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Abstract 

The paper deals with stability problems of linear multi-degree-of-freedom non-
conservative undamped dynamical systems. Two general algebraic criteria that 
contain necessary and sufficient conditions for spectral stability, flutter and 
divergence instability are presented. Then a survey of selected simple criteria — 
expressed by the properties of the system’s matrices — for the Lyapunov stability 
and instability of the systems is given. In particular, the recent generalizations of the 
well-known Merkin’s instability theorem, as well as the results of the study of the 
influence of infinitesimal circulatory forces on the stability of potential systems with 
multiple frequencies, are reported. Several simple numerical examples are used to 
illustrate the usefulness of the presented results and also to compare them with each 
other.  
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1. INTRODUCTION  

The area of stability of dynamical systems is at the crossroads of physics, 
mathematics and engineering. Physicists are interested in instabilities that arise 
in nature, the mathematicians and mechanicians are interested in exact mathe-
matical formulations that provide conditions under which systems are stable, and 
the engineers are interested in the analysis and design of engineered systems so 
as to ensure their safe and stable behaviour.   
————— 
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In recent years, there has been a resurgence of interest in the stability of linear 
dynamical systems, especially non-conservative ones, and new results appear. A 
remarkable class of such dynamical systems is associated with potential 
(conservative) and positional non-conservative (circulatory) forces and can be 
described by the equation  

 
  (1.1) 
 
where ,  and  are n by n constant real matrices;  is symmetric and 
positive definite ( ),  is symmetric, and  is skew-symmetric  
( ).  is the mass matrix,  describes the potential forces and  the 
non-conservative forces. The n-vector of generalized coordinates is denoted by 
q, and the dots indicate differentiation with respect to the time, t. Derivation of 
Eq. (1.1) can be found in e.g. [1]. Such systems are often called non-conservative 
undamped or circulatory. A variety of physical and technical processes, the 
modelling of which results in circulatory systems, extends from self-oscillations 
(shimmy) in aircraft wheels, controlled motions of two-legged walking robots, 
and the destabilizing effect of viscous damping in bearing supports of turbine 
rotors to dynamics of brake squealing, flutter in aerospace systems, magneto-
hydrodynamics and dynamics of nonholonomic systems [2].   

Making the transformation , where the exponent ½ indicates the 
unique positive definite square root of the matrix , and premultiplying Eq. 
(1.1) by  we get the following equation  

 
  (1.2) 

 
where the symmetric matrix  and skew-symmetric 

. Clearly, system (1.2) is equivalent to system (1.1), and we 
shall from here on consider this system.  

The system is said to be stable (Lyapunov stable) if every solution  of 
equation (1.2) is bounded for all non-negative t. If  (pure potential system), 
according to the famous Lagrange theorem, the system is stable if the potential 
matrix  is positive definite ( ); otherwise the potential system is unstable. 
For , it is possible that non-conservative positional forces can destabilize 
a stable purely potential system, and that they can stabilize an unstable potential 
system [1,3]. The study of the influence of circulatory forces on the stability of 
potential systems, including many specific problems, has a rich history (see, for 
example, monographs [1, 2, 4-6]).    

All solutions of Eq. (1.2) can be characterized algebraically using properties 
of the quadratic matrix polynomial , where I is identity 
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matrix. The eigenvalues of the system (1.2) are zeros of the characteristic 
polynomial , and the multiplicity of an eigenvalue is the order 
of the corresponding zero in . If  is an eigenvalue, the nonzero vectors 
in the null space of  are the eigenvectors associated with . Since 

, then all eigenvalues (spectrum of the system) are located 
symmetrically with respect to both the real and imaginary axes in the complex 
plane. This means that system (1.2) is stable only when every eigenvalue  is 
on the imaginary axis and simple or semi-simple, i.e., if the eigenvalue has 
multiplicity k, there are k linearly independent associated eigenvectors. 

