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Abstract

Exact elasticity solutions for circular inclusions with sliding and 
bonded interface within a concentric circular cylinder are obtained, 
associated with uniform shear eigenstrain of the inclusion or remote 
shear loading of the cylinder. Solutions for the bonded and sliding in­
homogeneities are also given. Elastic strain energies are calculated in 
each case for an infinitely extended matrix surrounding the inclusion 
or the inhomogeneity. The results are important for evaluation of the 
effects that interface conditions have on the average elastic properties 
of fiber composites and related problems.
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KRUŽNE INKLUZIJE SA KLIZNIM I ČVRSTIM SPOJEM U 
KONCENTRIČNIM CILINDRIMA

I z v о d

Naponska i deformaciona stanja unutar i izvan kružnih inkluzija 
umetnutih u koncentrični cilindar su odredjena za slučaj zadate smiču- 
će sopstvene-deformacije u inkluziji ili zadatog smičućeg opterećenja 
na spoljnjoj konturi cilindra. Granični uslovi izmedju inkluzije i cilin- 
dra odgovaraju kliznom ili čvrstom spoju, zavisno od toga da li je 
dopušten diskontinuitet u tangencijalnoj komponenti pomjeranja na 
granici izmedju inkluzije i cilindra. Elastične deformacione energije su 
sračunate i uticaj prirode spoja na njihove vrijednosti je analiziran. 
Dobijeni rezultati su od značaja za odredjivanje srednjih vrijednosti 
elastičnih svojstava kompozitnih materijala ojačanih vlaknima u zavi- 
snosti od vrste spoja na granici izmedju vlakana i matrice materijala.

INTRODUCTION

Since the classic paper by Eshelby (1957) on the elastic field of an 
ellipsoidal inclusion due to uniform eigenstrain, or an inhomogeneity 
under remote loading, the study of elastic inclusions and inhomo­
geneities has kept a continuing attention of the mechanics researchers 
over a period of last four decades. The books by Mura (1987) and 
Nemat-Nasser (1993) illustrate well the amount of research done and 
its significance in modeling of various engineering problems in solid 
mechanics and materials science. Most solutions given in the litera­
ture are for inclusions and inhomogeneities within infinite media, for 
which the nature of remote boundary conditions simplifies the analy­
sis and often allows an exact, closed form solution. It is the purpose 
of this paper to study inclusions and inhomogeneities in finite media, 
and to determine the effects of the remote boundary on the stress 



Sliding and Bonded Circular Inclusions in Concentric Cylinders 125

field and strain energy. A circular inclusion which has undergone a 
uniform eigenstrain transformation of shear type is placed in a con­
centric circular cylinder, unloaded over its external boundary. An 
inclusion is also considered in a cylinder loaded over its external sur­
face by tractions associated with the uniform state of shear stress. 
The same is done for an inhomogeneity. Plane strain conditions are 
assumed to prevail. Two types of interface conditions are studied in 
detail, perfect bonding and frictionless or slipping interface. Exact 
solutions are found in all considered cases by employing appropriate 
Papkovich-Neuber potential functions. Elastic strain energies in the 
inclusion or inhomogeneity, and in the surrounding matrix, are de­
termined. Their dependence on the interface conditions is examined. 
Obtained results are useful for evaluation of the average elastic prop­
erties of fiber composites, modeling of the grain boundary sliding in 
polycrystalline materials, and related problems (Ghahremani 1980, 
Jasiuk et al. 1987, Furuhashi et al. 1992, Lubarda 1997, Lubarda 
and Markenscoff 1998,1999). Extension of the analysis to include an 
arbitrary uniform eigenstrain of the inclusion, or an arbitrary uniform 
loading over external surface of the cylinder, can be done much along 
the lines presented in this paper.

