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Abstract

The solutions of Lamé’s problems of an axisymmetrically loaded hollow cylinder under
plane strain or plain stress conditions and a pressurized spherical container are presented
by using Love’s and Boussinesq’s potentials from the three-dimensional axisymmetric the-
ory of elasticity. These solutions complement the classical solutions derived by the direct
integration of the Navier equations of equilibrium, or by using the Airy stress function of
the two-dimensional theory of elasticity. An advantage of the solutions based on the use of
Love’s and Boussinesq’s potentials is that the displacement and the stress components can
both be expressed explicitly in terms of these potentials. The stress and displacement fields
in a hollow disk subjected to distributed bending moments along its circular boundaries are
also derived.

Keywords: Airy stress function; Boussinesq’s potentials; circular plate; Lamé’s problem; Love’s
potential; plane strain; spherical container

1 Introduction

The Lamé problem of a pressurized hollow cylinder under conditions of plane strain or plane stress
is one of the classical problems of the theory of elasticity (e.g., Sokolnikoff, 1956; Timoshenko and
Goodier, 1970; Lurie, 2005; Sadd, 2014). Its solution is commonly derived by the direct integration
of the Navier equations of equilibrium, or by using the Airy stress function of the two-dimensional
theory of elasticity. In the former approach, the non-trivially satisfied Navier equations are

d?u,. 1 du,  ur d?u, .

dr? r o dr r2 0 dz2 ) (L.1)
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where u, = u,(r) is the radial component of the displacement, and u. = u.(z) is the out-of-plane
displacement component. The integration of these two differential equations gives

uT:clrJr%, U, = CZ. (1.2)

The integration constants ¢; and ¢z can be determined by applying the boundary conditions at the
inner and outer boundary r = a and r = b, which may be given either in terms of the prescribed
radial traction or prescribed radial displacement. The constant c is equal to zero for plane strain,
and is different from zero in the case of plane stress, being determined from the condition 0., = 0.
In the approach based on the Airy stress function ¢ = ¢(r), the in-plane stress components are
expressed as )

1 do d“¢
Urr:;57 099:@7
where (r, ) are the polar coordinates within the plane of the cross section of the cylinder, orthogonal
to its thickness. The Airy stress function satisfies the biharmonic equation V4¢ = 0. For the Lamé
problem, by inspection, ¢ is of the form (e.g., Malvern, 1969)

(1.3)

= %k1r2+k21nr. (1.4)

The corresponding stress components are, from (1.3),

O'M:/ﬁ-i-%, O’egikl—%. (15)
The constants k; and ks follow from the boundary conditions at » = @ and » = b. The displacements
cannot be expressed explicitly in terms of ¢, but can be obtained by the integration of the strain
expressions €, = du,/dr and € = u,/r, after they are determined from the stresses by using
Hooke’s law.
In the case of a pressurized spherical container, the only equation of equilibrium is in the radial
direction p of the spherical (p,0, ¢) coordinate system,

dPu, 2 du, u 2 2 2
z —2-£ =0, = , 1.6
dp®>  p dp p? e 16
whose solution is
c
u,):clp—i-p—z. (1.7)

In section 2, we present the solution of the Lamé problem by using the biharmonic Love’s
potential function Q@ = Q(r) of the three-dimensional axisymmetric theory of elasticity, which
allows the explicit representation of both the stress and displacement components in terms of (2.
In section 3 we derive the expressions for the harmonic Boussinesq’s potentials B and f, in terms
of which the stress and displacement components can also be expressed explicitly. The pressurized
spherical container is considered in section 4. In section 5 we derive the stress and displacement
fields in a hollow disk subjected to distributed bending moments along its circular boundaries.