Although the eigenvalue analysis (spectral analysis) of the system with the 
help of computer programs is in principle easy, the influence of forces and para-
meters in the system matrices on the stability becomes lost [7]. This is more or 
less also the case when applying the general algebraic criteria [8,9], which are 
similar to the well-known Routh-Hurwitz criterion for asymptotic stability, and 
which are presented in Section 2. Therefore, alternative criteria, such as those 
that provide simpler conditions directly in terms of the matrices  and , are 
more attractive, and many attempts have been made to establish such criteria. An 
overview of such criteria is taken from our recent paper [10], and it is given in 
Sections 3 and 4. In Section 5 the study of the influence of infinitesimal circula-
tory forces on the stability of potential systems with multiple natural frequencies 
is reported. Such a situation of having multiple natural frequencies can, and often 
does, arise in complex multi-degree-of-freedom systems such as spacecraft and 
building structures in which, say, the fourth bending frequency coincides with 
the second torsional frequency of vibration of the structure, see [11].  

It should be noted that an approach to studying the stability of multi-parameter 
circulatory systems, related to investigating singularities on the stability 
boundary in the parameter space corresponding to multiple eigenvalues, is 
presented in the monograph by Kirillov [2] (also, see [6, 12]), but it is not the 
subject of this review. 

2. TWO GENERAL ALGEBRAIC CRITERIA 

The characteristic polynomial of Eq. (1.2) has the form  
 

 , (2.1)  
 

where  are real coefficients. It is clear that . Write the  
discriminant matrix for  
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 . (2.2 )  

 
The sequence  
 

  (2.3)  
 

where  is the determinant of the submatrix of (2.2) formed by the first 2i rows 
and 2i columns, is called a discriminant sequence of the polynomial (2.1). 

Theorem 2.1 ([8]). A necessary and sufficient condition for all the eigenva-
lues  of the system (1.2) to be with zero real parts ( i. e., for the system to be 
spectral stable) is that the elements of the discriminant sequence (2.3) are all 
nonnegative and that all the coefficients of the polynomial (2.1) are nonnegative.  

It is useful to distinguish between two different kinds of instability of the 
system (1.2): 

 — The system (1) is statically unstable (divergence) if at least one of the 
eigenvalues  is real while remaining eigenvalues are on the imaginary axis 
(there is an aperiodic, exponentially growing motion); 

— The system (1) is oscillatory unstable (flutter) if at least one of the 
eigenvalues  is complex with non-zero real part (there is an oscillating motion 
with exponentially growing amplitude).  

Remark 2.1. Note that violation of the conditions of Theorem 2.1 implies 
instability, either flutter (  for some ) or divergence (all 

 and  for some ) [8]. 
Another approach based on the properties of a quadratic form, the 

coefficients of which are traces of the powers of the matrix , was 
developed in [9].  

Define the quadratic form  
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where 
 

  (2.6) 
 
Here and henceforth  stands for the trace of a matrix .  
Theorem 2. 2 ([9]). The system (2) is:  
a) spectrally stable if and only if , and , ;  
b) unstable by divergence if and only if , and ;   
c) unstable by flutter if and only if  can take negative values. 
We remark that the coefficients  of the polynomial (2.1) can be expressed 

in terms of  by means of the Leverrier algorithm [13] 
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In the case when system (1.2) dependent on physical parameters, formulae 

(2.6) and (2.7) provide a connection between the conditions for the system to be 
spectrally stable (unstable by divergence or by flutter) and the parameters of the 
system. Theorem 2.2 can then be used to divide the space of parameters into the 
regions of spectral stability, divergence and flutter. For systems with small 
degrees of freedom this approach yields results straightforwardly, but it, as well 
as the approach based on Theorem 2.1, becomes numerically involved for larger 
dimensional systems. 

Both the above criteria guarantee only spectral stability of the non-
conservative undamped system, but not the Lyapunov stability, because among 
the eigenvalues on the imaginary axis there can be multiple ones, without a 
complete set of corresponding eigenvectors, and in this case the secular terms 
appear in solutions of Eq. (1.2). 

