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Time averaged optimization of cyclic processes with discount

Abstract

Here we prove the existence of solution in time averaged optimiza-
tion of cyclic processes with discount and find the respective necessary
optimality condition. We show that optimal strategy could be selected
piecewise continuous if a differentiable profit density has a finite number
of critical points. In such a case the optimal motion uses only maximum
and minimum velocities as in Arnold’s case without any discount.
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1. Introduction

A control system on the cycle is defined by a velocity v smoothly depending
on an angle x on the circle and a control parameter. We assume that this
parameter belongs to a smooth closed manifold or a disjoint union of such
ones with at least two different points and that all admissible velocities are
positive, that is v > 0.

An admissible motion of the control system is an absolutely continuous
map x : t — x(t) from a time interval to the system phase space such that at
each moment of differentiability of the map the motion velocity belongs to the
convex hull of the admissible velocities of the system.

A cyclic motion or just a cycle with a period T,T > 0, is defined by a
periodic admissible motion z, z(t + T) = x(¢). In a presence of a continuous
profit density f on the circle an optimization of periodic motion could lead to
the problem of the selection of cyclic process with the maximum time averaged
profit:
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;/{) f(z(t))dt — max.

V.I.Arnold shows that in a generic case the optimal strategy exists and is
rather simple. Namely, it uses the maximum and minimum velocities when
the profit density is less or greater, respectively, than a certain constant [1],
[2], [3]. Here we prove an analogous result for the case with a positive discount
o,0>0:

;/0 e~ F(2(1))dt — max. (1)

2. Existence of optimal strategy

Here we prove the existence theorem in time averaged optimization of cyclic
processes with discount.

2.1. Problem reformulation

Following V.I.Arnold [1] for an admissible motion x we introduce density
p, p(x(t)) = 1/i(t). The density is well defined at any point of differentiability
of the motion. So almost everywhere we have dz(t) = @(t)dt or, taking into
account the positiveness of admissible velocities, dt = p(z(t))dz(t).

Thus our extremal problem (1) could be rewritten in the form

)= [ 8 f@ptara) [ plords - max
A = (o) [ st @) [ o) —max. @

where ¢(z) = [ p(z)dz. In such a formulation we need to find a measurable
0

density p on the circle which satisfies the constraint
r1 < p<To (3)

and such that the respective function ¢ provides the maximum of averaged
profit (2). Here 7 and 7y are positive functions being inverse values of maxi-
mum and minimum admissible velocity, and 0 and 27 are start and end points
of the cycle, respectively.
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2.2. Existence theorem

Left hand side of (2) could be considered as linear functional on the space
of continuous profit densities.

Preposition 2.1. For a given continuous density f and constraint posi-
tie functions r1,ry the value of functional A, for any measurable p satisfying
constraint (3) is bounded. More exactly

[ Ap(f)] < maM/my
where my; = min{r(z),0 < x < 27}, my = max{re(z),0 < z < 27}, M =
max{|f(z)],0 <z < 27}.
Proof. Really for |A,(f)| we have the estimation
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Theorem 2.2. For a continuous profit density f and continuous positive
constraint functions ry,ry there exists a measurable density pma. which sat-
isfies constraint (3) and provides exact upper bound of values A,(f) over all
measurable functions p complying with this constraint.

Proof. Let for a sequence of measurable densities p,, the value A, (f) tend
to this upper bound when n — oc. The respective sequence ¢,, of functions

[ pu(2)dz, x € [0,27], satisfies the condition
0

mi(y —z) < gu(y) — dnlz) < ma(y — ) (4)

for any z,y € [0, 27], x < y, due to p,, satisfies constraint (3). In particular, all
¢n are Lipschitz functions with the same constant ms, on the interval [0, 27]
the set of these functions is bounded and has equicontinuity property.

Consequently, due to Arcela-Askoli theorem there is subsequence of these
functions which converges uniformly on the interval [0, 27] to a function ¢u..
Taking the respective limit in inequality (4) we observe that the function ¢
has to satisfy this inequality.

Therefore this function is absolutely continuous. Its derivative exists almost
everywhere and has to satisfy constraint (3) at any point of its existence.
Hence there exists the needed measurable function p,,., which coincides with
the derivative of ¢, at any point of its differentiability.

