edges between black and white vertices.
The weight of edge (i•, j◦) is the sum of weights of all paths length two
between i• and j◦ in G1 ∗ G2, while the weight of path is the product
of weights of edges belonging to that path.

The next lemma provides the question whether the set Mn/∼ is
linearly independent or not, to be considered using the König’s graphs
of elementary matrices and their products.

Theorem 1 ( [2]) Let A and B be square matrices of the same type.
Then

G(AB) = G(A)G(B).

In the sequel, matrices and their König’s graphs will be identified and
denoted by the same symbols. The useful property of König’s graphs
is that the edges with weight 0 may be removed. Further, if the all
nonzero entries of matrix are 1, as in the our case, the weights will be
no emphasized in the figure of the graph.

König’s graphs of matrices a2, h3
1, h3

2 and h3
2h

3
1 are illustrated in

the next figure.
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Each square matrix may be imagined as square properly filled by
some numbers. Identity matrices and matrix a2 are centrally symmet-
ric about the center of own imagined square and, furthermore for each
matrix A holds: 122 ⊗A = A⊕A, where ⊕ is sum of matrices defined
as follows [

A 0
0 A

]
.

The König’s graph of the sum A ⊕ A is the union of two copies of
graph A defined in standard way.

Hence, from the definition of Kronecker product ⊗ we have that
each matrix A from Mn is centrally symmetric about the center of
own imagined square. Equivalently, if ρ = (i•, j◦) as an edge of the
König’s graph A and for each i ∈ {1, 2, . . . , 2n}, Sn(i) = 2n − i + 1 is
a number symmetric to i about the number 2n+1

2 , then

Sn(ρ) = (Sn(i)•,Sn(j)◦)

is an edge of the same graph. This property will be called the sym-
metry about the vertical axis.

3. NORMAL FORMS IN Mn

Definition

The essential part of the proof of linear independence in Mn/∼ is
the definition of unique normal form for its elements.

For 1 ≤ j ≤ i ≤ n − 1 let the block hn
[i,j] be defined as

hn
i hn

i−1 . . . hn
j+1h

n
j

We say that an product from Mn is in normal form if it is either
the identity matrix or it looks as follows:

hn
[b1,c1]h

n
[b2,c2] . . . h

n
[bm,cm]

where b1 < b2 < . . . < bm and c1 < c2 < . . . < cm.
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It is known ([1]) that:

hihj = hjhi, for | i − j |≥ 2, (3.1)

hih±1hi = hi (3.2)

hihi = 2hi (3.3)

Then, by [1], we have the next lemma:

Lemma 1 Every element of Mn, i.e. every finite product of elemen-
tary n-matrices, is equivalent with a product in normal form.

Set of Kónig’s graphs of normal forms will be denoted by Tn. We
are going to list them all and to find for each an edge that the others
in front it in the list have no.

Linear order over the set Tn.

We first introduce some terminology and notations for later use.
For each n ∈ N, n ≥ 2, let Ln = {1, 2, . . . , 2n−1} and Rn = {2n−1+

1, 2n−1 + 2, . . . , 2n}. Ln is a left half of the set {1, 2, . . . , 2n} and Rn

is the right half of that set.
The edge ρ = (i•, j◦) is the long edge in some graph if its end-

points belong to distinct halves of the set {1, 2, . . . , 2n}.
Denote by Sn

0 the left sight of Ln, that is the set {1, 2, . . . , 2n−2},
and by Xn

0 the right half of Ln, that is the set {2n−2 + 1, 2n−2 +
2, . . . , 2n−1}. For each 1 ≤ k ≤ n − 2 let:

Xn
k =

{
left half of Xn

k−1 , k is odd
right half of Xn

k−1 , k is even

and

Sn
k =

{
right half of Xn

k−1 , k is odd
l left half of Xn

k−1 , k is even.