Theorem 2.3 ([9]). If  and all the coefficients  of the charac-
teristic polynomial (2.1) are positive, then the system (1.2) is Lyapunov stable.  

According to Theorem 2.2-a and Theorem 2.3, the boundaries of the spectral 
and Lyapunov stability of non-conservative undamped systems may be identical, 
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as the following example shows. If the boundaries are not identical, they differ 
by a small set. The stability, divergence and flutter boundaries for multi-
parameter non-conservative undamped systems in the generic case were 
investigated in [2,12].    

Example 2.1. Consider the three degrees of freedom system with 
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where k and c are real numbers. 

From (2.6), (2.7) and (2.8), we have 
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except at the point (0,0).   

 

 
Fig. 2.1. Stability (S), divergence (D) and flutter (F) domains for the example 2.1. 
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  , (3.2) 

 
where denotes the spectral norm of the matrix  (i. e., the square root 
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Obviously, Theorems 3.1-3.4 are not applicable to this example. However, 
matrices (3.7) satisfy conditions (3.4) and, in addition, . Therefore, 
Theorem 3.5 is applicable. It is easy to see that conditions (3.5) and (3.6) reduce 
to the conditions  and , respectively. Thus, according to 
Theorem 3.5, system (1.2), (3.7) is stable only if .   

The next criterion, related to the subclass of system (3.4) for which , is 
much simpler than Theorem 3.5, and it allows the possibility of  (for 
example, it is case when n is odd). 

Theorem 3.6 ([17]). a) If  and , then the system (1.2), (3.4) 
is stable if and only if 

 
 ; (3.8) 

 
b) If  and , then the system (1.2), (3.4) is stable if and only if 

the following conditions are satisfied 
 

 , , (3.9) 
 

where  and stand for the image and null space of , respectively.  
Example 3.3. Let 

  and , . (3.10) 

 
The system of this example satisfies conditions (3.4), and, in addition, 

 and . Therefore, part (b) of Theorem 3.6 can be applied. This 
assertion yields , i. e., system (1.2), with matrices  and  as in 
(3.10), is stable only when . On the other hand, it is easy to see that 
the characteristic equation of this system has the following roots 

 

, , 
 

which all are purely imaginary and simple if , which is in accordance 
with the prediction of Theorem 3.6.  
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4. SIMPLE INSTABILITY CRITERIA AND GENERALIZATIONS 
OF THE MERKIN THEOREM  

Theorem 4.1 ([4]). The system (1.2) is unstable if .   
This assertion is a special case of the following result. 
Theorem 4.2 ([3]). The system (1.2) is unstable if the trace of matrix  is 

non-positive, i. e., .  
Obviously, this result implies that system (1.2) is unstable if the potential 

matrix  is negative semi-definite (see also [19]). 
 We note that Theorem 4.2 is inapplicable to the case when the corresponding 

conservative system is stable, i. e., . This case is covered by the following 
criterion, which is easy to check.    

Theorem 4.3 ([20]). The system (1.2) is unstable if  
 

 , (4.1) 

 
where  denotes the Frobenius norm. 

Recall that the Frobenius norm of a real matrix is defined as the square root 
of the sum of the squares of its elements. Condition (4.1) gives an estimation of 
lower bound for the intensity of circulatory forces (measured by the Frobenius 
norm of ) so that the introduction of arbitrary linear circulatory forces, the 
intensity of which is higher than this bound, into a stable potential system 
destroys its stability. To illustrate Theorem 4.3 we return to Example 3.3. We 
have , , , and the instability condition (4.1) 
yields . Notice that the system of this example is unstable if and only 
if , as shown in the previous section.  

Theorem 4.3 was obtained afterwards in [21], along with the two following 
sufficient conditions for the instability (also, see [9]).  