The theorem is proved.
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3. Structure of optimal solution

Here we calculate a necessary optimality condition. Using it we show that a
optimal density pq. is bang-bang and find the form of the respective switching
function.

3.1. Necessary optimality condition

Theorem 3.1. If for a continuous profit density f and continuous positive
constraint functions r1,r9 the mazimum A of functional in (2) is provided by
a density p satisfying constraint (3) then at any point x, where p is derivative
of its integral, the value

T 2m Y

e_ogp(z)dzf () —0o / e_agp(z)dzf (y)p(y)dy — A (5)

xT

is either non-positive or non-negative, or else zero if the value p(x) is equal to
either r1(z) or ro(x), or else belongs to (r1(x),ro(x)), respectively.

Proof.The statement of the theorem follows from direct calculation of the
first variation of functional value A,(f) under admissible appropriate variation
of the density p. Consider a point x at which the function p equals to derivative
of its integral. Without loss of generality we assume that this point belongs
to the interval (0, 27). For the ends of the interval the proof is practically the
same.

Take a small positive v such that the interval [z, x + ] is subset of (0, 27)
and consider a new density p such that the difference p — p is a small constant
value h on this interval and zero outside it. For the densities p and p the
respective periods of motion along the circle are

2T
T:/ p(x)de and T =T+ hv
0

as it is easy to see. Calculating now the parts of difference A;(f)—A,(f) which
are related to intervals [0, z], [z, z + v], and [z + v, 27] we get respectively

T —g f p(z)dz T —c fy p(z)dz
Je 0T fwelydy e 0 fy)py)dy
0 0

T+ hv T
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where dots stay for the higher degree terms with respect to & and v. The sum of
the righthand sides of (6), (7) and (8) gives the whole difference A;(f)—A,(f)
in the form

2

f(x) - U/eggp(z)dzf(y)p(y)dy —Al +... (9)

xT

hv —o [ p(2)dz
— X e 0
T

with A = A,(f).

Thus for a small A and v > 0 the sign of the value of this difference is defined
by the sign of product h with the expression in square brackets because both
the period T and v are positive. For an optimal density p this value should be
non-positive at any point where this density equals to derivative of its integral.

Consequently the expression in square brackets has to be non-positive,
non-negative or zero if the value p(z) is equal to either 7 (x) or ro(z), or else
belongs to (ri(z),r2(x)), respectively, because in these three cases we could
take a small value of h as non-negative, non-positive and both non-negative
and non-positive, respectively.

Thus the statement of Theorem 3.1. is true.
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3.2. Analysis of switching function

Expression (5) defines a function S,S = S(z). In some sense this function
plays the role of switching function. It could be rewritten as

x

fof (z)d= 70; (z)dz
V@ o [ ey - oP -4 (0

0

2m fO'y (z)dz
where P = [e 1 f()p(y)dy is the profit along the cycle. Note that for

0
o = 0 this function takes well known form [1], [2], [3].
For differentiable profit density the switching function takes the form

£(0) + / e~ 00 P& () dy — o P — A (11)

after an integration in parts in (10). Here T is the period of the cycle.
Form (11) of function S leads to

Preposition 3.2. For a differentiable profit density f, continuous posi-
tive constraint functions 1,79 and a measurable density p satisfying (3) the
function S is differentiable and has the same critical points with the function

f-
Proof. Taking the switching function S in the form (11) we get

S/(l') — e ° I p(z)de/(x)

because in (11) the integrant is continuous function. But the exponent never
vanishes. Consequently the derivatives of the functions f and S have the same
7€r0S.

Theorem 3.3. For a differentiable profit density f with a finite number k
of critical points an optimal density p could be taken as piecewise continuous
function. More exactly, in such a case the optimal density takes either value
r1 or ro inside any interval between consequent points from the zeros of the
switching function and the ends 0, 2.

Proof. When the differentiable profit density has a finite number k of
zeros of its derivative on the interval [0, 27| then the switching function S does
that too. Consequently the switching function could vanish at least at k points
inside this interval. So in such a case an optimal density p takes values either
p1 or po inside any interval between consequent points from the zeros of the
function S and the ends 0, 27.
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