We can check easily that for any k, 1 ≤ k ≤ n − 2, worth:

| Sn
k |=| Xn

k |= 2n−k−2, (3.4)



34 žana Kovijanić Vukićević
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Xn
1 ⊃ Xn

2 ⊃ . . . ⊃ Xn
n−2, (3.5)

Sn
k ∩ Xn

k = ∅, (3.6)

Sn
k ⊂ Xn

k−1 = ∅, (3.7)

For each 0 ≤ k ≤ n − 2, by Cn
k and Y n

k will be denoted subsets of the
set {1, 2, . . . , 2n} centrally symmetric to Sn

k and Xn
k about the number

2n+1
2 , that is

Cn
k = {Sn(i) | i ∈ Sn

k } and Y n
k = {Sn(i) | i ∈ Xn

k }.

Then, Cn
0 is the right half of Rn, that is the set {3 ·2n−2 +1, 3 ·2n−2 +

2, . . . , 2n−}, Y n
0 the left half of Rn, that is the set {2n−1 + 1, 2n−1 +

2, . . . , 3 · 2n−2} and for each 1 ≤ k ≤ n − 2:

Y n
k =

{
right half of Y n

k−1 , k is odd
left half of Y n

k−1 , k is even

Cn
k =

{
left half of Y n

k−1 , k is odd
right half of Y n

k−1 , k is even.

Then it is easy establish the following: for each n ∈ N, Rn = Xn+1
0

and for each k ≤ n − 2
Cn

k = Sn+1
k+1 (3.8)

The whole construction has made so that the next is satisfied: for any
n−elementary graph hn

i there is no edge with white vertex belonging
to the union Xn

n−i−1 ∪ Y n
n−i−1.

Next, based on the Normal Form Lemma, we make a sequence of
families Hn ⊆ Tn, n ≥ 2 and define linear order < over Hn as follows.

Let H2 = {122 , h2
1} and 122 < h2

1.

For n ≥ 2 assume that Hn ⊆ Tn is linearly ordered by relation <.
We proceed to make Hn+1 ⊆ Tn+1. It will be done in tree steps for
n + 1 = 3 and in four steps for n + 1 ≥ 4.
step one: Let

Hn+1
0 =

{
hn+1

[b1,c1]h
n+1
[b2,c2] . . . h

n+1
[bm,cm] | bm ≤ n − 1

}
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or equivalently,
Hn+1

0 = {f ⊕ f | f ∈ Hn}.

Linear order over the se Hn+1
0 is defined by taking that

f ⊕ f < g ⊕ g iff f < g,

for each f, g ∈ Hn.

step two: Let

Hn+1
1 =

{
f ′hn+1

[n,n] | f ′ ∈ Hn+1
0

}
,

that is
Hn+1

1 =
{

(f∗ ⊕ f∗)hn+1
[n,n] | f∗ ∈ Hn

}
,

Linear order over the union Hn+1
0 ∪Hn+1

1 is defined as extension of the
order < over the family Hn+1

0 and by taking that for each f, g ∈ Hn+1
1

f < g iff f∗ < g∗

and for each f ∈ Hn+1
0 and each g ∈ Hn+1

1

f < g.

step three: Let

Hn+1
2 =

{
hn+1

[b1,c1] . . . h
n+1
[bm−1,cm−1]h

n+1
[n,cm] | cm ≤ n − 1, bm−1 ≤ n − 2

}

and for each f ∈ Hn+1
0 ∪ Hn+1

1 and each g ∈ Hn+1
2

f < g.

Further, for any

f = hn+1
[b1,c1] . . . h

n+1
[bm−1,cm−1]h

n+1
[n,cm] ∈ Hn+1

2 ,

let
f ′ = hn+1

[b1,c1] . . . h
n+1
[bm−1,cm−1]h

n+1
[n−1,cm]
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be obtained from f omitting the elementary matrix hn+1
n . Then f ′ =

f∗ ⊕ f∗, for f∗ = hn
[b1,c1] . . . h

n
[bm−1,cm−1]h

n
[n−1,cm] Using this notation,

we say that for each f, g ∈ Hn+1
2

f < g iff f∗ < g∗

step four: If n + 1 ≥ 4 for each k ∈ N, 2 ≤ k ≤ n − 1, let

Hn+1
3,k =

{
f ′hn+1

[n,k] | f ′ ∈ Hn+1
0 and the last block in f’ is

hn+1
[n−1,c], c ≤ k − 1

}

Finally, let

Hn+1
3 =

n−1⋃
k=2

Hn+1
3,k

and
Hn+1 = Hn+1

0 ∪ Hn+1
1 ∪ Hn+1

2 ∪ Hn+1
3 .