Theorem 4.4 ([20]). The system (1.2) is unstable if one of the following 
inequalities holds 
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Theorem 4.4 implies the other one.  
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A remarkable result concerning the destabilizing effect of circulatory forces 
states: “If linear non-conservative positional forces are introduced into a stable 
potential system that has equal natural frequencies of vibration, then the stability 
will be destroyed, irrespective of any nonlinear terms” [1]. This assertion is 
known as Merkin’s theorem, which was first published in 1956 [4], and which 
can be viewed as a counterpart of one of the classical Kelvin-Tait-Chetayev 
stability theorems for circulatory forces (see [22]). For linear systems, this 
statement can be reformulated in terms of the matrices  and  as follows. 

Theorem 4.5 (Merkin [1,4]). The system (1.2) is unstable if  and 
, . 

In other words, the addition of arbitrary circulatory forces, infinitezimal or 
finite, to a consrevative system whose the potential matrix has the same 
eigenvalues produces instability. If we additionally assume that , then 
the system will be completely unstable (i. e., every nonzero solution  of Eq. 
(1.2) is unbounded). It follows from the following more general result which 
implicitly requires non-singularity of the circulatory matrix .  

Theorem 4.6 ([23] ). The system (1.2) is completely unstable if 
.  

Let us consider Example 3.2 again. For this system, we have 
 

. 

 
It is easy to see that the above matrix is positive definite if and only if 

, and, according to Theorem 4.6, under this condition system (1.2), 
(3.7) is completely unstable. 

It should be observed that the right hand side of inequality (4.1) is equal to 
zero only in the degenerate case when all eigenvalues of the potential matrix  
are identical, and, consequently, Theorem 4.3 is a generalization of the Merkin’s 
theorem. Another obvious generalization is given by the following statement. 

Theorem 4.7 ([18,11]). The system (1.2) is unstable if  and . 
This generalization was obtained in [18], and independently and, more 

recently, in [11], where it was also pointed out that in this case the potential 
matrix  has at least one repeated eigenvalue (i.e., the corresponding conserva-
tive system has at least two equal natural frequencies). Although there is an 
uncountable infinity of skew-symmetric matrices  that commute with the 
given potential matrix  having multiple eigenvalues, as shown in [11], the 
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commutation condition is very restrictive and some attempts have been made 
recently to weaken this restriction [24-27].  

Theorem 4.8 ([24]). Let the potential matrix  has a single eigenvalue  
with multiplicity , and let  be an orthogonal matrix, where the 

 submatrix  contains any  eigenvectors (their order is 
immaterial) of  corresponding to the multiple eigenvalue, and the  
submatrix  contains the remainder (i.e., ) of the eigenvectors of . 
Then, if the following conditions hold  

 
 , , (4.2) 

 
the system (1.2) is unstable. 

This criterion is a special case of a result that is related to general positional 
perturbations [24], and it also, in the case , was obtained in [25]. It is 
obvious that under condition (4.2) equations (1.2) may be decoupled by using a 
coordinate transformation determined by the orthogonal matrix  into two 
subsystems, one of which assures instability. However, for the given matrix  
with multiple eigenvalues the orthogonal matrix  that diagonalize  is not 
unique, making it difficult to apply this result. An alternative rank criterion which 
gives the same instability result as Theorem 4.8, but which avoids the non-
uniqueness of the matrix , as well as the calculations of its eigenvalues and 
eigenvectors was developed in [26].  

Introduce two semi-definite matrices 
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A remarkable result concerning the destabilizing effect of circulatory forces 
states: “If linear non-conservative positional forces are introduced into a stable 
potential system that has equal natural frequencies of vibration, then the stability 
will be destroyed, irrespective of any nonlinear terms” [1]. This assertion is 
known as Merkin’s theorem, which was first published in 1956 [4], and which 
can be viewed as a counterpart of one of the classical Kelvin-Tait-Chetayev 
stability theorems for circulatory forces (see [22]). For linear systems, this 
statement can be reformulated in terms of the matrices  and  as follows. 

