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Abstract
We consider in this paper the optimal control problem with 

differential constraints in Lagrange multiplier form by Pontryagin’s 
maximum principle. We also consider the discrete optimal control 
problem with phase constraints by Milyutin-Dubovitskii’s Theorem 
on interesection of convex cones.

1. Teorij a optimalnog upravljanja je zasnovana na elementima 
klasičnih metoda rešavanja ekstermalnih problema i metoda va iju- 
cionog računa, ali takođe na njihovim uopštenjima koja su doprine- 
la stvaranju savremene teorije ekstremalnih problema, koja je sre- 
dinom ovog veka formirana kao rezultat rešavanja problema upra­
vljanja različitim letečim objektima i tehnološkim procesima slože- 
nije strukture.

Akojex* eXcRn vektor za koji data funkcija f(x) e C (1)(X) 
u otvorenoj oblasti X c Rn dostiže ekstremum (u daljem izlaganju 
ograničičemo se na minimum), tada mora biti zadovoljen uslov sta- 
cionarnosti

8f(x*) .
Ы (4)

odnosno
Vf(x*) = 0, (l.T)

čime se polazni problem odredivanja minimuma funkcije (fx) svodi 
na problem odredivanja skupa njenih stacionarnih tacaxa, za koje 
važi uslov

Vf(x) = 0, (1.2)
Osnovni ekstremalni problem
f(x) -> min, x e X c Rn, (1.3)

u različitim primenama je prvo uopšten problemima tipa
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f(x) -+■ min, gi(x) = 0, x e X c Rn, n' = 1, ..., m, (1.4) 
odnosno ekstremalnim problemima sa tzv. uslovnim ekstremumom, 
kojisu rešavani metodom Lagranžovih multiplikatora, odnosno od- 
redivanjem stacionarnih tačaka funkcije

F(x, Xo, X) = Xof(x) + <k,g(x)>,
О 0Д e Rm, Xo + ||X|| = 1, (1.5)

a zatim i problemima tipa

<c,x> —> min, Ax = B, x 0 (1.6)

koji je vrlo blizak linearnoj varijanti modela (1.4), mada se metoda 
Lagranžovih multiplikatora ne može koristiti za probleme linearnog 
programiranja (LP), jer je za probleme (1.4) oblast X otvoren skup, 
a za probleme (1.6) X = {x e Rn : x > 0} je zatvoren skup.

S obzirom na važnost primene problema LP (linearnog progra­
miranja), počev od radova L. A. Kantoroviča razrađivane su nove 
metode za rešavanje problema tipa (1-6), medu kojima i Danzigova 
simpleks-metoda za numeričko rešavanje problema (1.6). Za metode 
LP vezana je i teorija dualnosti, u kojoj posebno mesto ima' teo- 
rema о razdvajanju konveksnih skupova.

Korišćenje metoda konveksne analize omogućilo je rešavanje 
problema konveksnog programiranjla

f(x)-> min, gi(x) X °> i ~ 1, • • • > m, x e X a Rn, (1.7) 
gde su f(x) i gi(x) konveksne funkcije, preko Kuhn-Tackerove te- 
oreme, koja utvrduje da za svako rešenje, problema (1.7) odgova- 
rajuća Lagranžova funkcija dostiže minimum.

Osnovni problem klasičnog varijacionog računa

J(y(x)) = . J x f(x, У(х) У(х’) ) • dx—>m'm, 

y(xo) = Уо, y(xi) = yi,
(1.8)

gde je y(x) e C(1) [x0, xi], a f(x,y,y’) neprekidna skalarna funk­
cija s neprekidnim izvodima po svim argumentima zaključno sa 
izvodima trećeg reda, jeste tzv. Lagranžov problem sa fiksiranim 
krajevima, i predstavlja uopštenje polaznog ekstremalnog problema 
(1.3) akose stavi da je X = C(1) [x0,xi], a minimizacija funkcije f(x), 
x e X c Rn, zameni minimizacijom funkcionala J(y(x) ), y(x) e ’

