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1. Introduction

We will talk here about bridges between statistics, mechanics, and geometry. In particular, we talk
about the links we developed and employed between pencils of quadrics, moments of inertia, and linear and
orthogonal regressions. This cross-fertilization between the areas appears to be beneficial for each of them.
Individual quadrics have been in use in statistics from late XIX century. Recently, we constructed a new
object, a confocal pencil of quadrics, associated to a given data set, see [15]. We demonstrated in [15] that
this confocal pencil of quadrics is a natural and very useful instrument to understand the data.

1.1. Confocal pencils of quadrics. We age going to recall about confocal pencils of conics in the
plane and its generalizations, the confocal pencils of quadrics in R

k for for any k. We will also recall the
definition of the associated Jacobi elliptic coordinates.
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Abstract. We emphasis the importance of bridges between statistics, mechanics, and geometry. In par-
ticular, we developed and employed links between pencils of quadrics, moments of inertia, and linear and
orthogonal regressions. For a given system of points in R

k representing a sample of a full rank, we recently
constructed a pencil of confocal quadrics which provided a useful geometric tool to study the data.

Contents

1. Introduction 1
1.1. Confocal pencils of quadrics 1
1.2. Application to billiard systems within ellipses. 2
1.3. Quadrics in Statistics 3
1.4. Axial and planar moments of inertia in R

3 4
2. The classical results of Pearson and their generalizations 7
3. Conclusion 9
Acknowledgements 10
References 10

1. Introduction

We will talk here about bridges between statistics, mechanics, and geometry. In particular, we talk
about the links we developed and employed between pencils of quadrics, moments of inertia, and linear and
orthogonal regressions. This cross-fertilization between the areas appears to be beneficial for each of them.
Individual quadrics have been in use in statistics from late XIX century. Recently, we constructed a new
object, a confocal pencil of quadrics, associated to a given data set, see [15]. We demonstrated in [15] that
this confocal pencil of quadrics is a natural and very useful instrument to understand the data.

1.1. Confocal pencils of quadrics. We age going to recall about confocal pencils of conics in the
plane and its generalizations, the confocal pencils of quadrics in R

k for for any k. We will also recall the
definition of the associated Jacobi elliptic coordinates.

2010 Mathematics Subject Classification. 62J05, 70G45, 51M15 (62J07, 53A17, 70H06).
Key words and phrases. ellipsoid of concentration; confocal pencil of quadrics; planar moments of inertia; restricted

regression; regularization and shrinkage; restricted PCA.

1

 representing a sample of a full rank, we recently constructed a pencil of confocal 
quadrics which provided a useful geometric tool to study the data.

Key words and phrases: ellipsoid of concentration, confocal pencil of quadrics, pla-
nar moments of inertia, restricted regression, regularization and shrinkage, restricted PCA

* Vladimir Dragović, Department of Mathematical Sciences, The University of Tex-
as at Dallas, Richardson, TX, USA, Mathematical Institute, of the Serbian Academy of 
Sciences and Arts, Belgrade, Serbia

** Borislav Gajić, Mathematical Institute, of the Serbian Academy of Sciences and 
Arts, Belgrade, Serbia

Bridging Statistics, Geometry, and Mechanics
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1. Introduction

We will talk here about bridges between statistics, mechanics, and geometry. In par-
ticular, we talk about the links we developed and employed between pencils of quadrics,
moments of inertia, and linear and orthogonal regressions. This cross-fertilization be-
tween the areas appears to be beneficial for each of them. Individual quadrics have
been in use in statistics from late XIX century. Recently, we constructed a new object,
a confocal pencil of quadrics, associated to a given data set, see [15, 16]. We demon-
strated in [15, 16] that this confocal pencil of quadrics is a natural and very useful
instrument to understand the data.

1.1. Confocal pencils of quadrics. We age going to recall about confocal pencils
of conics in the plane and its generalizations, the confocal pencils of quadrics in R

k for
for any k. We will also recall the definition of the associated Jacobi elliptic coordinates.

The family of confocal conics in the plane can be given analytically:

(1.1) Cλ :
x2

α− λ
+

y2

β − λ
= 1.
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We notice that the family (1.1) contains two types of smooth conics: ellipses, when
λ < β, and hyperbolas, when λ ∈ (β, α). Gometrically, they all share a common pair
of foci. We also notice that there are two degenerated conics in the confocal family:
the x-axis, for λ = β; and the y-axis, for λ = α.