Theorem 4.5 (Merkin [1,4]). The system (1.2) is unstable if  and 
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In other words, the addition of arbitrary circulatory forces, infinitezimal or 
finite, to a consrevative system whose the potential matrix has the same 
eigenvalues produces instability. If we additionally assume that , then 
the system will be completely unstable (i. e., every nonzero solution  of Eq. 
(1.2) is unbounded). It follows from the following more general result which 
implicitly requires non-singularity of the circulatory matrix .  

Theorem 4.6 ([23] ). The system (1.2) is completely unstable if 
.  

Let us consider Example 3.2 again. For this system, we have 
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It is easy to see that the above matrix is positive definite if and only if 
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(3.7) is completely unstable. 
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are identical, and, consequently, Theorem 4.3 is a generalization of the Merkin’s 
theorem. Another obvious generalization is given by the following statement. 
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This generalization was obtained in [18], and independently and, more 

recently, in [11], where it was also pointed out that in this case the potential 
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uncountable infinity of skew-symmetric matrices  that commute with the 
given potential matrix  having multiple eigenvalues, as shown in [11], the 
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commutation condition is very restrictive and some attempts have been made 
recently to weaken this restriction [24-27].  

Theorem 4.8 ([24]). Let the potential matrix  has a single eigenvalue  
with multiplicity , and let  be an orthogonal matrix, where the 

 submatrix  contains any  eigenvectors (their order is 
immaterial) of  corresponding to the multiple eigenvalue, and the  
submatrix  contains the remainder (i.e., ) of the eigenvectors of . 
Then, if the following conditions hold  
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the system (1.2) is unstable. 

This criterion is a special case of a result that is related to general positional 
perturbations [24], and it also, in the case , was obtained in [25]. It is 
obvious that under condition (4.2) equations (1.2) may be decoupled by using a 
coordinate transformation determined by the orthogonal matrix  into two 
subsystems, one of which assures instability. However, for the given matrix  
with multiple eigenvalues the orthogonal matrix  that diagonalize  is not 
unique, making it difficult to apply this result. An alternative rank criterion which 
gives the same instability result as Theorem 4.8, but which avoids the non-
uniqueness of the matrix , as well as the calculations of its eigenvalues and 
eigenvectors was developed in [26].  
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Theorem 4.9 ([26]). Let a system (1.2) be given. If  
 

 , (4.5) 
 

where the matrices  and  are determined by (4.3) and , then 
the matrix  has at least one repeated eigenvalue and system (1.2) is unstable. 

In condition (4.5) the matrices  and  can be replaced by the matrices  
and , respectively, since  and . 

The application of Theorem 4.8 and Theorem 4.9 is illustrated by the 
following example [26]. 

Example 4.1. Consider the system (1.2) with  
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Thus, for this choice of eigenvectors of the matrix  conditions (4.2) are 

satisfied and, according to Theorem 4.8, system (1.2), (4.6) is unstable for any 
nonzero value of the parameter . We now apply Theorem 4.9. It is clear that for 
this example , since . Also, we have  
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which yields , and, according to condition (4.5), instability follows.  

For the systems for which , condition (4.5) can be replaced by a 
simpler one as follows.  

Theorem 4.10 ([26]). If  and  
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where , then the matrix  has at least one repeated eigenvalue and 
the system (1.2) is unstable. 

In this criterion, condition (4.7) can be replaced by the following one [26] 
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. 
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 Theorem 4.11 ([27]). Suppose that conditions (6) are satisfied and  
 

 , (4.8)  
 

then the potential matrix  has at least one repeated eigenvalue and the system 
(1.2) is unstable.  

If  and the matrices  and  commute, then conditions (3.4), (4.8) 
obviously hold and Theorem 4.7 is a direct consequence of Theorem 4.11.    

Let us now go back to Example 4.1 to illustrate the above criterion. We have  
,  (i. e., conditions (3.4) are satisfied), and   

 

. 

 
Now, we calculate:  and . Thus, all conditions of 

Theorem 4.11 are satisfied and system (1.2), with matrices  and  as in (4.6), 
is unstable for every .  