2 Solution of Lamé problem by Love’s potential

For the three-dimensional axisymmetric elasticity problems (Love, 1944; Timoshenko and Goodier,
1970), the displacement components can be expressed in terms of Love’s potential Q = Q(r, 2) as

9*Q 9*Q

- = — _ 200 _
2uu, = Er 2uu; =2(1 —v)V-Q 957 -

(2.1)

It can be readily verified that (2.1) identically satisfies the axisymmetric Navier equations



Solving Lamé’s problems by using Love’s and Boussinesq’s potentials 43

2 Ur Oe _ 2 %7
M(VUT—TG)‘F(A"‘M)@*Q uVuz—‘r()\—‘r,LL)az—O, (2.2)
provided that
0? 10 o°
4 2
V=0, V=t i tan (2.3)

The body forces are assumed to be absent and the Lamé constants of elasticity are (X, 1), where
is the shear modulus. The corresponding stress components can be expressed in terms of {2 as

L9 (g P9 9 (g 100
UTT782<VVQ_8T2)7 O’ee—az(llVQ— ,
(2.4)

O.r = ﬁ {(2 — V)VQQ -

9%Q
0z ’

B
= e = 2 [(1 —V)V2Q -

9%Q
or '

022
The structure of the compatibility equations for three-dimensional axisymmetric problems has been
recently discussed by Lubarda and Lubarda (2020a).

We now use expressions (2.1) and (2.4) to solve the Lamé problem in the case of plane strain.
The solution for the in-plane stresses and the displacement component u, in the case of plane stress
can be generated from the plane strain solution by using the change of Poisson’s ratiov — v/(1+v),
while keeping the shear modulus unchanged (1 — u), e.g., Lubarda and Lubarda (2020b). For the
plane strain case, we have €. = 0 and u, = 0. Thus, the second expression in (2.1) gives

2uu, = 2(1 — v)V?Q — gi? =0. (2.5)
This suggests that Love’s potential is of the following form
Q=zw(r)+ éc1z3 . (2.6)
Indeed,
327? =cz, VQ=(c+Vw)z, (2.7)

and the substitution of (2.7) into (2.5) gives the differential equation for the introduced auxiliary
function w = w(r)

2 (1 - 21/)01 2 d2 1d
=L =a == 4-= 2.
Viw 21-v) ’ v T (28)
Up to an immaterial constant, the solution of this differential equation is
(1-=2v)cr o
= Inr. 2.
(1= r"+calnr (2.9)
Consequently, Love’s potential (2.6) is
1—-2 1
0= —Hrz—kcﬂnr z—i—éclzs. (2.10)
The radial displacement is obtained by substituting (2.10) into (2.1), which gives
(1-2v)e1 co
Uty = ———F—1r — —. 2.11
a 4(1-v) Ty (2.11)
Similarly, the in-plane stress components follow by substituting (2.10) into (2.4),
c1 Cc2 C1 C2
= e —_a e 2.12
7 4(1—-v) + p20 0% 41—-v) r? (2.12)
The out-of-plane stress component is
Ozz = V(U'r"r‘ + 099) = L (213)

21 —v) "’
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It is noted that Love’s potential  in (2.10) is related to the Airy stress function ¢ from (1.4)

by
Q=z¢p+ % 2(22° — 3r?), (2.14)
because the two sets of constants (k1, k2) and (c1,c2), appearing in (1.4) and (2.10), are related by
c2 = kg and ¢; = 4(1—v)ki. The second term on the right-hand side of (2.14), i.e., ¢12(22%>—3r%) /12,
is a harmonic function. Physically, this term gives rise to a uniform state of stress o,. = ggg =
¢1/2 and 0., = —c1, with the corresponding displacement components u, = cir/(4u) and u, =

—c12/(2p).

2.1 Examples

Figure 1 shows a hollow circular cylinder of length L whose ends are constrained such that u. = 0.
The outer boundary of the cylinder r = b is subjected to pressure p, while the inner boundary r = a
is in contact with a smooth rigid inclusion which prevents radial displacement, u,(a) = 0. Thus,

(1-2v)er co

upr(r=a)=0: a—— =0,
4(1-v) a (2.15)
orr(r=50)=—p: a2 .
TSR qa oy T T
which gives the following expressions for the constants c¢1 and ca,
4(1 — 1 —2v)a®
o = (1= v)p o= ——U=2ap (2.16)

1+ (1-2v)a? b2’ T 1+ (1 - 2v)a?/b?