Let us extent linear order < defined over the union Hn+1
0 ∪Hn+1

1 ∪Hn+1
2

in the first tree steps onto the Hn+1 as follows:
if f ∈ Hn+1

0 ∪ Hn+1
1 ∪ Hn+1

2 and g ∈ Hn+1
3 let f < g,

for each i �= j, if f ∈ Hn+1
3,i and g ∈ Hn+1

3,j , let f < g iff i > j

if f = f ′hn+1
[n,i] ∈ Hn+1

3,i and g = g′hn+1
[n,i] ∈ Hn+1

3,i for some i ∈
{2, 3, . . . , n − 1}, let f < g iff f ′ < g′.

By the construction and the definition of normal form, the reader
will have no difficulty in showing that for each n ∈ N.

Hn = Tn.

4. MAIN THEOREM

The edge ρ = (i•, j◦) of some graph f ∈ Hn will be called the new
edge in f if ρ is no edge of any graph g ∈ Hn less than f .
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Theorem 2 Let n ∈ N, n ≥ 2. In any König’s graph f ∈ Hn there
are new edges ρ and ρ̂ such that if the last block of graph f is hn

[n−1,s]

then ρ is the long edge and its white vertex j◦ belongs to the set Sn
n−1−s

and ρ̂ is the long edge and its white vertex belongs to the set Cn
n−1−s.

Proof: The proof is by induction on n ≥ 2. The basis of induction
is true by definition of the family H2 and linear order over it. Let us
assume that n ≥ 2 and the assertion is true for any graph of family
Hn. We prove that in any f ∈ Hn+1 there are new edges ρ = (i•, j◦)
and ρ̂ = (l•, m◦) such that if the last block of graph f is hn+1

[n,s] then ρ

is the long edge and its white vertex j◦ belongs to the set Sn+1
n−s and ρ̂

is the long edge and its white vertex m◦ belongs to the set Cn+1
n−s . As

the constructing procedure of the family Hn+1, the proof is going to
be developed in four steps:

step one: For f ∈ Hn+1
0 the claim is true by inductive hypothesis.

step two: Let f ∈ Hn+1
1 . Then,

f = (f∗ ⊕ f∗)hn+1
[n,n]

for some f∗ ∈ Hn
0 and there is edge ρ∗ = (i•, j◦) so that ρ∗ is the

new edge in f∗. Because of the property of symmetry about the
vertical axis , we may suppose that j◦ ∈ Sn

0 = {1, 2, . . . , 2n−2}, or
j◦ ∈ Y n

0 = {2n−1 + 1, 2n−1 + 1, . . . , 3 · 2n−2}.
In the first case, when j◦ ∈ Sn

0 = {1, 2, . . . , 2n−2}, let k = 3 ·
2n−1 + j. Then, (j•, k◦) is an edge of (n + 1)−elementary graph hn+1

n

and hence ρ = (i•, k◦) is an edge of f .
Let us prove that ρ is new edge in f .
If g ∈ Hn+1

0 , ρ is no edge of g because of it is a long edge and that
type of edges doesn’t exist in any graph of family Hn+1

0 .
Let g = (g∗ ⊕ g∗)hn+1

[n,n] and g < f . By the definition of products of
König’s graphs and recalling what are the edges of elementary graph
hn+1

n , ρ = (i•, k◦) is an edge of graph g if and only if either (i•, k◦)
or (i•, j◦) is in the graph g∗ ⊕ g∗. The first is no true because of it is
a long edge. The second is impossible because of the choice of edge
ρ∗ = (i•, j◦) as a new edge in f∗.
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Therefore, ρ = (i•, k◦) is a new long edge whose white vertex k◦
belongs to the set Cn+1

0 . Then, Sn+1(ρ) is a new long edge whose white
vertex belongs to the set Sn+1

0 .
In the second case, when j◦ ∈ Y n

0 , let j′ = j + 2n and i′ = i + 2n.