5. THE EFFECT OF INFINITESIMAL CIRCULATORY  
FORCES ON STABILITY OF POTENTIAL SYSTEMS 

In Eq. (1.2), we substitute the circulatory matrix  with , where  is a 
dimensionless parameter which we introduce to characterize the intensity of 
circulatory forces, i.e., we consider the system 

 
 , (5.1) 

 
where  and  are same as in (1.2). Additionally, we assume that , i.e. 
that the corresponding conservative system is stable. If all eigenvalues of the 
potential matrix  are distinct, according to Theorem 3.2, system (5.1) is stable 
for sufficiently small . On the other hand, if the matrices  and  satisfy 
the condition of Theorem 4.9, then this condition also holds when the matrix 
is replaced by , and, consequently, system (5.1) is unstable for arbitrary 
nonzero , including infinitesimal small.   

The following example clearly shows that the class of infinitesimal circulatory 
forces causing instability is wider than that proposed by Theorem 4.9.  
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Example 5.1. Let   

  and    . (5.2) 

 
For this example, the condition of Theorem 4.9 is not satisfied. However, it 

can be shown, using theorems 2.2 and 2.3, that system (5.1), (5.2) is unstable and 
exhibits flutter if , and stable if , where 

 and .  
Therefore, the following problem arises: In system (5.1), let the positive defi-

nite potential matrix  have one multiple eigenvalue of multiplicity . 
Under what conditions is system (5.1) unstable (stable) for arbitrarily small 
nonzero ?   

To solve this problem, an approach based on classical perturbation theory for 
eigenvalues was recently developed [28], and the main stability results are 
reported below. 

Suppose that the potential matrix  has one eigenvalue  of multiplicity 
, and that the other eigenvalues , , are simple. Let 

 be an orthogonal matrix, where the  submatrix  contains 
 eigenvectors of  corresponding to the eigenvalue , and the  

submatrix  contains the remainder  of the eigenvectors of  
corresponding to the eigenvalues . The orthogonal matrix 

 reduces   and  to the forms 
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where the ( )-dimensional diagonal matrix  contains all 
the eigenvalues of  that are distinct from ,  is the m-dimensional identity 
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 , (5.5)  
 

where the diagonal matrix . 
Theorem 5.1 ([28]). If the positive definite potential matrix  has an 

eigenvalue  of multiplicity , , and 
 

 , (5.6)  
 

where the columns of the n by m matrix  are orthonormal eigenvectors of  
corresponding to the multiple eigenvalue , then the system described by Eq. 
(5.1) is unstable by flutter for arbitrarily small nonzero values of .  

Note that in the case , this result may also be established by an 
application of the results given in [5, Chapter 4], concerning the singularities on 
the stability boundary of a multi-parameter circulatory system (see also [29]). 

Theorem 5.2 ([28]). If  and the symmetric matrix  
determined by Eq. (5.4) has all distinct eigenvalues, then the system described 
by Eq. (5.1) is stable for sufficiently small values of .               

Theorem 5.3 ([28]). If  and the symmetric matrix  
determined by Eq. (5.4) has a multiple eigenvalue  of multiplicity , 

, and , where  is the skew-symmetric matrix determined 
by Eq. (5.5) and  is an  matrix of the  orthonormal eigenvectors of  
that belong to the eigenvalue , then the system described by Eq. (5.1) is 
unstable by flutter for arbitrarily small nonzero values of .  

Remark 5.1. If  and , the system described by Eq. (5.1) is stable 
for sufficiently small values of . Indeed, in this case the system in normal 
coordinates is decoupled into two subsystems, one of which is an m-dimensional 
stable purely potential system independent of  and the other is an (n-m)-
dimensional circulatory system that is stable for sufficiently small  

Theorem 5.4 ([28]). If  and , then the system described by Eq. 
(5.1) is stable for sufficiently small values of . 

Example 5.2. Consider system (5.1) with 
 

  and , (5.7) 

 
where at least one of the real numbers ,  and  is nonzero.  
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For this system  and . Obviously, 
 

 

 
and if , in view of Theorem 5.1, for arbitrarily small nonzero values of , the 
system of this example is unstable by flutter. Now suppose . Then , and 
the matrices (5.4) and (5.5) have the forms 
 

, . 

