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Abstract

The paper deals with stability problems of linear multi-degree-of-freedom non-
conservative undamped dynamical systems. Two general algebraic criteria that
contain necessary and sufficient conditions for spectral stability, flutter and
divergence instability are presented. Then a survey of selected simple criteria —
expressed by the properties of the system’s matrices — for the Lyapunov stability
and instability of the systems is given. In particular, the recent generalizations of the
well-known Merkin’s instability theorem, as well as the results of the study of the
influence of infinitesimal circulatory forces on the stability of potential systems with
multiple frequencies, are reported. Several simple numerical examples are used to
illustrate the usefulness of the presented results and also to compare them with each
other.
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1. INTRODUCTION

The area of stability of dynamical systems is at the crossroads of physics,
mathematics and engineering. Physicists are interested in instabilities that arise
in nature, the mathematicians and mechanicians are interested in exact mathe-
matical formulations that provide conditions under which systems are stable, and
the engineers are interested in the analysis and design of engineered systems so
as to ensure their safe and stable behaviour.

* Ranislav M. Bulatovi¢, The Montenegrin Academy of Sciences and Arts; University of
Montenegro, Faculty of Mechanical Engineering, Podgorica, Montenegro
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In recent years, there has been a resurgence of interest in the stability of linear
dynamical systems, especially non-conservative ones, and new results appear. A
remarkable class of such dynamical systems is associated with potential
(conservative) and positional non-conservative (circulatory) forces and can be
described by the equation

Mj+Kqg+Ng=0 (1.1)

where M, K and N are n by n constant real matrices; M is symmetric and
positive definite (M M > 0), K _is symmetric, and N is skew- -symmetric
(N==-N T) M is the mass matrix, K describes the potential forces and N the
non-conservative forces. The n-vector of generalized coordinates is denoted by
¢, and the dots indicate differentiation with respect to the time, 7. Derivation of
Eq. (1.1) can be found in e.g. [1]. Such systems are often called non-conservative
undamped or circulatory. A variety of physical and technical processes, the
modelling of which results in circulatory systems, extends from self-oscillations
(shimmy) in aircraft wheels, controlled motions of two-legged walking robots,
and the destabilizing effect of viscous damping in bearing supports of turbine
rotors to dynamics of brake squealing, flutter in aerospace systems, magneto-
hydrodynamics and dynamics of nonholonomic systems [2].

Making the transformation x = M 1/Zq, where the exponent ' indicates the
unique posmve definite square root of the matrix M and premultiplying Eq.
(1.1) by M we get the following equation

X+Kx+Nx=0 (1.2)

where the symmetric matrix K = M™2KM™? and skew-symmetric
N=M"NM""? . Clearly, system (1.2) is equivalent to system (1.1), and we
shall from here on consider this system.

The system is said to be stable (Lyapunov stable) if every solution x(¢) of
equation (1.2) is bounded for all non-negative ¢. If N =0 (pure potential system),
according to the famous Lagrange theorem, the system is stable if the potential
matrix K is positive definite (K > 0); otherwise the potential system is unstable.
For N #0, it is possible that non-conservative positional forces can destabilize
a stable purely potential system, and that they can stabilize an unstable potential
system [1,3]. The study of the influence of circulatory forces on the stability of
potential systems, including many specific problems, has a rich history (see, for
example, monographs [1, 2, 4-6]).

All solutions of Eq. (1.2) can be characterized algebraically using properties
of the quadratic matrix polynomial L(u)= x°I +K + N, where I is identity
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matrix. The eigenvalues of the system (1.2) are zeros of the characteristic
polynomial A(u) = det(L(x)), and the multiplicity of an eigenvalue is the order
of the corresponding zero in A(x). If u is an eigenvalue, the nonzero vectors
in the null space of L(x) are the eigenvectors associated with 1. Since
A(pt) = A(—p), then all eigenvalues (spectrum of the system) are located
symmetrically with respect to both the real and imaginary axes in the complex
plane. This means that system (1.2) is stable only when every eigenvalue x is
on the imaginary axis and simple or semi-simple, i.e., if the eigenvalue has
multiplicity £, there are k linearly independent associated eigenvectors.