Thus, the displacement and stress expressions become

(1-2v)p a®
Qutty = = () w, =0, 2.1
=" Tra—awem " =0 (217)

T
and
Oy = i [1+(1 21/)112}
A pw T vy W)
+( pu)a/ :2 (2.18)
”eez‘m[l‘“‘mﬁ}'

b d iy

L
trrtrtetrtt
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Figure 1: A hollow circular cylinder of length L whose ends are constrained by rigid vertical
panels which prevent longitudinal deformation. The outer boundary of the cylinder (r = b)
is subjected to pressure p, while the inner boundary (r = a) is in contact with a smooth
rigid inclusion which prevents radial displacement.

The out-of-plane stress is
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2vp
= ———————————— . 2.19
7 1+ (1—20)a2/b? (2.19)
For a pressurized solid cylinder (a = 0), the constants are ¢; = —4(1 — v)p and ¢z = 0, and
Love’s potential (2.10) reduces to
1 4
Q= 5p2 (1 —2w)r® — g(l—l/)z2 . (2.20)
The corresponding stresses are o, = 0g9 = —p and 0., = —2vp, with the radial displacement

ur = —(1=2v)pr/(2p).

2.1.1 Plane stress case

If v in (2.17) and (2.18) is replaced by v/(1+4v), we obtain the plane stress version of the expressions

(Fig. 2), i.e.,
(L—v)p a’
Quy = — 4, 2.21
H 1+v+(1-v)a?/b? - (2.21)
and
Orr = P {1+u+(1 V)az}
T v+ (1 —v)a?/b? TN
0 v)a?/ ; .29
D a
=— 1 -1-v)—|.
00 14+v+(1—-v)a?/b? { +v—(1-v) 7‘2:|
In the plane stress case 0., = 0, while
v vp/p
=Y (o - . 2.2
¢ 2u(1 +v) (orr +000) 1+v+(1—v)a?/b? (2.23)
Thus, since €., = du/dz, the integration gives
u. vp/H (2.24)

- 1—}—1/—‘,—(1—1/)(12/b2Z7

paabas iy

FFTFfrfrfrrst
p

Figure 2: A hollow circular cylinder of length L whose ends z = +L/2 are traction-free. The
outer boundary of the cylinder (r = b) is subjected to pressure p, while the inner boundary
(r = a) is in contact with a smooth rigid inclusion which prevents radial displacement.

where the coordinate origin is in the middle cross section of the cylinder, and it is assumed that
uz(0) = 0. If L < b, we have the usual thin-disk configuration, although neither the radial
displacement u, in (2.21), nor the stress components o, and ogg in (2.22) depend on L.

In retrospect, it can be shown that Love’s potential for the plane stress Lamé problem is
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(1-v)a

S TeRy

r? +elnr z—|—é6123, (2.25)
which complements the plane strain version (2.10). The integration constants for the problem in
Fig. 2 are
e = — 22 —v)p Gy = (1 —v)pa®
1+v+(1—v)a2/b?’ 1+v+(1—v)a2/b?’
The solution of the Lamé problem for more general axially symmetric boundary conditions,

(2.26)

which encompass all possible combinations of kinematic and kinetic conditions at the inner and
outer boundaries of a hollow cylinder, is presented by Lubarda (2009).