Each point in the plane, which is not a focus of the confocal family, lies on exactly
two conics Cλ1

and Cλ2
from (1.1) – one ellipse and one hyperbola, which are orthogonal

to each other at the intersection point.
Let an ellipsoid be given in R

k by:

(1.2) E :
x2
1

α1
+ · · ·+

x2
k

αk

= 1, α1 > α2 > · · · > αk > 0.

The family of quadrics confocal with E is:

(1.3) Qλ(x) =
x2
1

α1 − λ
+ · · ·+

x2
k

αk − λ
= 1,

where λ is a real parameter. We will say that confocal quadrics Qλ,Qµ are of the
same type if there exists j, j = 1, . . . , k − 1 such that αj > λ, µ > αj+1 or αk > λ, µ.
For a point given by its Cartesian coordinates x = (x1, . . . , xk), the Jacobi elliptic
coordinates (λ1, . . . , λk) are defined as the solutions of the equation in λ: Qλ(x) = 1.
The quadrics Qλ1

,Qλ2
, . . . ,Qλk

which contain a given point x are of different types [4].
Jacobi introduced the Jacobi elliptic coordinates in [31] in 1838 when he used them to
integrate the equations of geodesics on ellipsoids.

Figure 1. From [17] and [18]: Confocal quadrics in R
3: one ellipsoid,

one 1-sheeted hyperboloid, and one 2-sheeted hyperboloid, intersecting
orthogonally at eight points.

1.2. Application to billiard systems within ellipses. Similar in spirit to the
use of the Jacobi elliptic coordinates in solving the equations of geodesics on ellipsoids,
is the application of these coordinates to billiards within ellipsoids.

The theory of mathematical billiards is one of theoretical models for motion of a ball
inside a billiard table, and its reflection off the boundary of the table. Let us suppose
that a planar domain is given. Mathematical billiard in this domain is a dynamical
system where a material point of unit mass moves under inertia without constraints and

friction within the domain, and obeys the billiard reflection law off the boundary [32].
The billiard reflection law coincides with the law reflection of light in geometric optics.
This theory provides an idealized model of the physical reality in many aspects. For
example, a usual billiard ball is replaced by a material point, and the friction and spin
are neglected. Nevertheless, this model has many important and natural applications,
for example in geometric optics. Thus, the billiard dynamics has two different regimes:
the first one is inside the billiard domain, when we assume that the material point moves
under the inertia, i.e. uniformly along straight lines. The second regime concerns with
the impacts off the boundary. We assume here that the impacts are absolutely elastic.
In other words, the geometric billiard law is satisfied: the impact and reflection angles
are congruent to each other and the speed remains unchanged after the impacts. Here,
the trajectories of the mathematical billiards are polygonal lines with vertices at the
boundary.

We focus here only on elliptical billiards – defined by an ellipse in the Euclidean
plane as the boundary of a billiard table:

E :
x2

α
+

y2

β
= 1, α > β > 0.

The key property of such billiards is the existence of caustics. Each trajectory of the
elliptic billiard has a caustic: a curve such that each segment of the trajectory lies on
a line tangent to the caustic. The existence of a caustic is a geometric manifestation
of the integrability of billiard systems within ellipses.

(a) (b)

Figure 2. 2(a): Billiard reflection law; 2(b): The caustic of a billiard trajectory.

1.3. Quadrics in Statistics. Ellipses, as two-dimensional quadrics, got incorpo-
rated in statistics in 1886 in Galton’s paper [26]. That seminal paper introduced the
law of regression.

To study the hereditary transmissions, Galton collected the data about the height
of 930 adult children and 205 of their respective parentages. He introduced a “mid-
parent” height, as a weighted average of the heights of the parents, and assigned it
to each pair of parents. He established the average regression from mid-parent to
offsprings and from offsprings to mid-parent. Using this data Galton formulated the
law of regression toward mediocrity:
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Figure 3. Confocal family
of conics in plane

Figure 4. A billiard tra-
jectory with an ellipse as the
caustic and a billiard trajec-
tory with a hyperbola as a
caustic.

When Mid-Parents are taller than mediocrity, their Children tend to be shorter than
they. When Mid-Parents are shorter than mediocrity, their Children tend to be taller
than they.

Thus, the notion of regression got into statistics, thanks to Galton. From mathe-
matical perspective, the background method of least squares, appeared in early 1800’s,
due to Gauss and Legendre.

Galton discovered an important use of ellipses in statistical analysis. Here we quote
Galton:

Figure 5. From [26].