Although the eigenvalue analysis (spectral analysis) of the system with the
help of computer programs is in principle easy, the influence of forces and para-
meters in the system matrices on the stability becomes lost [7]. This is more or
less also the case when applying the general algebraic criteria [8,9], which are
similar to the well-known Routh-Hurwitz criterion for asymptotic stability, and
which are presented in Section 2. Therefore, alternative criteria, such as those
that provide simpler conditions directly in terms of the matrices K and N , are
more attractive, and many attempts have been made to establish such criteria. An
overview of such criteria is taken from our recent paper [10], and it is given in
Sections 3 and 4. In Section 5 the study of the influence of infinitesimal circula-
tory forces on the stability of potential systems with multiple natural frequencies
is reported. Such a situation of having multiple natural frequencies can, and often
does, arise in complex multi-degree-of-freedom systems such as spacecraft and
building structures in which, say, the fourth bending frequency coincides with
the second torsional frequency of vibration of the structure, see [11].

It should be noted that an approach to studying the stability of multi-parameter
circulatory systems, related to investigating singularities on the stability
boundary in the parameter space corresponding to multiple eigenvalues, is
presented in the monograph by Kirillov [2] (also, see [6, 12]), but it is not the
subject of this review.

2. TWO GENERAL ALGEBRAIC CRITERIA

The characteristic polynomial of Eq. (1.2) has the form
A(p) = det(L(p)) = ap® +a,p*" ™ + ..+ a, 1’ +a,, 2.1)

where a,a,,...,a, are real coefficients. It is clear that g, = 1. Write the 2nx 2n
discriminant matrix for A(u)



8 Ranislav Bulatovié

a, a a, a, e a, 0 0 O
0 n (n-la (n-2)a, .. a, 0 0 O
a, a, a, w a,, 0 0 O
0 n (n-a)a, .. 2a,, 0 0 0 2.2)
0 O 0 0 a q a,
0 O 0 0 O n o
The sequence
D, D,,...,D, (23)

where D, is the determinant of the submatrix of (2.2) formed by the first 2i rows
and 2i columns, is called a discriminant sequence of the polynomial (2.1).

Theorem 2.1 ([8]). 4 necessary and sufficient condition for all the eigenva-
lues w1 of the system (1.2) to be with zero real parts (i. e., for the system to be
spectral stable) is that the elements of the discriminant sequence (2.3) are all
nonnegative and that all the coefficients of the polynomial (2.1) are nonnegative.

It is useful to distinguish between two different kinds of instability of the
system (1.2):

— The system (1) is statically unstable (divergence) if at least one of the
eigenvalues y; is real while remaining eigenvalues are on the imaginary axis
(there is an aperiodic, exponentially growing motion);

— The system (1) is oscillatory unstable (flutter) if at least one of the
eigenvalues 4 is complex with non-zero real part (there is an oscillating motion
with exponentially growing amplitude).

Remark 2.1. Note that violation of the conditions of Theorem 2.1 implies
instability, either flutter (D, <0 for some ie {l,...,n}) or divergence (all
D. >0 and a, <0 forsome je{l,..,n})[8].

Another approach based on the properties of a quadratic form, the
coefficients of which are traces of the powers of the matrix — (K + N), was
developed in [9].

Define the quadratic form

p(&) =& PE, e, 24
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with
n P D P
b P, P P,
P=\"p, py Ps o Pua |» (2.5)
pn—l pn pn+1 . p2n—2
where
p, =(=DTr(K+N)", k=1.2,..2n-2. (2.6)

Here and henceforth 77B stands for the trace of a matrix B.

Theorem 2. 2 ([9]). The system (2) is:

a) spectrally stable if and only if p(£)>0, and a, >0, i=1,...,n;

b) unstable by divergence if and only if p(&) >0, and Ja, <0,

¢) unstable by flutter if and only if p(&) can take negative values.

We remark that the coefficients a; of the polynomial (2.1) can be expressed
in terms of p, by means of the Leverrier algorithm [13]

ka, ==py—a\pi —.—ap, k=12...n 2.7)

In the case when system (1.2) dependent on physical parameters, formulae
(2.6) and (2.7) provide a connection between the conditions for the system to be
spectrally stable (unstable by divergence or by flutter) and the parameters of the
system. Theorem 2.2 can then be used to divide the space of parameters into the
regions of spectral stability, divergence and flutter. For systems with small
degrees of freedom this approach yields results straightforwardly, but it, as well
as the approach based on Theorem 2.1, becomes numerically involved for larger
dimensional systems.