2.1.2 Pressurized vertical cylindrical hole in a half-space

Figure 3 shows the half-space z > 0, with an infinitely extended vertical circular cylindrical hole
under internal pressure p. The boundary z = 0 is traction-free. By placing the coordinate origin at
the center of the hole, Love’s potential can be expressed as

Q=rkzlnr. (2.27)
The constant k can be determined from the condition o..(r = a) = —p, where a is the radius of the
hole. This gives k = —pa®. The corresponding stresses are, from (2.4),
2 2
a a
UTT:fpﬁ, Ugezpﬁ, 0., =0. (2.28)

The stress state is deviatoric and no volume change arises at any point of the half-space. The
displacement components are, from (2.3),

k
2 =% =pL, w=0. (2.29)

Figure 3: The half-space z > 0, with an infinitely extended vertical cylindrical circular hole
under internal pressure p. The boundary z = 0 of the half-space is traction-free.

The derived solution can also be deduced from (2.11) and (2.12) in the limit b — oo. Because
the displacement u, and the stresses o, and 0gp must vanish as r — oo, it follows that, in (2.11)
and (2.12), ¢; = 0 and ¢c2 = k = —pa®. If the Airy stress function from section 1 was used, then
¢ = klnr and, therefore, in this case Q = z¢.

An analysis of three-dimensional stress concentration around a vertical cylindrical hole in the
half-space under remote loading parallel to the plane boundary of the half-space has been presented
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by Youngdahl and Sternberg (1966). If the depth of the hole L > a is finite, the elastic fields
can be determined numerically by using the finite element method (e.g., Hughes, 2000; Reddy,
2005), although sufficiently away from the end of the hole (2 = L), the stresses can be evaluated
approximately by other means. For example, for z > L (deep below the hole), the stresses can
be determined from Mindlin’s (1936) solution corresponding to the vertical concentrated force of
magnitude P = wa®p. An analysis of circular inclusions in concentric cylinders by using Papkovich—

Neuber potentials was presented by Lubarda (1998) and Lubarda and Markenscoff (1999).

3 Solution of Lamé’s problem by Boussinesq’s potentials

The displacement components can also be expressed in terms of Boussinesq’s potentials B and f3,
which are defined such that (e.g., Lubarda and Lubarda, 2020)

0A 0A
2/1/1]47‘7—57 2/}/le2 73—5, (31)
where
zB
A=+ (3.2)

In the absence of body force, the functions B and § are harmonic (V2B = 0 and V?j3 = 0).
The auxiliary function A itself is biharmonic, because zB is biharmonic. The corresponding stress
expressions are

_ 78214 v B
o= T2 2(1—v) 9z’
1 0A v OB
%00 == o Y oa—0) 92 (3.3)
%A 2—-v 0B
Ozz

=2 tou—o) oz

The stress components g, and ogg in the Lamé problem are reasonably expected to be inde-
pendent of z, which means that the potential B should be linear in z. Thus, we assume

B=boz. (3.4)

Furthermore, for the plane strain 2pu. = B — 9A/0z = 0, which implies that the function A must
be quadratic in z. Consequently, it follows from (3.2) that 8 must be quadratic in z, as well.
Therefore, we assume that

B =0 (zt%rz) +bolnr, (3.5)

which is clearly harmonic (V28 = 0), because 2> —72/2 and Inr are both harmonic functions.

The substitution of (3.4) and (3.5) into (3.1) now gives

ba 1-2v
2 r = — T 2 z = -2 =Y. :
iy =bir . i 30— 0) bo —2b1 =0 (3.6)
From the second expression in (3.6) it follows that
41 =)
by = <52 br. (3.7)

By using this and by substituting (3.4) and (3.5) into (3.3), the stress components are found to be

b b2 b ba _2(2-v)b
1= 20 TT 19, T T=T T g (3:8)

Orr =
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The constants b1 and bz can be determined from the specified boundary conditions, as discussed in
the previous section.