“...I found it hard at first to catch the full significance of the entries in the ta-
ble...They came out distinctly when I ‘smoothed’ the entries by writing at each inter-
section of a horizontal column with a vertical one, the sum of entries of four adjacent
squares... I then noticed that lines drawn through entries of the same value formed a
series of concentric and similar ellipses. Their common center ... corresponded to 681

4
inches. Their axes are similarly inclined. The points where each ellipse in succession
was touched by a horizontal tangent, lay in a straight line inclined to the vertical in
the ratio of 2

3
; those where they were touched by a vertical tangent lay in a straight line

inclined to the horizontal in the ratio of 1
3
. These ratios confirm the values of average

regression already obtained by a different method, of 2
3
from mid-parent to offspring,

and of 1
3
from offspring to mid-parent...These and other relations were evidently a sub-

ject for mathematical analysis and verification...I noted these values and phrased the
problem in abstract terms such as a competent mathematician could deal with, disen-
tangled from all references to heradity, and in that shape submitted it to Mr. Hamilton
Dixson, of St. Peter’s College, Cambridge...

I may be permitted to say that I never felt such a glow of loyalty and respect towards
the sovereignty and magnificent sway of mathematical analysis as when his answer
reached me, confirming, by purely mathematical reasoning, my various and laborious
statistical conclusions with far more minuteness than I had dared to hope... His cal-
culations corrected my observed value of mid-parental regression from 1

3
to 6

17.6
, the

relation between the major and minor axis of the ellipse was changed 3 per cent. (it

should be as
√

7
√

2
)...”

The notions of moments in statistics came from mechanics, where they were orig-
inally introduced in the three-dimensional space. The next Section 1.4 reviews these
notions from a mechanics perspective.

1.4. Axial and planar moments of inertia in R
3. We review the notions of

the axial moment of inertia and the operator of inertia with respect to a point, as
they are introduced in mechanics. Suppose that N points M1, ...,MN with masses

m1, m2, ..., mN are given in the space R
3. Sum of the masses m =

N∑
j=1

mj is the total

mass of the system of the points, while the center of masses of the N given points is
the point C that satisfy

N∑

j=1

mj

−−→
CMj = 0.

For a given line u ⊂ R
3, the axial moment of inertia Iu is defined as

Iu =

N∑

j=1

mjd
2
j ,

where dj is the distance from the point Mj to the line u, j = 1, . . . , N .
Suppose that the line u contains point O and that it is defined with the unit vector

u0.
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3. Sum of the masses m =

N∑
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mj is the total

mass of the system of the points, while the center of masses of the N given points is
the point C that satisfy

N∑

j=1

mj

−−→
CMj = 0.

For a given line u ⊂ R
3, the axial moment of inertia Iu is defined as

Iu =

N∑

j=1

mjd
2
j ,

where dj is the distance from the point Mj to the line u, j = 1, . . . , N .
Suppose that the line u contains point O and that it is defined with the unit vector

u0.

Then the axial moment of inertia Iu for the axis u can be rewritten in the form:

Iu =
N∑

i=1

mid
2
i =

N∑

i=1

mi�u0×
−−→
OMi,u0×

−−→
OMi� =

N∑

i=1

mi�
−−→
OMi×(u0×

−−→
OMi),u0� = �IOu0,u0�.

If one considers u as an arbitrary line that contains fixed point O, the relation

Iu = �IOu0,u0�

defines the operator of inertia at the point O and it is denoted by IO. In the Cartesian
coordinates Oxyz the matrix of the operator IO is symmetric and positive-definite [4].
Its diagonal elements I11, I22, I33 are the moments of inertia for the coordinate axes
Ox,Oy,Oz respectively. For example:

I11 =

N∑

j=1

mj(y
2
j + z2j ).

The non-diagonal elements of this matrix are called the centrifugal moments of inertia.
For example:

I12 = −
N∑

p=1

mpxpyp,

and similarly, one can define all other Iij .
As for any symmetric matrix, one can choose an orthogonal basis in which the

matrix of the operator IO has a diagonal form:

IO = diag(I1, I2, I3).

The scalars I1, I2, I3 are called the principal axial moments of inertia while the corre-
sponding coordinates are called principal coordinates.

The inertia operator IO defines the axial ellipsoid of inertia at the point O:

�IOu, u� = 1.

In the principal coordinates, the equation of the axial ellipsoid of inertia becomes

I1x
2 + I2y

2 + I3z
2 = 1.

An important formula that makes a connection between the axial moments of inertia
for two parallel axes, where one of them contains the center of masses, is the essence
of the Huygens-Steiner Theorem (see e.g. [4]).