1. CIRCULAR INCLUSION WITH SHEAR EIGENSTRAIN

Consider a circular inclusion of radius a within a concentric cir­
cular cylinder of radius R. Let the inclusion be given a stress-free 
transformation strain (eigenstrain) of shear type and amount 7, rela­
tive to the set of specified rectangular axes x and y. Upon insertion 
of the transformed inclusion back into the cylinder, both are in the 
state of stress and strain. The Papkovich-Neuber potentials for the 
displacements in the inclusion can be taken as:

Фо = (bo + ai)r2 sin20, Ф1 = t^3 sin30, Ф2 = — cos 30, (1.1) 
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where r and 0 denote the polar coordinates. The displacement com­
ponents are derived from:

ux = -J—(Фо + z$i +2/Ф2) -4(1 - 1/)Ф1 I+?y, (1.2)
OX

Uy = —(Фо + ггФх + УФ2) - 4(1 - 1/)Ф2 I +ух. 
оу

(1-3)

The terms yx and yy, appearing to the right of the vertical (|) line, 
correspond to stress-free shear eigenstrain, and should not be taken 
into account when calculating the stresses. The plane strain configu­
ration is assumed, and v is the Poisson ratio of an isotropic material 
of the inclusion and the cylinder.

The Papkovich-Neuber potentials for displacements in the cylin­
der axe:

Фо = bor2 sin 20 + + 62r-2 sin 20,

Ф1 = 63г-1 sin0 + 64г3 sin30, (1.4)

Ф2 = —64г3 cos 30.

The corresponding displacement components are obtained from (1.2) 
and (1.3), excluding 72: and yy terms on their right-hand sides. The 
following displacement and stress components result in polar coordi­
nates. The displacements in the inclusion are:

= [2 (bo + oi + 2ря2г2) + 7] r sin 20, (1.5)

Ug = {2 [bo + ai + (3 — 2z/) П2Г2] + 7} r cos 20, (1.6)

and the stresses:

a!r = 4/z (60 + oi) sin20, (1.7)

<jg — —4^ (bo + ai + 6a2r2) sin 20, (1.8)

= 4/z (bo + ai + Заг^2) cos 20. (1.9)

The displacement components in-the cylinder are similarly:

и? = 2 [60 — b?r 4 —(1 —р)6зг 2 + 21,64г2] r sin 20, (1-10)
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— 2 60 + 62r 4 - (1 - 2p) 63r 2
Lt

+ (3 - 2p) 64Г2 r cos 20, (1-11)

with the corresponding stresses:

<7^ = 4^ (60 + З62Г 4 + 63г 2)sin20, (112)

(jg = —4/r (60 + 362г-4 + 664г2) sin20, (1.13)

cr^g = 4/r f 60 — Зб2г“4 — ^бзг-2 + З64Г2 j cos 20, (1-14) 

provided that 61 = —2(1 — 1^)63. The shear modulus is denoted by
If the interface between the inclusion and the cylinder is bonded, 

the interface conditions are the continuity of the normal and shear 
traction, and the normal and tangential displacement. The boundary 
conditions at the outer surface of the cylinder are the vanishing of the 
normal and shear traction there. Thus, at r = a-.

I — <7r <7r , I — zrC ar9 — ar0'
_ ,.C I _ C ur — ur Ug — Ug , (1-15)

and at r = R:

<7^ = 0, <Trc0 = 0. (1-16)

The superscript I designates the inclusion, and C the surrounding 
cylinder or the matrix material. Upon calculations, the following ex­
pressions for the constants a’s and 6’s are obtained:

ai =-/c7, a2 = ~2fc7^4 И - ^2 L (117)

60 = ^7-57 ( 4 - 3^2 ) , bi = 7<Л = ^a4, &з = -4/г7<22, (1.18)
it \ it / 

and 64 = a2, where к = 1/8(1 — z/). A discontinuity in the hoop 
stress across the interface of the bonded inclusion is equal to Acr^ — 
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— 16/zA:7sin20. This is independent of the ratio a/R, and thus equal 
to the discontinuity in the hoop stress of the Eshelby bonded inclusion 
in an infinite matrix.