3.1 Boussinesq’s potentials in terms of Love’s potential

Boussinesq’s potentials B and 8 are related to Love’s potential Q by (e.g., Sadd, 2014; Lubarda
and Lubarda, 2020)

o 1
B=2(1-v)VQ =— — -zV’Q. .
L=V, f=5-—352V (3.9)
Consequently, by substituting (2.10) into (3.9), we obtain in the case of plane strain
B (=2 (2 1,
B=cz, B= -0 Z=gr +c2lnr. (3.10)

The comparison of (3.10) with (3.4) and (3.5) establishes the relationship between the two sets of
constants,
1-2
b():Cl, b1:( V)Cl

-0 by =ca. (3.11)

In the case of plane stress, the substitution of (2.25) into (3.9) gives

B=boz, [B=0b (ZQ—%T‘2>+621HT, (3.12)
where 21— ) (1- e
- —V)C1 - —V)C1 - _
— = /- = Co . 1
b() 2 — 5 bl 2(2 — I/) 5 bz C2 (3 3)

Finally, it may be noted that the constants (bo,b1,b2) are related to the constants (ki,k2),
appearing in the Airy stress function (1.4), by

bo = 4(1 — I/)kl ) b1 = (1 — 21/)](,‘1 5 b2 = k2 5 (314)

with similar relationships existing between the constants (bo, b1, b2) and (k1, k2).

4 Pressurized spherical container

To derive Love’s and Boussinesq’s potentials for a pressurized spherical container of inner radius
a and outer radius b, we use the superposition of the results for a pressurized spherical hole in an
infinite medium and for the state of uniform hydrostatic pressure in an infinite medium. Love’s
potential for the problem of a pressurized spherical hole in an infinite medium can be recognized
from the well-known results for the center of dilatation in an infinite medium (e.g., Love, 1944;
Timoshenko and Goodier, 1970). This gives

1
Q= ip*a?’ In(p+2), p*=r"+2% (4.1)

where p. is the applied pressure over the boundary of the hole of radius a. The corresponding
stresses are

o » ag 22 — 2’/’2 o » a3 1
rr = Pa@ —— 00 = Px@” ==
27 20" (4.2)
2 2 :
31— 22 3 T2
Oz =P —5—=—, Oz = —3psxa 5
2p° 2p°

Love’s potential for the state of uniform hydrostatic pressure p in the entire infinite medium
(without the hole) is
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Q= ﬁ {(1 — ) + %(41/ - 5)22} , (4.3)
as can be verified by evaluating the stress components and showing that indeed o, = 099 = 0. =
—p and 0., = 0.

To solve the pressurized spherical container problem, we add (4.1) and (4.3) to obtain
Q= lp*a?’ In(p+ z) + Pz [(1 —w)r? + 1(4V — 5)22} (4.4)
2 2(1+v) 3 ’

and determine pg and p by imposing the boundary conditions at p = a and p = b.

The cylindrical stress components associated with (4.4) are

3 22 — 21"2 3 1
Orp = =P+ PxQ@” —(5—=—, 09 = =P+ P+0" 53,
2p° 2p3
9 B (4.5)
0o = pipdt 2%, 3p.a® T
zz — —P T PDx 2p5 5 zr D 2p5
The corresponding spherical stress components are easily recognized to be
3 3
a a
Uﬂp:_P_P*pfgv 006:U¢‘¢:_p+p*ﬁ~ (4.6)
For example, if the boundary conditions are ¢,,(r = a) = —p; and 0,,(r = b) = —p,, we have
o3
PHPe=pi, PEPegz =Po. (4.7)
This gives
_ pob® — pia’ __(o—p)t® (438)

p 3 —a3 D+ b3 — a3

4.1 Boussinesq’s potentials

Boussinesq’s potentials for a pressurized spherical hole in an infinite medium (e.g., Lubarda and

Lubarda, 2020) are

pea®
2p

Boussinesq’s potentials for an infinite medium under a uniform hydrostatic state of compressive

B=0, B= (4.9)

stress p are

6(1—v) 1—20 5
B=———= =— —2z7). 4.1
oA 8= g p® —22Y) (410)
Consequently, the overall Boussinesq’s potentials for a pressurized spherical container are
6(1—v) 1-2v 5 5 paa®
B=_>2""% == -2 4.11
e A= gt -2+ B (411)

where p and p, are determined from the boundary conditions at the inner and outer boundary of
the spherical container.