Theorem 1.1 (The Huygens-Steiner Theorem, [4]). Let the axis u contain the
center of masses C and let u1 be a line parallel to u. Denote by Iu1

and Iu the corre-
sponding axial moments of inertia of a given system of points with the total mass m.
Then

(1.4) Iu1
= Iu +md2,

where d is the distance between the parallel lines u and u1.
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The inertia operator IO defines the axial ellipsoid of inertia at the point O:

�IOu, u� = 1.

In the principal coordinates, the equation of the axial ellipsoid of inertia becomes

I1x
2 + I2y

2 + I3z
2 = 1.

An important formula that makes a connection between the axial moments of inertia
for two parallel axes, where one of them contains the center of masses, is the essence
of the Huygens-Steiner Theorem (see e.g. [4]).

Theorem 1.1 (The Huygens-Steiner Theorem, [4]). Let the axis u contain the
center of masses C and let u1 be a line parallel to u. Denote by Iu1

and Iu the corre-
sponding axial moments of inertia of a given system of points with the total mass m.
Then

(1.4) Iu1
= Iu +md2,

where d is the distance between the parallel lines u and u1.

As an immediate consequence, one gets an important property of the center of
masses:

Corollary 1.1. Given a system of points and one direction. Among all the lines
parallel to the given direction, the least moment of inertia is attained for the line which
contains the center of masses of the set of points.

In a similar manner as for an axial moments of inertia, for a given set of points and
for a given plane π ⊂ R

3 one can introduce the planar moment of inertia. It is defined
by formula:

Jπ =
N∑

j=1

mjD
2
j ,

where Dj is the distance between the point Mj and the plane π, for j = 1, . . . , N . For
vectors n1 and n2 define the operator

�JOn1,n2� =

N∑

j=1

mj�
−−→
OMj,n1��

−−→
OMj,n2�.

If the plane π is determined by its point O and the normal unit vector n, then the
planar moment of inertia Jπ can be rewritten in the form

(1.5) Jπ =
N∑

j=1

mj�
−−→
OM j ,n�

2 = �JOn,n�.

This is the reason to call JO the planar inertia operator at the point O.
In the Cartesian coordinates Oxyz, the diagonal elements of the matrix of the

planar inertia operator are the planar moments of inertia for the coordinate planes.
For example:

J11 =

N∑

j=1

mjx
2
j

is the moment of inertia for the coordinate plane Oyz. The nondiagonal elements of the
planar inertia operator are also called the centrifugal moments of inertia. For example:

J12 =

N∑

p=1

mpxpyp,

and similarly for other Jij. The planar inertia operator is symmetric and positive-
definite. Thus, one can choose a basis in which its matrix has a diagonal form:

JO = diag(J1, J2, J3).

The extremal property of the center of masses is fulfilled in the planar case also. It
is consequence of an analog of the Huygens-Steiner Theorem for the case of the planar
moments of inertia.
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planar inertia operator are also called the centrifugal moments of inertia. For example:

J12 =

N∑

p=1

mpxpyp,

and similarly for other Jij. The planar inertia operator is symmetric and positive-
definite. Thus, one can choose a basis in which its matrix has a diagonal form:

JO = diag(J1, J2, J3).

The extremal property of the center of masses is fulfilled in the planar case also. It
is consequence of an analog of the Huygens-Steiner Theorem for the case of the planar
moments of inertia.

Proposition 1.1. [16] Given a system of points in R
3 with the total mass m and

the center of masses C. If the planes π and π1 are parallel and π contains the center
of masses C, then

Jπ1
= Jπ +mD2,

where D is the distance between the parallel planes π and π1.

An immediate and important conclusion follows from the coordinate expressions for
the planar and axial operators of inertia JO and IO of the same system of points and
with respect to the same point O: both operators have a diagonal form in the same
orthogonal basis, called the principal basis. Using the Pythagorean theorem, one can
see that the axial moment of inertia for the axis u is the sum of the planar moments of
inertia for two orthogonal planes having the line u as their intersection. For example,
for the principal axes, we have:

(1.6) Ii = Jj + Jp,

where (i, j, p) is a cyclic permutation of (1, 2, 3).