C(1) [x0,xi],

Metoda varijacije pomoću koje se rešava problem (1.8) analo- 
gna je metodi ispitivanja diferencijala problema (1.3); pomoću ove 
metode dobijeni su osnovni rezultati u vidu neophodnih i dovoljnih 
uslova za ekstremum funkcionala (1.8).
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■ Slično kao i u prethodnim problemima sa uslovnim ekstremu- 
mom (1.4), i za osnovni varijacioni problem se mogu uvesti dopun- 
ska ograničenja, što dovodi do tzv. izoperimetrijskog problema.

f(x, y(x), y’(x)) dx -> min, 
У(Хо) = Уо, y(xi) = yi,

х' g(x,y(x), y’(x) dx = 0,

(1.9)
gde je g Rm, a uslov stacionarnosti izražava se preko Ojlerove 
jednačine za odgovarajuću Lagranžovu funkciju

F(x,y,y’, X„, X) = Xof (x,y,y:) +■ < X, g(x,y,y’) >. (1.10)
Treba napomenuti da je osnovni problem varijacionog računa, 

tj. problem minimizacije funkcionala (1.8), ekvivalentan problemu 
mmimizaeije tzv. Bolcovog funkcionala
fx f(x,y(x), y’(x))dx + Ф (y(x0), y(xi) ) -> min, (1.11) 

sa ograničenjima y(x„) = y0, y(xi) = yi.
2. Neka je u faznom prostoru Rn kretanje fazne tačke (objekta 

upravljanja) dato u vidu diferencijalnog ograničenja
х = F(x,u,t), (2.1)

gde je u e Rm vektor parametra upravljanja, х e Rn vektor faz­
nog stanj a, a f = (fi,..., fn) data vektorska funkcija.

Dopustivim upravljanjem nazivaćemo deo po dec neprekidnu 
funkciju

u(t) eU(t) c Rm, t e [t0,T], , (2.2)
koja na odsečku [t0,T] ima najviše konačno mnogo prekida prve 
vrste. neprekidna ie zdesna u tačkama prekida i neprekidna sleva 
u tački T.

Pored klase deo po deo neprekidnih funkcija, često se razma- 
tra u tzv. problemima optimalnog upravljanja i šira klasa dopusti- 
vih upravljanja — klasa svih ograničenih merljivih upravljanja ko­
ja zadovoljava ograničenja oblika (2.2).

Rešenje sistema (2.1) koje odgovara nekom dopustivom zada- 
tom upravljanju u(t)<= U (t) i početnom faznom stanju X„ £ Rn 
naziva se faznom trajektorijom objekta upravljanja definisanog re- 
lacijama (2.1) i (2.2) i predstavlja rešenja Košijevog problema

x(t) = f(x(t), u (t), t), t£ [t„,T], x(t0) = x„. (2 3)
Napomena. S obzirom na pretpostavku da je funkcija u(t) deo 

po deo neprekidna, tj. da može imati najviše konačno mnogo pre­
kida prve vrste, pretpostavimo da su prekidi u tačkama ti, ..., tk, 
t(,<ti< ... <tk<T. Ako se pretpostavi da postoji rešenje Košije- 
yog problema (2.3) na odsečku [to,ti], gde je x(ti) = xi, razmatra- 
ćemo Košijev problem

х = f(x(t), u(t),t), x(ti) = XI
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i, ako pri tom pretpostavimo da postoji rešenje na odsečku [ti.te] i 
da je x(tž) = X2, dolazimo do Košijevog problema.

X(t) = f(x(t), U(t)„t), X(t2) = X2.

Produžavanjem ovog postupka na svim podintervalima na ko- 
jima je data funkcija u(t) neprekidna, zaključno sa podintervalom 
[tk,T], dobili bismo rešenje Košijevog problema (2.3) na celom od- 
sečku [t0,T] u obliku neprekidne funcije

f 1x(t) = x0 + f(x(r), u(t), r)dr. (2.4)
a ro

U monografiji [4] je dat dokaz sledeće teoreme:
Teorema 1. Ako je vektorska funkcija f definisana i neprekid­

na po svim argumentima u oblastima RnXRmX[to,T] i zadovoljava 
Lipšicov uslov

||f(x,u,t) — f(x’,u,t)|| < Mllx—xll,

x,x’ E Rn, u ее Rm, t E [t0»T], (2.5)
tada za svako početno fazno stanje x0 e Rn i svako dopustivo upra- 
vljanje u(t) Košijev problem (2.3) ima jedmstveno rešenje (2.4) na 
celom odsečku [t0, Т].