Both the above criteria guarantee only spectral stability of the non-
conservative undamped system, but not the Lyapunov stability, because among
the eigenvalues on the imaginary axis there can be multiple ones, without a
complete set of corresponding eigenvectors, and in this case the secular terms
appear in solutions of Eq. (1.2).

Theorem 2.3 ([9]). If p(&) >0 and all the coefficients a; of the charac-
teristic polynomial (2.1) are positive, then the system (1.2) is Lyapunov stable.

According to Theorem 2.2-a and Theorem 2.3, the boundaries of the spectral
and Lyapunov stability of non-conservative undamped systems may be identical,
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as the following example shows. If the boundaries are not identical, they differ
by a small set. The stability, divergence and flutter boundaries for multi-
parameter non-conservative undamped systems in the generic case were
investigated in [2,12].

Example 2.1. Consider the three degrees of freedom system with

1 0 0 0 1 0
K=|0 1 k|,N=¢c -1 0 0}, (2.8)
0 £ 1 0 0 O

where k and c are real numbers.
From (2.6), (2.7) and (2.8), we have

P =-3. p, =3+2(k-c?),
ps=-3-6(k* —c?), (2.9)
P, =3+12(k° =c*)+2(k* —=c*)?,

and
a,=3, a,=3+c" -k’ a;=1+c*-k*. (2.10)

In the matrix

3 p p
P=|p, p, ps) (2.1D)
Py P Dy

the first diagonal entry is positive. Hence, by Schur’s complement [14], the
matrix P is positive semi-definite if and only if the two dimensional matrix

. -pi/3 - 3 1 -2
p| P27P / Ps p11272/ —2(k? =) o (2.12)
Ps—PP,/3  py—py/3 -2 4+(k”-c")/3

is positive semi-definite, i.e., if k> —c* > 0. Then, according to Theorem 2.2,
the system is: spectrally stable if 0<k?—c? <1, unstable by divergence if
k*—c®>>1, and unstable by flutter if k*—¢”><0 (see Fig. 2.1). If
0<k* —c? <1, according to Theorem 2.3, the system is stable in the sense of
Lyapunov. By means of the eigenvalue analysis, one can further show that the



Stability of Non-conservative Undamped Dynamical Systems: Old and New Results 11

system is not Lyapunov stable on the boundaries k* —¢® =1 and c¢=zk,
except at the point (0,0).

C A
F
D
S S
-1 1 k'

Fig. 2.1. Stability (S), divergence (D) and flutter (F) domains for the example 2.1.

3. SIMPLE STABILITY CRITERIA

There are only a few simple criteria that contain sufficient conditions for the
stability of the systems under consideration.

It is frequently the case that the potential matrix is positive definite (K > 0).
For this case, using Lyapunov’s direct method, Agafonov [15,16] proved the
following result.

Theorem 3.1 ([15,16]). The system (1.2) is stable if K = diag(2,,A,,...,,),
A >4 >..A, >0, and

N[, <{l(A+4,)" +24,517 = (4 +4,)} /2, (3.1

where s= min |4 —A, | and ||.||, denotes the maximum absolute row sum
I<i#j<n 7
norm.
Recently, by means of the well-known Bauer-Fike localization theorems, the
following assertion was proved, which also covers the case K > 0.
Theorem 3.2 ([17]). Let A,,...,A be the eigenvalues of the positive definite
potential matrix K . If
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I Nl,< min | 4—2, /2, (3.2)

1<i#j<n

where || N ||, denotes the spectral norm of the matrix N (i. e., the square root
of the maximum eigenvalue of N"N ) , then the system (1.2) is stable.

It should be noted that the condition (3.2) in Theorem 3.2 can be replaced by
the cruder inequality

| Nll.< min [ 2 =4,]/2, (3.3)
<i#j<n

which is easy to check, because || N||,<|| N||,,. Also, it is easy to see that
whenever (3.1) is satisfied, then condition (3.3), as well as (3.2), is also satisfied.
The following numerical example shows that Theorem 3.2 significantly
improves Theorem 3.1.
Example 3.1. Consider the system of three degree of freedom with

0 3 4 1 0 0
N=v|-3 0 0[,veR,K=|0 4 0|
-4 0 0 0 0 8

For this system, we calculate | N|,=5|v|, || N|,=7|v|, and s = 3. The
conditions (3.3) and (3.4) yield | v |< 0.3 and |v |< 0.214..., respectively, while
Theorem 3.1 (condition (3.1)) predicts that the system of this example is stable
if | v < 0.023....