If the interface between the inclusion and the cylinder is friction­
less, perfectly slipping interface, the inclusion is commonly referred 
to as the sliding inclusion (Jasiuk et al. 1987, Furuhashi et al. 1992, 
Lubarda and Markenscoff 1998). The interface conditions are the van­
ishing of the shear traction between the inclusion and the cylinder, 
and the continuity of the normal traction and normal displacement at 
the interface. Thus, at r = a:

trig = 0, <?r0 — ar = ari ur — ur ■ (1-19)

The boundary conditions at the outer surface of the cylinder are the 
same as in the case of the bonded inclusion, i.e. given by Eq. (1.16). 
Upon a somewhat lengthy but straightforward calculation, the follow­
ing expressions for the constants a’s and b's are found:

«1 =

ЗАг'у a2

а2 а4 \ 1--------- L 4---
R2 R4}’ 

( а2 а4 \ (2 + /р +л*)’

a2 =
k'ya 2 

2^

2 \3
1 “ —R2) ’

„2 \

(1.20)

(1-21)

а2
R2

k^R~2a2(
bi~ 2FtR

Ьз =
fl4

+ 2я4
а2^
R2 ) ’

(1.22)

2

where q = l + 3a4/T?4. A discontinuity in the tangential displacement 
across the slipping interface is

Au# = Ug (a, 0) — Ug(a, 0) — — — 1 - + 6-^j ) acos20. (1?23)
Я- /

A discontinuity in the hoop stress across the interface of the sliding 
inclusion is

Acr0 = of (a,0) - ag(a,0) = _ “A sin20. (1.24)
Q IX \ lx )
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If R -» oo, then Acre = 0, which shows that there is no jump in 
the hoop stress across the interface of the sliding inclusion and an 
infinite matrix. This is in contrast to the Eshelby inclusion with 
bonded interface, where the hoop stress experiences a variable jump 
A<T0 = —Тб/л/гу sin 20. Also, the stress state at all points of the inter­
face between the sliding inclusion and the surrounding infinite matrix 
is purely dilatational, in the sense that <jr = erg at the interface. The 
normal tractions at the interface of sliding and bonded inclusions in 
infinite matrix are related by сгг? = (3/2)cr^, so that upon removal of 
the shear traction at the interface of the bonded inclusion, the normal 
traction there increases by the factor of 3/2, to preserve the continuity 
of the normal displacement across the interface.

2. SLIDING CIRCULAR INCLUSION UNDER 
REMOTE SHEAR LOADING

Consider a cylinder of radius R which contains a stress-free con­
centric circular inclusion of radius a. Both materials are the same, 
and the interface between the inclusion and the cylinder is friction­
less. Assume that the loading at the outer surface of the cylinder 
corresponds to the state of uniform shear stress <jxy = t, so that the 
boundary conditions at r = R are:

<r^ = Tsin20, <t^ = tcos20. (2.1)

It is important to consider such a configuration in order to properly 
evaluate the relevant elastic strain energies in the problem, discussed 
in Section 4. An analogous but simpler problem, with a circular void 
in a finite cylinder under the same loading, was originally solved by 
Sih and Liebowitz (1967) to confirm the Griffith energy criterion for 
brittle fracture. The Papkovich-Neuber potentials can be taken in the 
general form given by Eqs. (1.1) and (1.4), with the corresponding 
displacement and stresses defined by Eqs. (1.5)—(1.14), omitting the 
terms proportional to 7. Alternatively, the complex functions and
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the Kolosov-Muskhelishvili stress combinations can be used. The
constants a’s and b’s appearing in Eqs. (1.5)—(1.14) are found to be:

ai = a 3 - 4-^ - 3/3 
л2

a2 a4
1-Д2+4tf4

о / a 1 f ćz> \ 
a2 = -aa-

Г a2 a2 ( a2 a4 \ Ь» = а|з-2^+3/^ (2+jp+^j)

&2 = aa4 l+/3[ 1 + 3^2

63 = —2aa2

a I a \ 
b4 = Д4 ( 3 + Д2 ) ’

(2-2)

(2.3)

(2-4)

(2-5)

(2-6)

(2-7)

and bi = —2(1 — р)Ьз. The parameters a and /3 are introduced as:

т/4/i _ 1 — 2a2/R2
a = (1-а2/Я2)(3 + а2/Я2) ’ = 2(1 + 3a4/7?4)'

For large radius of the cylinder R, the b-constants become:

(2-8)

r a2 ( a2

(2-9) 4

and Ьг = 0, neglecting the terms of higher order in a2/R2. Within the 
same order of accuracy:

a = 36/2
3 + 2^

„2 \ (2.10)
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The last two sets of equations are used to obtain the asymptotic ex­
pressions for the displacement components at the outer surface of the 
cylinder, needed for the energy calculations in Section 4. These ex­
pressions are:

1 + 2^ ^R2+° (r4) sin 20,

cos 20.