U odnosu na klasične varijacione probleme, u kojima se traži 
пека dovoljno glatka funkcija y(x) za koju zadati funkcional dostiže 
minimalnu vrednost, u problemima optimalnog upravljanja se po- 
javljuju dve komponente, x(t) i u(t), a njihov naziv (trajektorija i 
upravljanje) vezan je za rešavanje prvih problema teorije optimal- 
nog upravljanja koji su, svakako, uticali i na činjenicu da se kao 
klasa dopustivih funkcija uzima skup deo po deo neprekidnih funk­
cija.

Osim ograničenja (2.2) koja se odnose na dopustiva upravljanja, 
mogu se razmatrati i ograničenja na fazne koordinate

x(t) e X(t), te [t0,T], ; (2.6)
kao i granični uslovi na krajevima trajektorija

x(t0) e S0(t0), x(T) eS(T), to60o, T e 0T (2.7)

gde
S0(t0), S(T)cR", 0o,0Tc R, t0 < T.
U slučaju fiksiranih t0 i T imali bismo jednočlane skupove 

0O i 0T i tzv. problem sa fiksiranim vremenom. Ukoliko je S0(t) — 
= {x0}, reč je о problemu sa fiksiranim levim krajem, odnosno sa 
fiksiranim krajevima ako je i S(T) = {x(T)} = {хт}. U slučaju da 
je So(t0) = Rn, S(T) = Rn, imamo problem upravljanja sa slobodnim 
krajevima, odnosno u ostalim slučajevima problem sa pokretnim 
krajevima. i
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U problemima upravljanja definisanim relacijama (2.1), (2.2) 
za trajektorije i upravljanja uz ograničenja (2.6), (2.7), treba odre- 
diti upravljanje u(t) koje če minimizirati funkcional

J f„(x(t)u(t),t)dt + Ф(х(Т),Т), ‘ (2.8)

što predstavlja tzv. Bolcov problem optimalnog upravljanja, koji se 
naziva Lagranžovim problemom optimalnog upravljanja u slučaju 
kada funkcional (2.8) sadržisamo integralni, odnosno Majerovim pro­
blemom ako sadrži samo terminalni deo funkcionala Ф(х(Т),Т). 
Razmotrimo problem optimalnog upravljanja 

x(t) ~ f(x(t),u(t),t),
x(t0) e So, x(T) e S, u(t) e U. te [t0,T], (J 

sa graničnim uslovima
S0 = {x e Rn: gi(x) = 0, i = 1,..., т},
S ={xeRn: ћДх) = 0, j= 1, ,. ,.,k}, U)

sa fiksiranim vremenom i sa funkcionalom

J г f0(x(t),u(t),t)dt + Ф (x(T)) -> min. (***)

Uvedimo tzv. Hamiltonovu funkciju

H(x,u,t,¥/O,4') = 2 Tifi(x,u,t) (2.9)
i=o

gde je vro = const If'(t) = ('Pi(t), ..., ’Pn(t) )• Tada se pomoću 
Hamiltonove funkcije (2.9) može napisati sistem jednačina za fazne 
promenljive

. _ ЭН
x 04'

odnosno sistem za konjugovane promenljive u odnosu na upravlja­
nje u(t) i trajektoriju x(t) 

ЭН
Ч' = — * (2.10)ох

to jest 
0 ft 0

ВД = -Ч\, -- - f0(x(t),u(t),t) - 2 'ZA(t) - fj(x(t),
OX i j = 1 VAI

u(t),t), i — 1, .. . , n
Na osnovu Teoreme 1 može se zaključiti da sistem (2.10) ima 

na celom odsečku [t0,T] jedinstveno, neprekidno rešenje '/'(t), pod 
proizvoljino datim pocetnim uslovima.
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3. Sledeća teorema koja, kao i sve slične teoreme koje se za- 
snivaju na tzv. uslovu maksimuma odgovarajuće Hamiltonove funk­
ci je, predstavlja tzv. Pontrjaginov princip maksimuma, daje neop- 
hodan uslov optimalnosti za problem optimalnog upravljanja defi- 
nisan relacijama (*), (**) (***).