When the potential matrix is not positive definite, the following condition
sufficient for stability was obtained also by Agafonov [15].

Theorem 3.3 ([15]). The system (1.2) is stable if K =diag(A,A,,...,1,).
A>A>.A4,>0 A <0, and

a+b-[(a=b)" +4s | N[}]" > 6457 (84 +s)(s —4[ N..)" [ NI,

with

n n—1
a=24,,+ Zvj—]k (A —A,,) and =2, + Zvjk (A =24,).

k=1k#n—1 k=1

where v, denote elements of the circulatory matrix N .
In the case A, =0, this result can be improved as follows.
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Theorem 3.4 ([17]). Let K =diag(A,,A,,...,A,) with 4, >4, >..>4 >0
n—1
and A, =0.If | N|,< min [4 —A4,[/2 and Z|vn =0, where v;are the
1<i j<n = v
coefficients of the matrix N , then the system (1.2) is stable.
To compare Theorem 3.4 and Theorem 3.3, we consider a two degree of

freedom system with
1 0 0 1
K =4 and N =v ,
0 0 -1 0

where 4, >0 and v eR. Theorem 3.4 gives 0<2|v|4' <1, which is a
sufficient and necessary condition for stability of this system [1]. On the other
hand, Theorem 3.3 reduces to the much stronger condition
0<2|v|A4" <0.103...[15].

Suppose that

[K,N*]=0 and [K, NKN]=0, (3.4)

where [.,.] denotes the commutator of two matrices. In particular, if n =2, then
conditions (3.4) are satisfied.

Theorem 3.5 ([18]). If the circulatory matrix N is non-singular, then system
(1.2), (3.4) is stable if and only if

A=NKN'K-N*>0 (3.5)
and
K+NKN™'-24"%>0. (3.6)

It should be noted that if det N # 0, then n is necessarily even because the
circulatory matrix N is skew-symmetric.
Example 3.2. Let

0 0 1 15
0 0 15 1

K =diag(5,5,-1,—1) and N =v , 02veR. (3.7
-1 -15 0 O

=15 -1 0 0
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Obviously, Theorems 3.1-3.4 are not applicable to this example. However,
matrices (3.7) satisfy conditions (3.4) and, in addition, det N # 0. Therefore,
Theorem 3.5 is applicable. It is easy to see that conditions (3.5) and (3.6) reduce
to the conditions | v |> J5/14 and | v |<3/16, respectively. Thus, according to
Theorem 3.5, system (1.2), (3.7) is stable only if | v |e (\/5/14,3/16).

The next criterion, related to the subclass of system (3.4) for which K >0, is
much simpler than Theorem 3.5, and it allows the possibility of det N =0 (for
example, it is case when 7 is odd).

Theorem 3.6 ([17]). @) If det N #0 and K >0, then the system (1.2), (3.4)
is stable if and only if

[K,N]?—4N*>0; (3.8)

b)If det N =0 and K >0, then the system (1.2), (3.4) is stable if and only if
the following conditions are satisfied

([KﬂN]2_4N4)|ImN>O’ K|K€rN>O’ (39)

where Im N and KerN stand for the image and null space of N , respectively.
Example 3.3. Let

0 1 1
K =diag(3,]l,])and N=v|-1 0 0|, veR. (3.10)
-1 0 0

The system of this example satisfies conditions (3.4), and, in addition,
det N =0 and K > 0. Therefore, part (b) of Theorem 3.6 can be applied. This
assertion yields 1—2v* >0, i. e., system (1.2), with matrices K and N as in
(3.10), is stable only when |v |<+/2 /2. On the other hand, it is easy to see that
the characteristic equation of this system has the following roots

+i, +i2+N1-217,

which all are purely imaginary and simple if 1 —2v?* > 0, which is in accordance
with the prediction of Theorem 3.6.
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4. SIMPLE INSTABILITY CRITERIA AND GENERALIZATIONS
OF THE MERKIN THEOREM

Theorem 4.1 ([4]). The system (1.2) is unstable if K =0.