2. The classical results of Pearson and their generalizations

Karl Pearson was one of the founding fathers of modern statistics. He investigated
the question of the hyperplane which minimizes the mean square distance from a given
set of points in R

k, for any k ≥ 3. In his own words, Pearson formulated the problem
[34]: “In the case we are about to deal with, we suppose the observed variables–all
subject to error–to be plotted in plane, three-dimensioned or higher space, and we en-
deavour to take a line (or plane) which will be the ‘best fit’ to such a system of points.
Of course the term ‘best fit’ is really arbitrary; but a good fit will clearly be obtained if
we make the sum of the squares of the perpendiculars from the system of points upon
the line or plane a minimum.”

Pearson noticed that the notion of the best fit is not uniquely determined. In the
measurement error models, also known as regression with errors in variables (EIV), [9],
a natural choice is the choice of the squares of the perpendiculars. This was indicated
in Pearson’s above note: “we suppose the observed variables–all subject to error”. Such
models are in use when the both predictors and responses are known with some error.
In the usual linear regressions, the situation is different: for the predictors the exact
values are known. Only responses are assumed to be known with some error. Thus, the
squares of distances along one of the axes is in use in such regression models. We called
that directional regression in a given direction. We talked more about its geometric
aspects in the last section of [16].

Here we are going to explain in more details the classical simple linear regression
model and the regression with error in variables (EIV) models, [9]. For a classical simple
regression model, it is assumed that the values (x(i))Ni=1 are known, fixed values, as for
example values set up in advance in the experiment. The values (y(i))Ni=1 are observed
values of uncorrelated random variables Yi, i = 1, . . . , N with the same variance σ2.
It is assumed that the predictors x(i) and responses (y(i))Ni=1 are related with a linear
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values are known. Only responses are assumed to be known with some error. Thus, the
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aspects in the last section of [16].
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Figure 6. From [34].

Figure 7. From [34].

relationship:

EYi = α + βx(i), i = 1, . . . , N.

This can be restated as

Yi = α + βx(i) + ǫi, i = 1, . . . , N,

where ǫi are called the random errors and they are uncorrelated random variables with
zero expectation and the same variance σ2. In such models the regression is of Y on x,
i.e. in the vertical direction. This model was in the background of the Galton study
[26], mentioned above.

Important situations appear when predictors are known only up to some error. They
are described by measurement error models. There the observed pairs (x(i), y(i))Ni=1 are
sampled from random variables (Xi, Yi) with means satisfying the linear relationship

EYi = α + β(EXi), i = 1, . . . , N.

Denoting EXi = ξi, the errors in variables model can be defined as

Yi = α + βξi + ǫi, Xi = ξi + δi, i = 1, . . . , N,

where both Xi and Yi have error terms which belong to mean zero normal distribu-
tions, such that all ǫi, i = 1, . . . , N have the same variance σ2

ǫ and all δi, i = 1, . . . , N
have the same variance σ2

δ . Since xi and yi are both known with an error, the orthog-
onal least square method is more natural to apply here, that is to say to apply the
orthogonal regression. This we are going to introduce next under the assumption that
η = σ2

ǫ/σ
2
δ = 1 and in a general dimension k. One should also mention that applica-

tions of the orthogonal least square method in the models with measurement errors
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EYi = α + βx(i), i = 1, . . . , N.

This can be restated as

Yi = α + βx(i) + ǫi, i = 1, . . . , N,

where ǫi are called the random errors and they are uncorrelated random variables with
zero expectation and the same variance σ2. In such models the regression is of Y on x,
i.e. in the vertical direction. This model was in the background of the Galton study
[26], mentioned above.

Important situations appear when predictors are known only up to some error. They
are described by measurement error models. There the observed pairs (x(i), y(i))Ni=1 are
sampled from random variables (Xi, Yi) with means satisfying the linear relationship

EYi = α + β(EXi), i = 1, . . . , N.

Denoting EXi = ξi, the errors in variables model can be defined as

Yi = α + βξi + ǫi, Xi = ξi + δi, i = 1, . . . , N,

where both Xi and Yi have error terms which belong to mean zero normal distribu-
tions, such that all ǫi, i = 1, . . . , N have the same variance σ2

ǫ and all δi, i = 1, . . . , N
have the same variance σ2

δ . Since xi and yi are both known with an error, the orthog-
onal least square method is more natural to apply here, that is to say to apply the
orthogonal regression. This we are going to introduce next under the assumption that
η = σ2

ǫ/σ
2
δ = 1 and in a general dimension k. One should also mention that applica-

tions of the orthogonal least square method in the models with measurement errors
have limitations, based on the fact that value of η could be unknown, see e.g. [8], [7].
Here we deals with the cases when η is known.