(2.11)

(2.12)

3. SLIDING INHOMOGENEITY UNDER 
REMOTE SHEAR LOADING

Because of its significance in the analysis of inhomogeneous mate­
rials and fiber composites, in this section we consider a sliding circular 
inhomogeneity with isotropic elastic properties represented by the s- 
hear modulus and Poisson ratio (pi,Pi), which is surrounded by a 
concentric circular cylinder with the elastic properties (/22,^2). The 
radius of the inhomogeneity is a, and the radius of the cylinder is 
R. Assume that the only loading is applied on the outer surface of 
the cylinder, and that it again corresponds to uniform state of shear 
stress cjxy — T. The Papkovich-Neuber potentials can be taken in 
the general form given by Eqs. (1.1) and (1.4). The corresponding 
displacement and stresses are defined by Eqs. (1.5)—(1.14), with omit­
ted terms proportional to 7. The following displacement and stress 
components are thus found. The displacements in the inhomogeneity 
are:

и? = 2 (bo + eq + 2z/iO2r2) r sin 20, (3.1)

Ug — 2 [bo + <*1 + (3 — 2i/i)a2^2] r cos 20, (3.2)

and the stresses:

ст/ = 4/21 (bo + ai) sin 20, (3.3)
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ctJ = —4//1 (&o + ai + баг’’2) sin 20, (3.4)

ст?e = 4^1 (&0 + ai + 3a2r2) cos 20. (3.5)

The displacement components in the cylinder are similarly:

u? — 2 [&o - for-4 - (1 - ^2) b3r~2 + 2^204^2] r sin 20, (3.6)

Ug = 2 b0 + Ь-2Г~^

— (1 — 2l/2) b3r~2 + (3 — 2p2) b^r2 r cos 20. (3.7)

The stress components are:

(Jr — 4^2 (b0 + 362r-4 + 53r-2) sin 20, (3.8)

erg = —4/л2 (бо + Зб2г~4 + 604Г2) sin 20, (3.9)

(TrO = 4^2 (bo - 3b2r-4 - I&3’’-2 + З64Г2 ) cos 20, (3.10)

provided that by = —2(1 — р2)^з- After a tedious calculation, the
constants a’s and b's are found to be:

a2 =

ai = 6014

p4
+ 304^- azc

bo = 0(2

62 = a2a4

( a2 \“a2(3“M
(2 \3 2

1 - — I 4- п
R2) 7?2

a2 a4
R2 + Я4

2

г я a4 z-L & 
b3 = -4а2-д2 + 6&4-^“

a2 a4
В2 + Л4 (3.11)

(3.12)

(3.13)

(3.14)

(3.15)

T oP/R?
2dfj2 1 - a2/R2
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ГГ I / 2 \ 2 >
(3.16)

The parameters cq and сц are defined by the first part of Eq. (2.10), 
if the shear moduli mi and м2 are there used, respectively. The pa­
rameters c and d are introduced by c = 3 + a2/T?2, and

(4 \ 2 / 4 \л* \ CL ( CL \

1 + ~ 2l?2) Д2 j
/ 2 \3+<3-^’^(1-^)- <317>

If mi — /12 and — 1/2, Eqs. (3.11)-(3.16) for the constants a's and b's 
reduce to those given in Section 2. If R —> 00, the inhomogeneity is in 
an infinite matrix under remote shear loading at infinity. In this case, 
the constants a’s and b's significantly simplify, since oq —> t/12mi, 
«2 -> t/12/12, and:

p4, -4 — 1~(3-2^)м2/М1 n
4 2/12 5 - 6 м2 + (3 - 2/>i)m2/M1

The explicit expressions for the corresponding stress and displacement 
fields in both the inhomogeneity and the matrix are given by Lubarda 
and Markenscoff (1999). For the rigid inhomogeneity, the relevant 
constants are:

60 = 2-, = b3=^ 1 (,4=o. (3.19)
4/22 4/Z2 5 — 6z?2 М2 5 - W2

For the void,
4 2T T(1 TCL

bo — -—, b2 = -—, bj, — —-—, 64 = 0. (3.20)
4/22 4/22 М2

The stress field around the void does not depend on the Poisson 
ration of the matrix. Thus, from Eqs. (3.19) and (3.20), the stress field 
around the rigid inclusion in an artificial matrix having the Poisson 
ratio equal to 1 would be equal to the stress field around the void in 
an arbitrary real matrix. Observation of this kind was earlier made 
in the context of general plane elasticity by Dundurs (1989).
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4. ENERGY CONSIDERATIONS

The elastic strain energy in the inclusion which has undergone a 
stress-free eigenstrain transformation is equal to the work done on 
the inclusion to insert it back into the cylinder. This is

z Jv
(4.1)

V being the volume of the inclusion. The strain energy in the cylinder 
is equal to the work done at the inner surface S by tractions produced 
there by the inserted inclusion, which is

EC = ~| j dS,
(4-2)

where rij are the components of the unit normal to S. The total strain 
energy, in the inclusion and the cylinder, is Ет = E1 + Ec, i.e.,

Ет = -±^а^АУ. (4.3)

In the case of the bonded interface between the inclusion and the 
cylinder, this follows because at the interface, and in the
case of the slipping interface, because — u^) = 0, the traction
vector being normal to the slip vector uf — at the interface. In 
calculations, it is convenient to first calculate the total energy and the 
energy in the cylinder, and then the energy in the inclusion as their 
difference.

For example, in the case of the sliding inclusion in an infinitely 
extended matrix, the following expressions for the strain energies (pes 
unit length in the z direction) are obtained for the shear eigenstrain 

exy ~ У-

T _ 3p72 2
Es~ 8(1^7)“’'’ 

c 3(5 - 6z/)p72 2
Es - 64(1 - “ *’

r _ 3(3 - 2i/)p72 2
Fs 64(1 - z/)2

(4-4)

а 7Г.
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The subscript S indicates the sliding interface. The energy in the 
matrix surrounding the inclusion is greater than the energy in the 
inclusion, more so less the material is compressible. For an incom­
pressible material, Eg = 2Eg.

In the case of the inclusion with bonded interface, the energies are:

T _ M72 2
Eb~ 2(1^7)'”’

_ (3 - 4i/)/ry2 2
- 8(1 _ „)2 “ *’

^72 2
а 7Г.

(4-5)

8(1-i/)2

The energy in the matrix is again greater than in the inclusion, but 
in contrast to the slipping interface, more so nw the material is 
compressible. For an incompressible material, Eg = Eg.

An appealing result follows by comparing the strain energies stored 
in the sliding and bonded inclusions. From the last of Eqs. (4.4) and 
(4.5), the difference in these energies is

T7il rpl ___ (1 - 6p)//72 
64(1 — p)2

7Г. (4-6)a2

Thus, Eg < Eg if v > 1/6 , and Eg > Eg if p < 1/6 . 
Hence, the shear stress relaxation at the interface actually increases 
the strain energy in the inclusion for very compressible materials (p < 
1/6). Such an observation was first made in the case of an arbitrary 
but uniform eigenstrain by Lubarda and Markenscoff (1999). Note, 
however, that the total strain energy is always smaller in the case of 
the sliding inclusion. In fact, Eg = (3/4)Bg.

There is an analogous result that holds for the sliding inclusion 
under remote shear loading r. The elastic strain energy in the sliding 
inclusion is

1 r2rEg = -/ = 4ц(Ьо + ai)(&o + ai + 2ра2а2)а2тг, (4.7)
2 Jq
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where cr? and from Section 2 are both evaluated at r = a. The 
parameters ai, 0,2 and bo are defined by Eqs. (2.2)-(2.4). If the outer 
radius of the cylinder R —> 00, these parameters become: a-[ = т/8/q 
a,2 = —таГ2/8џ and bo = т/^ц. Thus, in this case

f 3(3 — 2p)t2 2
Bs = 16„ “ (4.8)

and

p/ p/ _ U - 6l/)r2 n2 Qx
Es ~ a (4.9)

where EB = (r2/2/z)a27r. Consequently, the shear stress relaxation 
at the interface increases or decreases the elastic strain energy in the 
inclusion, again depending on the value of the Poisson ratio. The 
energy remains unchanged for v = 1/6.