This assertion is a special case of the following result.

Theorem 4.2 ([3]). The system (1.2) is unstable if the trace of matrix K is
non-positive, i. e., TrK <0.

Obviously, this result implies that system (1.2) is unstable if the potential
matrix K is negative semi-definite (see also [19]).

We note that Theorem 4.2 is inapplicable to the case when the corresponding
conservative system is stable, i. e., K > 0. This case is covered by the following
criterion, which is easy to check.

Theorem 4.3 ([20]). The system (1.2) is unstable if

1
I N2> K |7 _;(mqa (4.1)

where || . ||F denotes the Frobenius norm.

Recall that the Frobenius norm of a real matrix is defined as the square root
of the sum of the squares of its elements. Condition (4.1) gives an estimation of
lower bound for the intensity of circulatory forces (measured by the Frobenius
norm of N ) so that the introduction of arbitrary linear circulatory forces, the
intensity of which is higher than this bound, into a stable potential system
destroys its stability. To illustrate Theorem 4.3 we return to Example 3.3. We
have || N|>=4v, | K|%=11, TrK =5, and the instability condition (4.1)
yields | 1\//L> J2/3 . Notice that the system of this example is unstable if and only
if |v [>+/2/2, as shown in the previous section.

Theorem 4.3 was obtained afterwards in [21], along with the two following
sufficient conditions for the instability (also, see [9]).

Theorem 4.4 ([20]). The system (1.2) is unstable if one of the following
inequalities holds

@) n(| K* | +| N [z 41 KN [ +2Tr(KN) ) < (|1 K | = N [[7)*;

b (KN =N NIEDAK? |7+ N 7 —41 KN [ +2Tr((KN)*))
<(Tr(K*)+3Tr(KN?)) .

It is easy see using appropriate examples that neither Theorem 4.3 nor
Theorem 4.4 implies the other one.
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A remarkable result concerning the destabilizing effect of circulatory forces
states: “If linear non-conservative positional forces are introduced into a stable
potential system that has equal natural frequencies of vibration, then the stability
will be destroyed, irrespective of any nonlinear terms” [1]. This assertion is
known as Merkin’s theorem, which was first published in 1956 [4], and which
can be viewed as a counterpart of one of the classical Kelvin-Tait-Chetayev
stability theorems for circulatory forces (see [22]). For linear systems, this
statement can be reformulated in terms of the matrices K and N as follows.

Theorem 4.5 (Merkin [1,4]). The system (1.2) is unstable if N #0 and
K=, 1, eR".

In other words, the addition of arbitrary circulatory forces, infinitezimal or
finite, to a consrevative system whose the potential matrix has the same
eigenvalues produces instability. If we additionally assume thatdet N # 0, then
the system will be completely unstable (i. e., every nonzero solution x(z) of Eq.
(1.2) is unbounded). It follows from the following more general result which
implicitly requires non-singularity of the circulatory matrix N .

Theorem 4.6 ([23] ). The system (1.2) is completely unstable if
2N'N-[K,N]>0.

Let us consider Example 3.2 again. For this system, we have

226v  30v -3 —45

. 30v 226 —45 -3
NN -[K,N]=2v
~3  —45 226v 30v

-45 -3 30v 226v

It is easy to see that the above matrix is positive definite if and only if
| v |>3/14, and, according to Theorem 4.6, under this condition system (1.2),
(3.7) is completely unstable.

It should be observed that the right hand side of inequality (4.1) is equal to
zero only in the degenerate case when all eigenvalues of the potential matrix K
are identical, and, consequently, Theorem 4.3 is a generalization of the Merkin’s
theorem. Another obvious generalization is given by the following statement.

Theorem 4.7 ([18,11]). The system (1.2) is unstable if N #0 and [K, N]=0.

This generalization was obtained in [18], and independently and, more
recently, in [11], where it was also pointed out that in this case the potential
matrix K has at least one repeated eigenvalue (i.e., the corresponding conserva-
tive system has at least two equal natural frequencies). Although there is an
uncountable infinity of skew-symmetric matrices N that commute with the
given potential matrix K having multiple eigenvalues, as shown in [11], the
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commutation condition is very restrictive and some attempts have been made
recently to weaken this restriction [24-27].