Teorema 2. Pretpostavimo da su funkcije f,„ fi,..., fu, Ф, 
gi, ..., g, hi, .. ., hk neprekidne i neprekidno diferencijabilne po 
svim promenljivim xi, . .., xn, a neprekidne po promenljivim 
ui, ...ura, gde х e Rn, u е U c Rm, te [t,„T|. Neophodan ušlov 
optimalnosti procesa (u(t), x(t) ), te [t,„T], defir.isanog relacijama 
C), (**)> (’**)■ jeste egzistencija rešenja Ф konjugovanog sistema 
(2.10) koje odgovara procesu (u(t),x(t) ), i konstante 'Д, 0,
(!Ч\.ј + !!'/y(t)ll # 0, ts [t,„T] ), tako da važe sledeći uslovi:

1" uslov maksimuma, tj. za svako te [t,0T]
H(x(t),u(t),t,V(t)) = max H(x(t),u,t,4'0, T(t) ); (3.1)

ueU

2° uslov transverzalnosti na levom kraju, tj. postoje takvi ska- 
lari ai, ..., ar da je

i
ЧЧМ = 2 aigi(x(t0 ), (3.2)

i = l

3° uslov transverzalnosti na desnom kraju, tj. postoje takvi 
skalari 0i, ..., pk da je

к
¥'(T) — Ч'оФ (x(T) ) = ^ДЬДх(Т) ). (3.3)

ј=1

Ova teorema se može dokazati za slučaj tzv. igličastih varija- 
cija upravljanja (impulsa) oblika

Г и—и(т), t t < t + £,
UE (T) ” t 0, TG[t0,T] \ [t,t + £], 

gde je u(t) optimalno, a ue U proizvoljno dopustivo upravljanje.
4. Sa razvojem metoda optimalnog upravljanja и kojima je 

korišćen princip maksimuma pojavila se potreba za zasnivanjem пе­
ке opštije teorije za rešavanje ekstremalnih problema jer su, zah- 
valjujući intenzivnom razvoju funkcionalne analize, mnogi varija- 
cioni problem! poprimili apstraktniji oblik. U radu [6] Dubovicki i 
Miljutin su formulisali jednu opštu metodu za razmatranje ekstre­
malnih problema, koja je korišćena za dobijanje novih rezultata и 
teoriji optimalnog upravljanja, posebno kad je reč о optimalnim 
problemima sa faznim ograničenjima. Pomoću konveksnih konusa 
koji aproksimiraju date skupove (pomoću kojih se defmišu fazna o- 
graničenja) i odgovarajućih konjugovanih konusa dobijeni su opšti 
uslovi minimuma, nazvani Ojlerove jednačine, odakle je izveden 
princip maksimuma. Zahvaljujući ovom rezultatu, Boltjanski je do- 
kazao da je princip maksimuma neophodan uslov optimalnosti za
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diskretni problem optimalnog upravljanja sa pokretnim krajevima 
i sa faznim ograničenjima.

U konačnodimenzionoj varijanti metode Dubovickog — Milju- 
tina u slučaju problema određivanja uslovnog ekstremuma

f(x) -> min, g(x) = 0,
xeRn, f(x),g(x) e C(1), Vf(x)#0, Vg(x) =# 0,

pretpostavimo da je x0 rešenje datog ekstremalnog problema. Vek- 
tor г е Rn predstavlja zabranjenu varijaciju ako je

, 1(XG + ЕТ) — ~
ds 8xл ' —v — lim9x E—»0 + 0

odnosno predstavlja dopustivu varijaciju u odnosu 
g(x) =

9g(x„)
Эт

0 ako je

lim 
e—>0 + 0

<1 3g(x.)
d;-g(x„ + ... - ...