5 Hollow circular plate under distributed edge bending
moments

Fig. 4 shows a hollow circular disk subjected to distributed bending moments M, and M, (per unit
length) along the boundaries 7 = a and r = b, while the flat sides z = £h/2 are traction-free. The
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thickness of the disk is denoted by h, and the coordinate origin is at the center od the mid-plane
of the disk. Using a semi-inverse method of elasticity, we reasonably assume that the radial stress
varies linearly with z, i.e., or» = h(r)z, while 0.. and 0., identically vanish. Thus, from (2.4), we

can write
VQQf?;T? = %h(r) ’,
(2—v)VQ— ‘?;7? =f(r), (5.1)
(1-nvia- 228y,

where the functions h(r), f(r) and g(z) will be determined in the sequel. By subtracting the third
from the second expression in (5.1), we obtain

Mb Ma Ma Mb
(S, N AR\ r
_ J

b a

vz

Figure 4: A hollow circular disk of thickness h subjected to distributed bending moments
M, and M, (per unit length) along the boundary edges r = a and r = b. The flat faces od
the disk z = +h/2 are traction-free.

VEQ = f(r) - g(2). (5.2)

Applying the Laplacian V2 to (5.2) and imposing the condition V*Q = 0, it then follows that

d?f 1df d%g d?f 1df d%g
ar? Ty dr  de? 0 = dr? * rdr  de2 T const. (53)
Thus, upon integration,
1 2 1 2
f(r):zclr +colnr+c3, g(z):iclz +cqz+cs. (5.4)

To satisfy the boundary conditions, it turns out that the constant and linear terms in (5.4) are not
needed, thus we take c3 = c4 = ¢5 = 0. Consequently,

1 1 1
flr)y= 1 arf+elnr, g(z) = 5 azt, VQ= 1 er(r* —22%) + colnr. (5.5)

The expression for 2 can be derived by integrating

9°Q
92 = (1=v)f(r)—2—-v)g(2), (5.6)
z
which follows from either second or third expression in (5.1) and expression (5.2). Upon using (5.5)
it follows that
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1 1 2 1 e, v|1 4 2 2
Q_i(l V) (chr —I—czlnr)z 2—4(2 v)eiz +Z {Eclr +eo(r"lnr—r ):| (5.7)

The nonvanishing stresses o, and ogg are obtained by substituting (5.7) into (2.4), i.e.,

) 5 9*Q 0 5 1 09
crrr_@(l/VQfW), 099—&(VVQ*;§ . (5.8)

This gives

O = {f% (L4 v)er +(1—v) %] - {f% (14 v)er — (1—v) %} (5.9

Thus, the function h(r) appearing in (5.1) is

h(r) = f%(1+u)cl+(1w)%. (5.10)

The bending moment per unit length around the circumference of an arbitrary radiusa <r <b
is

h/2 1 co] h®
M(r) = mzdz = |—=(1 1—v)=5| —. 5.11
0= [ omrde= |5 04ve -0 3] (5.11)
The integration constants ¢; and ¢z follow from the boundary conditions M(a) = M, and
M(b) = My, ie.,
1 c2 12M, 1 c2 12 M,
—5(1+u)c1+(1—u)§: et —5(1+1/)cl+(1—u)b—2: e (5.12)
Upon solving for ¢; and c2, we obtain
24 *Ma — b*M, 12 b (Mo — M,
o a by a”b’( o) | (5.13)
(1+v)h? b? — a? (1 —-v)h? b% — a?
By substituting (5.13) into (5.9) it follows that stresses are independent of v and given by
12 2 2 CLzb2
rr = s o M - M(l M - M(l bl
o A — a?) {b b —a + (M, ) 2| ?
(5.14)
B 12 2 2 a’b’?
O'egfm be—aMa—(Mb—Ma)TT z.