Theorem 4.8 ([24]). Let the potential matrix K has a single eigenvalue A,
with multiplicity m 22, and let T =[7, | T,] be an orthogonal matrix, where the
nx p submatrix 7, contains any 2< p<m eigenvectors (their order is
immaterial) of K corresponding to the multiple eigenvalue, and the nxr
submatrix 7, contains the remainder (i.e., 7 = n— p) of the eigenvectors of K.
Then, if the following conditions hold

T T
T'NT, #0, T/ NI, =0, 4.2)

the system (1.2) is unstable.

This criterion is a special case of a result that is related to general positional
perturbations [24], and it also, in the case p =m, was obtained in [25]. It is
obvious that under condition (4.2) equations (1.2) may be decoupled by using a
coordinate transformation determined by the orthogonal matrix 7 into two
subsystems, one of which assures instability. However, for the given matrix K
with multiple eigenvalues the orthogonal matrix 7 that diagonalize K is not
unique, making it difficult to apply this result. An alternative rank criterion which
gives the same instability result as Theorem 4.8, but which avoids the non-
uniqueness of the matrix 7', as well as the calculations of its eigenvalues and
eigenvectors was developed in [26].

Introduce two semi-definite matrices

_ n—1
[K*,N'T'[K",N'] and ®=> K'N°K* (4.3)

k=0

ME

QO =

m

>

&
I}

LR

as well as the following matrices

[K,N]
K,N*?
[ : ] N
- NK
S =| [K,N""] |,and L=| . (4.4)
K>, N '
[ | ] K™
_[Km—l,Nmfl_

where m is a natural number such that m <n.
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Theorem 4.9 ([26]). Let a system (1.2) be given. If

rank® =2+ rankQ , 4.5)

where the matrices ® and €  are determined by (4.3) and w = rank®, then
the matrix K has at least one repeated eigenvalue and system (1.2) is unstable.

In condition (4.5) the matrices @ and €2 can be replaced by the matrices L
and S, respectively, since rank® = rankL and rankQ) = ranksS.,.

The application of Theorem 4.8 and Theorem 4.9 is illustrated by the
following example [26].

Example 4.1. Consider the system (1.2) with

2 -1 0 -1 o 2 -1 -2
-1 2 0 -2 0 2 -1
K= and N=v , (4.6)
0 0 1 1 -2 0 -2
-1 1 0 2 2 I 2 0

where v is a nonzero real parameter.
The matrix K has the following eigenvalues and corresponding mutually
orthogonal eigenvectors:

1 1

=1,t"=—M1 01 1],{"=—1 1 -1 0],
ﬂ1,2,3 1 \/5 2 \/g

z;”:i[o 11 -1, 4,=41"= ! n -1 0 -11".

V3 3

For this system of eigenvectors, it is easy to see, the second condition of (4.2)
is not satisfied. However, the following system of 4 mutually orthogonal vectors

1 = -2 -1 3], r§2)=%/—[9 71 2],

L
il Al

are also eigenvectors of the matrix K associated with the eigenvalues 4,,, =1
and A, =4, respectively, and we have

t(2)

-1 5 1], = -1 0 -1,
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> @] N t,f)]:&{o 1},

-1 0

and

RS RN

Thus, for this choice of eigenvectors of the matrix K conditions (4.2) are
satisfied and, according to Theorem 4.8, system (1.2), (4.6) is unstable for any
nonzero value of the parameterv . We now apply Theorem 4.9. It is clear that for
this example w=rank® =4, since det N # 0. Also, we have

9 -9 0 -9
3 -9 10 -5 8
Q, =Y [K* N'T[K*,N']=114882v° ,
k=l 0O -5 25 5
-9 8 5 10

which yields rankQ), =2, and, according to condition (4.5), instability follows.
For the systems for which [K, N*]=0, condition (4.5) can be replaced by a
simpler one as follows.
Theorem 4.10 ([26]). If [K,N*]=0 and

r—1
rankN =2+ rank ) [K*, N [K*,N], 4.7)

k=1

where r =rankN , then the matrix K has at least one repeated eigenvalue and
the system (1.2) is unstable.
In this criterion, condition (4.7) can be replaced by the following one [26]

[K,N]

K*,N]
rankN > 2 + rank .
[K"™,N]

For the systems confided by conditions (3.4) a much simpler criterion than
the one given by Theorem 4.10 can be formulated as follows.
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Theorem 4.11 ([27]). Suppose that conditions (6) are satisfied and

rank[K,N] < rankN , (4.8)

then the potential matrix K has at least one repeated eigenvalue and the system
(1.2) is unstable.