The case η = 1 historically originated from [1, 2]. Pearson established orthogonal
regression, using the squares of the perpendiculars that corresponds to the case η = 1.
Our aim is to study geometric aspects of the orthogonal regression. We also adopted
Pearson’s generality full rank assumption, that the given system of points is in a general
position, which means that the points do not belong to a hyper-plane.

Let N points (x(i)
1 , x

(i)
2 , . . . , x

(i)
k )Ni=1 be given. The mean values of the coordinates

define the centroid :

x̄j =
1

N

N∑

i=1

x
(i)
j , j = 1, . . . , k.

The variances are

σ2
xj

=
1

N

N∑

i=1

(x
(i)
j − x̄j)

2, j = 1, . . . , k.

Due to the generality full rank assumption, all σ2
xj
, for j = 1, . . . , k are non-zero. Then,

the correlations are
rjl =

pjl
σxj

σxl

, j, l = 1, . . . , k, l �= j,

where

pjl =
1

N

N∑

i=1

(x
(i)
j − x̄j)(x

(i)
l − x̄l), j, l = 1, . . . , k, l �= j,

are the covariances. The covariance matrix K is a (k × k) matrix with the diagonal
elements

Kjj = σ2
xj
, j = 1, . . . , k,

and the off-diagonal elements

Kjl = pjl, j, l = 1, . . . , k, l �= j.

The covariance matrix is always symmetric positive semidefinite. Here, due to the
generality full rank assumption, K is a positive-definite matrix. In particular, it has
the inverse K−1 and all its eigenvalues are positive. Pearson defined the ellipsoid of
residuals by the equation

k∑

j,l=1

Kjlxjxl = const.

Denote the eigenvalues of K as µ1 ≥ · · · ≥ µk > 0.

Theorem 2.1. [Pearson, [34]] The minimal mean square distance from a hyper-
plane to the given set of N points is equal to the minimal eigenvalue of the covariance
matrix K. The best-fitting hyperplane contains the centroid and it is orthogonal to the
corresponding eigenvector of K. Thus, it is the principal coordinate hyperplane of the
ellipsoid of residuals which is normal to the major axis.

Then Pearson studied the lines which best fit to the given set of points and proved
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have limitations, based on the fact that value of η could be unknown, see e.g. [8], [7].
Here we deals with the cases when η is known.

The case η = 1 historically originated from [1, 2]. Pearson established orthogonal
regression, using the squares of the perpendiculars that corresponds to the case η = 1.
Our aim is to study geometric aspects of the orthogonal regression. We also adopted
Pearson’s generality full rank assumption, that the given system of points is in a general
position, which means that the points do not belong to a hyper-plane.

Let N points (x(i)
1 , x

(i)
2 , . . . , x

(i)
k )Ni=1 be given. The mean values of the coordinates
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x̄j =
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The variances are

σ2
xj

=
1

N
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(i)
j − x̄j)
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Due to the generality full rank assumption, all σ2
xj
, for j = 1, . . . , k are non-zero. Then,

the correlations are
rjl =

pjl
σxj

σxl

, j, l = 1, . . . , k, l �= j,

where

pjl =
1

N

N∑

i=1

(x
(i)
j − x̄j)(x

(i)
l − x̄l), j, l = 1, . . . , k, l �= j,

are the covariances. The covariance matrix K is a (k × k) matrix with the diagonal
elements

Kjj = σ2
xj
, j = 1, . . . , k,

and the off-diagonal elements

Kjl = pjl, j, l = 1, . . . , k, l �= j.

The covariance matrix is always symmetric positive semidefinite. Here, due to the
generality full rank assumption, K is a positive-definite matrix. In particular, it has
the inverse K−1 and all its eigenvalues are positive. Pearson defined the ellipsoid of
residuals by the equation

k∑

j,l=1

Kjlxjxl = const.

Denote the eigenvalues of K as µ1 ≥ · · · ≥ µk > 0.

Theorem 2.1. [Pearson, [34]] The minimal mean square distance from a hyper-
plane to the given set of N points is equal to the minimal eigenvalue of the covariance
matrix K. The best-fitting hyperplane contains the centroid and it is orthogonal to the
corresponding eigenvector of K. Thus, it is the principal coordinate hyperplane of the
ellipsoid of residuals which is normal to the major axis.

Then Pearson studied the lines which best fit to the given set of points and proved

Theorem 2.2. [Pearson, [34]] The line which fits best the given system of N points
contains the centroid and coincides with the minor axis of the ellipsoid of residuals.