Then, ρ′ = (i′•, j
′
◦) is the new edge in f∗ ⊕ f∗. (It is the edge in

the second copy of graph f∗ ∈ Hn in the sum f∗ ⊕ f∗). Now, let
k = j′ − 3 · 2n−1. Then, (j′•, k◦) is an edge of elementary graph hn+1

n

and hence ρ = (i′•, k◦) is an edge of f . As in the previous case, it can
be prove that ρ is a long new edge with the white vertex k from the
set Sn+1

0 . ρ̂ = Sn+1(ρ) is a long new edge with the white vertex from
the set Cn+1

0 .

step three: Let f ∈ Hn+1
2 . Then f has a normal form

hn+1
[b1,c1] . . . h

n+1
[bm−1,cm−1]h

n+1
[n,s]

for some s ≤ n − 1 and bm−1 ≤ n − 2. By inequality (3.1), f is the
product of König’s graph hn+1

n and the sum f∗ ⊕ f∗, where

f∗ = hn
[b1,c1] . . . h

n
[bm−1,cm−1]h

n
[n−1,s].

Let ρ∗ = (i•, j◦) be a new long edge in graph f∗ ∈ Hn such that
i• ∈ Ln and j◦ ∈ Cn

n−1−s. It exists by inductive hypothesis. Then, for
k = 3 ·2n−1 + i, ρ = (k•, j◦) is an edge of the graph f = hn+1

n (f∗⊕f∗).
ρ is a long edge and its white vertex j◦ belongs to the set Cn

n−1−s that
is, using inequalitu (3.8) the same set as Sn+1

n−s .

It remains to prove that ρ is a new in f . Obviously, ρ is no edge of
any graph element of Hn+1

0 . Because of the fact that j◦ belongs to the
set Cn

n−1−s subset of Rn, ρ is no edge of any graph element of Hn+1
1 .

To show that ρ is no edge of any graph g ∈ Hn+1
2 , assume con-

trary. Then, since g is product of graph hn+1
n and the sum g∗ ⊕ g∗,

either (k•, j◦) or (i•, j◦) are edges in g∗. However, the both cases are
impossible. The proof of this assertion is the same as in the previous
step, so we omit it.

step four: We can prove the following lemma.
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′
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the second copy of graph f∗ ∈ Hn in the sum f∗ ⊕ f∗). Now, let
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n

and hence ρ = (i′•, k◦) is an edge of f . As in the previous case, it can
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0 .
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n−1−s. It exists by inductive hypothesis. Then, for
k = 3 ·2n−1 + i, ρ = (k•, j◦) is an edge of the graph f = hn+1

n (f∗⊕f∗).
ρ is a long edge and its white vertex j◦ belongs to the set Cn

n−1−s that
is, using inequalitu (3.8) the same set as Sn+1

n−s .

It remains to prove that ρ is a new in f . Obviously, ρ is no edge of
any graph element of Hn+1

0 . Because of the fact that j◦ belongs to the
set Cn

n−1−s subset of Rn, ρ is no edge of any graph element of Hn+1
1 .

To show that ρ is no edge of any graph g ∈ Hn+1
2 , assume con-

trary. Then, since g is product of graph hn+1
n and the sum g∗ ⊕ g∗,

either (k•, j◦) or (i•, j◦) are edges in g∗. However, the both cases are
impossible. The proof of this assertion is the same as in the previous
step, so we omit it.

step four: We can prove the following lemma.
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Auxiliary Lemma. For any n ≥ 2 and k ∈ {0, 1, . . . , n − 2} there is
an increasing function αk : Xn

k → Cn+1
k+1 such that (i•, αk(i)◦) is edge

in the graph hn+1
[n,k+1].