If N#0 and the matrices K and N commute, then conditions (3.4), (4.8)
obviously hold and Theorem 4.7 is a direct consequence of Theorem 4.11.

Let us now go back to Example 4.1 to illustrate the above criterion. We have
[K,N*]=0, [K, NKN]=0 (i. e., conditions (3.4) are satisfied), and

0 1 -5 -1

1 -2 5 0
[K,N]=v

-5 5 0 5

-1 0 5 2

Now, we calculate: rankN =4 and rank[K,N]=2. Thus, all conditions of
Theorem 4.11 are satisfied and system (1.2), with matrices K and N asin (4.6),
is unstable for every v #0.

S. THE EFFECT OF INFINITESIMAL CIRCULATORY
FORCES ON STABILITY OF POTENTIAL SYSTEMS

In Eq. (1.2), we substitute the circulatory matrix N with &N, where € is a
dimensionless parameter which we introduce to characterize the intensity of
circulatory forces, i.e., we consider the system

X+Kx+eNx=0, (5.1)

where K and N are same as in (1.2). Additionally, we assume that K >0, i.e.
that the corresponding conservative system is stable. If all eigenvalues of the
potential matrix K are distinct, according to Theorem 3.2, system (5.1) is stable
for sufficiently small | £ |. On the other hand, if the matrices K and N satisfy
the condition of Theorem 4.9, then this condition also holds when the matrix N
is replaced by &N, and, consequently, system (5.1) is unstable for arbitrary
nonzero | ¢ |, including infinitesimal small.

The following example clearly shows that the class of infinitesimal circulatory
forces causing instability is wider than that proposed by Theorem 4.9.
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Example 5.1. Let

0 1 6
K =diag(1,1,4)and N=|-1 0 0]. (5.2)
6 0

For this example, the condition of Theorem 4.9 is not satisfied. However, it
can be shown, using theorems 2.2 and 2.3, that system (5.1), (5.2) is unstable and
exhibits flutter if |gle(0,a)U(b,0), and stable if |g|e(a,b), where
a=0.157... and b=10.253....

Therefore, the following problem arises: In system (5.1), let the positive defi-
nite potential matrix K have one multiple eigenvalue of multiplicity m>2.
Under what conditions is system (5.1) unstable (stable) for arbitrarily small
nonzero | ¢ |?

To solve this problem, an approach based on classical perturbation theory for
eigenvalues was recently developed [28], and the main stability results are
reported below.

Suppose that the potential matrix K has one eigenvalue A, of multiplicity
m=2, and that the other eigenvalues A, i=m+1,..,n, are simple. Let
T =[T,|T, ] beanorthogonal matrix, where the nx m submatrix 7, contains
m eigenvectors of K corresponding to the eigenvalue A, and the nx (n—m)
submatrix 7, contains the remainder n—m of the eigenvectors of K
corresponding to the eigenvalues 4 # A, i =m+1,...,n. The orthogonal matrix
T reduces K and N to the forms

~ 2~ AA[ N
A:TTKTzdiag(/lolm,An_m), N:TTNT: llT A12 i
—N, Ny

where the (n —m )-dimensional diagonal matrix A, =T { KT contains all

the eigenvalues of K that are distinct from A, /,, is the m-dimensional identity
matrix, and

]Qll = Z‘fNTIVn = _ZQITI’ NlZ = TmTNT;lfm’ NZZ = ]TnT;mNT;l—m = _]’\\]27"2 (53)
Introduce the following m X m matrices

S=8"=N,,DN/, (5.4)
and
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G=-G" =N,,DN,,DN',, (5.5)
where the diagonal matrix D= (A, A/, ).
Theorem 5.1 ([28]). If the positive definite potential matrix K has an
eigenvalue A, of multiplicity m, 2<m<n, and

N, =T'NT, #0, (5.6)

where the columns of the n by m matrix T, are orthonormal eigenvectors of K
corresponding to the multiple eigenvalue A, then the system described by Eq.
(5.1) is unstable by flutter for arbitrarily small nonzero values of | ¢ |.