Pearson integrated the visualization of the linear regression with the orthogonal
regression in the planar case in [34] in Fig. 7. The ellipse in Fig. 7 is dual to the
ellipse of residuals and it coincides with the object studied by Galton.

The main results of [16] were to generalize the above classical results of Pearson in
the following directions.

The first result: For a given system of N points in R
k, for any k ≥ 2, under

the full rank assumption, we consider all hyperplanes which equally fit the given system
of points. In other words, for any fixed value s not less than the smallest eigenvalue
µk of the covariance matrix K, we consider all hyperplanes for which the mean sum
of square distances to the given set of points is equal to s. Starting from the ellipsoid
of residuals, we are going to effectively construct a pencil of confocal quadrics with the
following property: For each s ≥ µk there exists a quadric from the confocal pencil
which is the envelope of all the hyperplanes which s-fit the given system of points.

We stress that the ellipsoid of residuals does not belong to the confocal family of
quadrics. The construction of this confocal pencil of quadrics is fully effective, though
quite involved. The obtained pencil of confocal quadrics have the same center as the
ellipsoid of residuals and moreover, the same principal axes.

Example 2.1. Let us recall that µk denotes the smallest eigenvalue of the covari-
ance matrix K. In the case s = µk there is only one hyperplane which s fits the given
set of N points. This is the best-fitting hyperplane described in Theorem 2.1. The
envelope of this single hyperplane is this hyperplane itself. This hyperplane is going to
be a degenerate quadric from our confocal pencil of quadrics.

The second result: For a given system of N points in R
k, for any k ≥ 2, under

the full rank assumption, find the best fitting hyperplane under the condition that it
contains a selected point in R

k. We also provide an answer to the questions of the best
fitting line and more general the best fitting affine subspace of dimension ℓ, 1 ≤ ℓ ≤ k−1
under the condition that they contain a given point.

A careful look at the Galton’s figure (see Fig. 5) discloses an intriguing geometric
fact that the line of linear regression of y on x intersects the ellipse at the points of
vertical tangency, while the line of linear regression of x on y intersects the ellipse at
the points of horizontal tangency. Further analysis of this phenomenon leads us to our
third result.

The third result is to formulate linear regression in R
k in a coordinate free, i.e.

in an invariant form. We answered the following question: for a given direction and for
a given system of N points, under the generality full rank assumption, what is the best
fitting hyperplane in the given direction, under the condition that it contains a selected
point in R

k.
Apparently, the second and the third result are obtained using the same confocal

pencil of quadrics constructed in relation with the first result.
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Theorem 2.2. [Pearson, [34]] The line which fits best the given system of N points
contains the centroid and coincides with the minor axis of the ellipsoid of residuals.
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regression in the planar case in [34] in Fig. 7. The ellipse in Fig. 7 is dual to the
ellipse of residuals and it coincides with the object studied by Galton.

The main results of [16] were to generalize the above classical results of Pearson in
the following directions.

The first result: For a given system of N points in R
k, for any k ≥ 2, under

the full rank assumption, we consider all hyperplanes which equally fit the given system
of points. In other words, for any fixed value s not less than the smallest eigenvalue
µk of the covariance matrix K, we consider all hyperplanes for which the mean sum
of square distances to the given set of points is equal to s. Starting from the ellipsoid
of residuals, we are going to effectively construct a pencil of confocal quadrics with the
following property: For each s ≥ µk there exists a quadric from the confocal pencil
which is the envelope of all the hyperplanes which s-fit the given system of points.

We stress that the ellipsoid of residuals does not belong to the confocal family of
quadrics. The construction of this confocal pencil of quadrics is fully effective, though
quite involved. The obtained pencil of confocal quadrics have the same center as the
ellipsoid of residuals and moreover, the same principal axes.

Example 2.1. Let us recall that µk denotes the smallest eigenvalue of the covari-
ance matrix K. In the case s = µk there is only one hyperplane which s fits the given
set of N points. This is the best-fitting hyperplane described in Theorem 2.1. The
envelope of this single hyperplane is this hyperplane itself. This hyperplane is going to
be a degenerate quadric from our confocal pencil of quadrics.

The second result: For a given system of N points in R
k, for any k ≥ 2, under

the full rank assumption, find the best fitting hyperplane under the condition that it
contains a selected point in R

k. We also provide an answer to the questions of the best
fitting line and more general the best fitting affine subspace of dimension ℓ, 1 ≤ ℓ ≤ k−1
under the condition that they contain a given point.