Proof: For any fixed n ≥ 2 we proceed by induction on k. The basis
of induction is k = 0. Recall that

Xn
0 =

{
1, 2, . . . , 2n−2

}
.

For each i ∈ Xn
0 let mi = 3 · 2n−1 + i and α0(i) = mi − 3 · 2n−2. Then

α0(i) = 3 · 2n−2 + i

is an element of the set

Cn+1
1 =

{
2n−1 + i | i = 1, 2, . . . , 2n−2

}

and (i•, mi◦) and (mi•, α0(i)◦) are edges of the graphs hn+1
n and hn+1

n−1,

respectively. So, (i•, α0(i)◦) is an edge of hn+1
[n,n−1] and the function α0

is an increasing function from Xn
0 to Cn+1

1 .

Assume that the claim is true for k − 1 ≥ 0. We recognize the two
cases: the odd and the even k.

If k is odd number, Xn
k is left half of the set Xn

k−1 and hence
{αk−1(i) | i ∈ Xn

k } is left half of the set Cn+1
k satisfying condition

| Cn+1
k |=| Y n+1

k |= 2n−k−1.

For each i ∈ Xn
k let

αk(i) = αk−1(i) + 3 · 2n−k−2.

Since,Cn+1
k is the left and Y n+1

k the right half of the set Y n+1
k−1 ,

{αk(i) | i ∈ Xn
k }

is the right half of the set Y n+1
k , that is the set Cn+1

k+1 .

It just remains to verify the even case of k, which is quite similar
with the above.
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Let k be an even number. Then, Xn
k is right half of the set Xn

k−1

and the set {αk−1(i) | i ∈ Xn
k } is right half of the set Cn+1

k . For each
i ∈ Xn

k let
αk(i) = αk−1(i) − 3 · 2n−k−2.

Then, {αk(i) | i ∈ Xn
k } is the left half of the Y n+1

k that is the set Cn+1
k+1 .

�

Now, let’s go back to the main theorem, step four. Assume that
2 ≤ k ≤ n− 1. We are going to prove that in any f ∈ Hn+1

[3,k] there is a
new long edge ρ̂ whose white vertex belongs to the set Cn+1

n−k . Then,
ρ = Sn+1(ρ̂) will be a new long edge whose white vertex belongs to
the set Sn+1

n−k .
Let f ∈ Hn+1

[3,k] . Then f = (f∗ ⊕ f∗)hn+1
[n,k] for some

f∗ = hn
[b1,c1]h

n
[b2,c2] . . . h

n
[n−1,s], s ≤ k − 1.

Let ρ∗ = (i•, j◦) be a new long edge in f∗ satisfying condition j◦ ∈
Sn

n−s−1. Because of the "length" of edge ρ∗, vertex i• is an element
of the set Rn. Using the inequality Sn

n−s−1 ⊂ Xn
n−s−2 and inequality

Xn
n−s−2 ⊂ Xn

n−k−1, for each s ≤ k − 1, we obtain that j◦ ∈ Xn
n−k−1.

The Auxiliary Lemma guarantees that for p = αn−k−1(j),

ρ̂ = (i•, p◦)

is an edge in graph hn+1
[n,k] such that its white vertex p◦ belongs to the

set Cn+1
n−k . We will show that ρ̂ is the edge that we are looking for.

Keeping in mind that the last block of any graph from family Hn+1
1

is hn+1
[n,n], in any graph from that family there is no edge with white

vertex from the union Xn+1
0 ∪ Y n+1

0 . Since, p◦ ∈ Cn+1
n−k and Cn+1

n−k ⊂
Y n+1

0 , ρ̂ is no edge of that type of graphs. We proceed analogously for
family Hn+1

2 . By inequality (3.1) we have that in any graph from that
family there is no edge with black vertex from the union Xn+1

0 ∪Y n+1
0 .