Note that in the case m =2, this result may also be established by an
application of the results given in [5, Chapter 4], concerning the singularities on
the stability boundary of a multi-parameter circulatory system (see also [29]).

Theorem 5.2 ([28]). If ]\A]11 = TmTNTm =0 and the symmetric matrix S
determined by Eq. (5.4) has all distinct eigenvalues, then the system described
by Eq. (5.1) is stable for sufficiently small values of | ¢ |.

Theorem 5.3 ([28]). If ](/'11 =T'NT, =0 and the symmetric matrix S
determined by Eﬂ (5.4) has a multtple eigenvalue s, of multiplicity r,
2<r<m, and T GT # 0, where G is the skew-symmetric matrix determined
by Eq. (5.5) and T is an mxr matrix of the r orthonormal eigenvectors of S
that belong to the eigenvalue s, then the system described by Eq. (5.1) is
unstable by flutter for arbitrarily small nonzero values of | ¢ |.

Remark 5.1.If N;;, =0 and N,, =0, the system described by Eq. (5.1) is stable
for sufficiently small values of |¢|. Indeed, in this case the system in normal
coordinates is decoupled into two subsystems, one of which is an m-dimensional
stable purely potential system independent of & and the other is an (n-m)-
dimensional circulatory system that is stable for sufficiently small | & |.

Theorem 5.4 ([28]). If N, =0 and N,, =0, then the system described by Eq.
(5.1) is stable for sufficiently small values of | ¢ |.

Example 5.2. Consider system (5.1) with

0 a b 0
-a 0 0 2b

K =diag(1,1,2,5) and N = , (5.7)
-b 0 0 ¢

0 =26 -c O

where at least one of the real numbers a, b and ¢ is nonzero.
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For this system A, =1 and m = 2. Obviously,

N 0 1
N, =a

and if a # 0, in view of Theorem 5.1, for arbitrarily small nonzero values of | ¢ |, the
system of this example is unstable by flutter. Now suppose @ = 0. Then N,, =0, and
the matrices (5.4) and (5.5) have the forms

. T 0 1
§S=b°1,, G=b'c .
-1 0

From this follows that s, = b*, r=2 and szGi =G because i =1,
Thus, according to Theorem 5.3, if a = 0 and bc # 0, the flutter instability again
follows. On the other hand, if a =0 and bc =0, it follows from Remark 5.1 and
Theorem 5.4 that the system is stable for sufficiently small values of & . We also
observe that the condition of Theorem 4.9 is satisfied if and only if a # 0 and
b =0, and hence under these conditions, the system (5.1), (5.7) is unstable for
any nonzero & .

Finally, we mention that for systems with less than 5 degrees of freedom,
based on the above results, all skew-symmetric matrices N can be described,
such that circulatory forces determined by &N, where the parameter & is
arbitrarily small, cause flutter instability in potential systems with multiple
frequencies [28].
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STABILNOST NEKONZERVATIVNIH NEPRIGUSENIH DINAMICKIH
SISTEMA: STARI I NOVI REZULTATI

Sazetak

U radu se razmatraju problemi stabilnosti linearnih nekonzervativnih neprigu-
Senih dinamickih sistema sa viSe stepeni slobode. Prikazana su dva opsta alge-
barska kriterijuma koji sadrze potrebne i dovoljne uslove spektralne stabilnosti,
staticke 1 dinamicke nestabilnosti. Zatim se daje pregled jednostavnijih kriterijuma
Ljapunovljeve stabilnosti i nestabilnosti formulisanih preko svojstava opisnih ma-
trica razmatranih sistema. Posebna paZnja je posvecena nedavnim uopStenjima po-
znate Merkinove teoreme o nestabilnosti, kao i rezultatima istrazivanja uticaja
infinitezimalnih cirkulacionih sila na stabilnost potencijalnih sistema sa vise-
strukim prirodnim frekvencijama. Nekoliko primjera je dato radi ilustracije pri-
mjenjljivosti odabranih kriterijuma i njihovog medusobnog odnosa.






	Ranislav M. Bulatović: STABILITY OF NON-CONSERVATIVE UNDAMPED DYNAMICAL SYSTEMS: OLD AND NEW RESULTS