A careful look at the Galton’s figure (see Fig. 5) discloses an intriguing geometric
fact that the line of linear regression of y on x intersects the ellipse at the points of
vertical tangency, while the line of linear regression of x on y intersects the ellipse at
the points of horizontal tangency. Further analysis of this phenomenon leads us to our
third result.

The third result is to formulate linear regression in R
k in a coordinate free, i.e.

in an invariant form. We answered the following question: for a given direction and for
a given system of N points, under the generality full rank assumption, what is the best
fitting hyperplane in the given direction, under the condition that it contains a selected
point in R

k.
Apparently, the second and the third result are obtained using the same confocal

pencil of quadrics constructed in relation with the first result.

3. Conclusion

For a given system of points in R
k, under the full rank assumption, we constructed

in [16] an explicit pencil of confocal quadrics with the following properties:
(i) All the hyperplanes for which the hyperplanar moments of inertia for the given

system of points are equal, are tangent to one of the quadrics from the pencil of
quadrics. As an application, we developed regularization procedures for the orthogo-
nal least square methods, analogues of lasso and ridge methods from linear regression.
Another motivation for this study was the gradient descent methods in machine learn-
ing. An optimization algorithm may not be guaranteed to arrive at the minimum in
a reasonable amount of time. As pointed out in e.g. [28] it often reaches some quite
low value of the cost function equal to some value s0 quickly enough to be useful.
Here we deal with the hyperplanar moment as the cost function, in application to the
orthogonal least square. From [16] we know that the hyperplanes which generate the
hyperplanar moment equal to s0 are all tangent to the given quadric from the confocal
pencil of quadrics, where the pencil parameter is determined through the value s0.

(ii) For any given point P among all the hyperplanes that contain it, the best fit is
the tangent hyperplane to the quadric from the confocal pencil corresponding to the
maximal Jacobi elliptic coordinate of the point P . The worst fit among the hyperplanes
containing P is the tangent hyperplane to the ellipsoid from the confocal pencil that
contains P . We also determined the best and worst fit among ℓ-dimensional planes
containing P , for any ℓ : 1 ≤ ℓ ≤ k − 1.

Both results (i) and (ii) are generalizations of the famous theorem of Pearson on
orthogonal regression [34], or in other words on the orthogonal least square method
(see e.g. [9]). For the original Pearson’s statement, see Theorem 2.1 above. It is
well known that the Pearson result also initiated the Principal Component Analysis
(PCA), see e.g. [3]. Similarly, our results have a natural interpretation in terms of
PCA. The confocal pencil of quadrics provides a universal tool to solve the Restricted
Principal Component Analysis restricted at any given point which we formulated and
solved in [16]. Our generalizations of the Pearson Theorem have natural and important
applications in the statistics of the measurement error models, for which the orthogonal
regression is known to provide a natural framework, see [9], [24], [8].
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[5] Audin, M., Courbes algébriques et systèmes intégrables: géodesiques des quadriques, Exposition.

Math. 12, (1994) pp. 193–226.
[6] Bialy, M., Tabachnikov, S., Dan Reznik’s identities and more, arXiv:2001.08469, European Jour-

nal of Mathematics, , 10.1007/s40879-020-00428-7, (2020).
[7] Carroll, R. J., Ruppert, D. The use and misuse of orthogonal regression estimation in linear

errors-in-variables models. The American Statistician, 50, 1–6, (1996).
[8] Carroll, R., Ruppert, D., Stefanski, L., Crainiceanu, C., Measurement Error in Nonlinear Models,

A Modern Perspective Second Edition, Monographs on Statistics and Applied Probability 105,
Taylor and Francis (2006).

[9] Casella, G., Berger, R. L., Statistical Inference, Second Edition, Duxbury Advanced Series,
Duxbury

[10] Cohen, J. E., D’Eustachio, P., and Edelman, G. M., The specific antigenbinding cell populations

of individual fetal mouse spleens: Repertoire composition, size and genetic control. J. Exp. Med.
146. 394–411, (1977)

[11] Cohen, J. E. and D’Eustachio, P., An affine linear model for the relation between two sets of

frequency counts. Response to a query. Biometrics 34,514–516, (1978).
[12] Cramér, H., Mathematical Methods of Statistics, Princeton: Princeton University Press, (1946).
[13] DeGroot, M., Schervish, M., Probability and Statistics, Fourth Edition, Adison-Wesley, 2012.
[14] Dempster, A., Elements of continuous multivariate analysis, Addison-Wesley, 1969.
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