 
From this follows that ,  and  because . 

Thus, according to Theorem 5.3, if  and , the flutter instability again 
follows. On the other hand, if  and , it follows from Remark 5.1 and 
Theorem 5.4 that the system is stable for sufficiently small values of . We also 
observe that the condition of Theorem 4.9 is satisfied if and only if  and 

, and hence under these conditions, the system (5.1), (5.7) is unstable for 
any nonzero . 

Finally, we mention that for systems with less than 5 degrees of freedom, 
based on the above results, all skew-symmetric matrices can be described, 
such that circulatory forces determined by , where the parameter  is 
arbitrarily small, cause flutter instability in potential systems with multiple 
frequencies [28]. 
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STABILNOST NEKONZERVATIVNIH NEPRIGUŠENIH DINAMIČKIH 
SISTEMA: STARI I NOVI REZULTATI 

Sažetak 

U radu se razmatraju problemi stabilnosti linearnih nekonzervativnih neprigu-
šenih dinamičkih sistema sa više stepeni slobode. Prikazana su dva opšta alge-
barska kriterijuma koji sadrže potrebne i dovoljne uslove spektralne stabilnosti, 
statičke i dinamičke nestabilnosti. Zatim se daje pregled jednostavnijih kriterijuma 
Ljapunovljeve stabilnosti i nestabilnosti formulisanih preko svojstava opisnih ma-
trica razmatranih sistema. Posebna pažnja je posvećena nedavnim uopštenjima po-
znate Merkinove teoreme o nestabilnosti, kao i rezultatima istraživanja uticaja 
infinitezimalnih cirkulacionih sila na stabilnost potencijalnih sistema sa više-
strukim prirodnim frekvencijama. Nekoliko primjera je dato radi ilustracije pri-
mjenjljivosti odabranih kriterijuma i njihovog međusobnog odnosa.  
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PREGLED PARAMETARSKIH I NEPARAMETARSKIH 
ESTIMATORA FREKVENCIJSKI MODULISANIH SIGNALA 

Sažetak 

U radu su obrađeni neki savremeni pristupi u estimaciji nestacionalnih frekven-
cijski modulisanih (FM) putem parametarskih i neparametarskih metoda. Kod 
neparametarskih metoda posebnu pažnju smo posvetili tehnici koja je nazvana 
Vitebijevim algoritmom (VA) za estimaciju trenutne frekvencije (TF) mada se može 
primijeniti i kod drugih parametara nestacionarnih signala. Među parametarskim 
tehnikama posebnu pažnju smo posvetili estimatoru kvazimaksimalne vjerodostoj-
nosti (engl. quasi maximum likelihood — QML). Pokazano je da se putem QML 
mogu vršiti oba postupka — i parametarska i neparametarska estimacija. 

I UVOD 

Interes nauke vezan za obradu nestacionarnih frekvencijski modulisanih (FM) 
signala postoji posljednjih barem 80 godina, mada se neki pokušaji mogu pratiti 
i ranije [1–3]. Posebna dinamika je bila u doba razvoja prvih naprednih radarskih 
sistema. Od tada do danas oblast primjene je proširena i na savremene komuni-
kacije, multimedije, bioinformatiku, obradu mehaničkih signala, prepoznavanje 
govora itd. [4, 5]. Principi obrade ovih signala suštinski zavise od nivoa infor-
macija koje imamo o njima. Ako nemamo informacija o signalu, odnosno pojavi 
koju želimo da obradimo, pravi alati su oni iz domena analize signala. U ovom 
slučaju izdvajaju se tehnike vremensko-frekvencijske (VF) i vremensko-skalira-
ne (VS) obrade signala [4–6]. Nekoliko osnovnih informacija o ovim tehnikama 
može se pročitati u sekciji II ovoga rada, kao i u knjigama i preglednim radovima 
————— 
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