If the edge moments M, and M, are applied by a nonlinearly distributed radial stress along the
hight h of the disk, the derived stress field approximately holds (in the spirit of Saint-Venant’s
principle) sufficiently away from the edges (e.g., for a+h < r < b—h). For a solid disk (a = 0), the
constants ¢ = 0 and ¢1 = —(24/h*)M, /(1 + v), and the stresses reduce to o, = ogg = 12Myz/h?
(Timoshenko and Goodier, 1970).

The resulting stress expressions can be compared with the results from the classical circular plate
theory (e.g., Timoshenko and Woinowsky-Krieger, 1987; Asaro and Lubarda, 2006). However, in
contrast to the latter, the derived results in this section also apply to thick hollow cylinders loaded
by distributed radial stress which varies linearly with z, giving rise to moments M, and M.

The displacement components associated with (5.7) are

1— 1 1— 1 1
= ——2 (7 ar+ %)z, Uy = 2HV 1 e (r? = b%) + caln(r/b) | + 5 ve 2, (5.15)
where we have imposed the condition u.(r = b,z = 0) = 0.

Finally, we give the Boussinesq potentials corresponding to Love’s potential (5.7). They can be
expressed as
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B=20-nlf0) - g, A= (12| 10) - Lo, (5.16)

i.e., after using (5.5),

B=2(1-v) icl(rz—%z)—i-t:glnr , B:%(1—2u)(iclr2+02lnr—éclzz)z. (5.17)

6 Conclusions

We have presented in this article an analysis of classical Lamé problems of a symmetrically loaded
or constrained hollow cylinder and a pressurized spherical container by using Love’s and Boussi-
nesq’s potentials of the three-dimensional axisymmetric theory of elasticity. The presented analysis
complements the original analysis based on the direct integration of the Navier equations of equilib-
rium, and the analysis based on the Airy stress function of the two-dimensional theory of elasticity.
The simplest solution is based on the direct integration of the Navier equations, but the solutions
based on the Airy stress function, and on Love’s and Boussinesq’s potentials are each conceptually
and methodologically appealing on their own. An advantage of the solution based on the use of
Love’s and Boussinesq’s potentials is that both the displacement and the stress components can
be expressed in terms of these potentials explicitly and in closed form. The familiarity with the
structure of Love’s and Boussinesq’s potentials for considered Lamé problems is also instructive for
the analysis of more involved three-dimensional axisymmetric problems of the theory of elasticity,
in which the structure of adopted potential functions is often constructed by inspection, through a
semi-inverse or trial-and-error procedure. We also derived the stress and displacement fields in a
hollow disk subjected to distributed bending moments along its circular boundaries.
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Resavanje Lamé-ovih problema koriséenjem Love-ove
potencijalne funkcije i Boussinesq-ovih potencijala

SazZzetak

U radu su izvedena rjeSenja Lamé-ovih problema osnosimetri¢no opterec¢enog Supljeg cilindra
u uslovima ravne deformacije ili ravnog napona i sfernog suda pod pritiskom koris¢enjem Love-
ove potencijalne funkcije i Boussinesq-ovih potencijala trodimenzionalne osnosimetri¢ne teorije
elasti¢nosti. Ova rjeSenja predstavljaju dopunu klasi¢nih rjeSenja izvedenih direktnom integraci-
jom Navier-ovih jednacina ravonoteze, ili koris¢enjem Airy-eve naponske funkcije dvodimenzionalne
teorije elasti¢nosti. Prednost Love-ove potencijalne funkcije i Boussinesg-ovih potencijala je da se i
komponentalna pomjeranja i komponentalni naponi mogu eksplicitno izraziti koriS¢enjem ovih po-
tencijala. Raspodjele napona i pomjeranja u $upljem disku optere¢enom ravnomjerno rasporedenim
ivicnim momentima savijanja su takode odredeni.

Kljucéne rije¢i: Airy-eva naponska funkcija; Boussinesq-ovi potencijali; kruzna plo¢a; Lamé-ov prob-
lem; Love-ov potencijal; ravna deformacija; sferni rezervoar
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