The total strain energy, in the cylinder and in the sliding inclusion, 
is equal to the work done by the tractions at the outer surface of the 
cylinder on the corresponding displacement there, i.e.,

Eg = | [ [r sin 20 (/?, 0) + rcos 2f)ug(R, 0)] RdO. (4.10)
2 Jo

Simple results hold in the limit as R —> 00. By using the asymptotic 
expressions given by Eqs. (2.11) and (2.12) of Section 2, there follows

pT pT _ (1 ~ z/)'7’2 _2„ Min
Es — EB —  a (4-11)

where E^ = (r2/2/z)T?27t (with infinitely extended radius R). This 
shows that the total strain energy increases by shear stress relaxation 
at the interface between the inclusion and the surrounding matrix. 
This is so because the whole system becomes more compliant in the 
presence of the frictionless interface, and the average deformation and 
thus the strain energy both increase.

An alternative derivation of the previous result is based on the 
potential energy consideration. If is the potential energy of the 
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cylinder with the sliding inclusion (which is the strain energy E$ 
minus the load potential at the outer boundary of the cylinder), and 
if Пд is the potential energy of the whole system without the slipping 
interface, the difference in two potential energies is equal to the work 
done by the shear stress relaxation on the slip discontinuity, Дид — 
[(1 — v)t / џ\аsin20, at the interface. Specifically,

1 f27r fl — i/lr2Tig — Пд = - / (—T cos 20)AtZ(j a d0 =------- - ------ а2тг. (4.12)
2 Jo 2p

Since the value of the potential energy for an elastic system is equal 
to minus the value of the elastic strain energy of that system (Пт = 
—ET). Eq. (4.12) is evidently in accord with Eq. (4.11).

Implicitly contained in the described potential energy consider­
ation is the following argument. The strain energy of the cylinder, 
without a slipping interface at r — a, is Eg = (t2/2^)T?27t. When 
the slip is allowed at r = a, there is a change in the strain energy of 
the whole system due to the work done by the relaxing shear stress 
at the interface on the slip discontinuity there. Furthermore, there 
is a change in the strain energy due to the work done by the already 
applied traction at the remote boundary r = R on additional displace­
ments produced there by the shear stress relaxation at the interface 
r = a. Thus,

1 /'27r
Eg — Eg = - / (—rcos20)Au0ad0

2 Jo
/»2tt

+ / (r sin 20 биг + т cos 20 6ug)Rd0, (4-13) 
Jo

where
биг = Ur(R,0) — (r / 2 p,)R sin 20,

and бид = Uq(R, 0) — (r/2/j,)R cos 20. The first integral on the right­
hand side of Eq. (4.13) is equal to —(1 — !>)(t2/2џ)а2тг, while the 
second integral is (1 — z/)(r2/^)a27r. Together, they yield the same 
result as given by Eq. (4.11).
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We end this analysis by reporting two energy results for the circu­
lar inhomogeneity in an infinite matrix under remote uniform shear 
loading. For simplicity, incompressible materials are considered only. 
The difference between the strain energies in the sliding and bonded 
inhomogeneity is found to be

(4-14)а 7Г.
1 I-2pZ _  _ __________ _________ T 2

s B~ (1 + №Mi)22W

Thus, the energy in the sliding inhomogeneity is smaller than in the 
bonded inhomogeneity for all ratios of the shear moduli ^г/М1- The 
total energy change in the considered system, associated with the tran­
sition from the bonded to the slipping interface between the matrix 
and the inhomogeneity, is

(4-15)
1 T2 pT PT _ 1 T -i

c — li/ d — ~—------ CL 7Г.
1 + M2/M1 2^2

Thus, slipping at the interface always increases the total energy. Ener­
gy expressions for arbitrary isotropic materials are listed by Lubarda 
and Markenscoff (1999).
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