Since, i• ∈ Rn and Rn = Xn+1
0 , ρ̂ is no edge of those graphs. If

k < n−1 and i ≥ k+1, let us consider graphs contained in Hn+1
3,i . The

last block each of them is hn+1
[n,i] , and hence, they have no edges with the
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Let k be an even number. Then, Xn
k is right half of the set Xn

k−1

and the set {αk−1(i) | i ∈ Xn
k } is right half of the set Cn+1

k . For each
i ∈ Xn

k let
αk(i) = αk−1(i) − 3 · 2n−k−2.

Then, {αk(i) | i ∈ Xn
k } is the left half of the Y n+1

k that is the set Cn+1
k+1 .

�

Now, let’s go back to the main theorem, step four. Assume that
2 ≤ k ≤ n− 1. We are going to prove that in any f ∈ Hn+1

[3,k] there is a
new long edge ρ̂ whose white vertex belongs to the set Cn+1

n−k . Then,
ρ = Sn+1(ρ̂) will be a new long edge whose white vertex belongs to
the set Sn+1

n−k .
Let f ∈ Hn+1

[3,k] . Then f = (f∗ ⊕ f∗)hn+1
[n,k] for some

f∗ = hn
[b1,c1]h

n
[b2,c2] . . . h

n
[n−1,s], s ≤ k − 1.

Let ρ∗ = (i•, j◦) be a new long edge in f∗ satisfying condition j◦ ∈
Sn

n−s−1. Because of the "length" of edge ρ∗, vertex i• is an element
of the set Rn. Using the inequality Sn

n−s−1 ⊂ Xn
n−s−2 and inequality

Xn
n−s−2 ⊂ Xn

n−k−1, for each s ≤ k − 1, we obtain that j◦ ∈ Xn
n−k−1.

The Auxiliary Lemma guarantees that for p = αn−k−1(j),

ρ̂ = (i•, p◦)

is an edge in graph hn+1
[n,k] such that its white vertex p◦ belongs to the

set Cn+1
n−k . We will show that ρ̂ is the edge that we are looking for.

Keeping in mind that the last block of any graph from family Hn+1
1

is hn+1
[n,n], in any graph from that family there is no edge with white

vertex from the union Xn+1
0 ∪ Y n+1

0 . Since, p◦ ∈ Cn+1
n−k and Cn+1

n−k ⊂
Y n+1

0 , ρ̂ is no edge of that type of graphs. We proceed analogously for
family Hn+1

2 . By inequality (3.1) we have that in any graph from that
family there is no edge with black vertex from the union Xn+1

0 ∪Y n+1
0 .

Since, i• ∈ Rn and Rn = Xn+1
0 , ρ̂ is no edge of those graphs. If

k < n−1 and i ≥ k+1, let us consider graphs contained in Hn+1
3,i . The

last block each of them is hn+1
[n,i] , and hence, they have no edges with the
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white vertex belonging Xn+1
n−i ∪ Y n+1

n−i . Using inequality (3.5) we have
that Y n+1

n−i ⊃ Y n+1
n−k−1 and then using inequality (3.7) Y n+1

n−i ⊃ Cn+1
n−k .

Therefore, ρ̂ is no edge any of graph in Hn+1
3,i , i ≥ k + 1.

To show that ρ̂ = (i•, p◦) is no edge of any graph g less then f ,
g ∈ Hn+1

3,k , assume contrary. Then, g = (g∗⊕g∗)hn+1
[n,k] for some g∗ < f∗

and either (i•, j◦) or (i•, (j +3 ·2n−1)◦) are edges in g∗. The proof that
the both cases are impossible is the same as in the previous steps, so
we omit it.

�
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Naučna knjiga, Beograd, 1990.

References




	Žana Kovijanić Vukićević: KÖNIG’S GRAPHS IN THE PROBLEM OF LINEAR INDEPENDENCE OF MATRICES