0, (I)

na ograničenje

т = О, (II)

obzirom daS su skupovi zabranjenih varijacija i dopustivih 
varijacija u tački x0 konveksni, pomoću teoreme о razdvajanju kon- 
veksnih skupova izražene preko koeficijenata linearne forme koja 
predstavlja hiperravan koja razdvaja date skupove, može se poka- 
zati da skupovi (I) i (II) nemaju zajedničkih tačaka; ova dva skupa 
se rnogu razdvojiti ako i samo ako je

д f(xo)
Эх 

9g(xo)_ 
0x

što se posredstvom Lagranžove funkcije može napisati u obliku
F(x, X) = f(x) — X g(x), 

što znači da je uslov minimuma sveden na uslov disjunktivnosti 
konveksnih skupova.

5. Neka su sada u Banahovom prostoru zadati funkcional <£(w), 
konačan broj ograničenja tipa jednakosti i ograničenja tipa nejed- 
nakosti. Svako ograničenje tipa nejednakosti jeste skup koji pred­
stavlja zatvaranje nekog otvorenog skupa u prostoru В, a ograniče- 
nja tipa jednakosti predstavljaju zatvorene podskupove prostora B, 
bez unutrašnjih tačaka u odnosu na prostor B. Ako je w* tačka mi­
nimuma funkcionala <I>(w), tada se određuju skup zabranjenih va­
rijacija Qo elemenata w‘, skup varijacija dopustivih po i-tom ogra- 
ničenju tipa nejednakosti Qi i skup varijacija dopustivih po ogra- 
ničenju tipa jednakosti Q. Ako se pretpostavi da su svi skupovi £?,„ 
Q;, Q neprazni, tada je Q zatvoren konus, a Qo, Q: su otvoreni ko- 
nusi sa centrom u koordinatnom početku.
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Iz definicije konusa sledi da konus Qo predstavlja aproksima- 
ciju skupa {w: &(w) < Ф(м/)} u okolini tačke w*, konus £?; u okoli- 
ni tačke w* aproksimira skup elemenata dopustivih po i-tom ogra- 
ničenju tipa nejednakosti, a konus aproksimira skup elemenata 
tipa jednakosti u okolini tačke w*.

Prvi neophodan uslov minimuma u metodi Dubovickog-Milju- 
tina je zasnovan na činjenici da je presek svih konusa Qo, 
i = 1, ..., n, prazan skup, a drugi neophodan uslov je izražen 
preko konjugovanih konusa. Označimo sa Q+, Q,+ konuse konjugo- 
vane sa konusima Q (zatvoreni konveksni konusi) i Qi, i = 0, 
1, ... , n (otvoreni konveksni konusi). Ako je w* tačka minimuma 
funkcionala Ф(иг), tada postoje takvi funkcionali Wje.Q^, i = 0,1, 
..., n, wsQ+ (od kojih je bar jedan različit od nule) da važi tzv. 
Ojlerova jednačina

w0 + wi + ... + wn + w = 0, t

kojom se izražava drugi neophodan i dovoljan uslov da presek kon- 
veksnih skupova Q, Ц, i = 0,1, ..., n, bude prazan skup, odakle 
sledi teorema о razdvajanju konveksnih skupova [7].

Ovaj rezultat je omogućio Boltjanskom [5] da dokaže da je 
princip maksimuma neophodan uslov optimalnosti za diskretni pro­
blem optimalnog upravljanja sa faznim ograničenjima u smislu mi­
nimuma odgovarajućeg zbirnog funkcionala u kome treba odrediti 
dopustivo upravljanje u(0), u(l).........u(N-l) i odgovarajuće trajek-
torije x(0), x(l),..., x(N) tako da budu zadovoljeni uslovi:

1° promene faznih stanja
x(t + 1) = ft(x(t), u(t)), x(t) e Rn, t = 0,1, ..., N—1;

2° ograničenja za dopustiva upravljanja
u(t) eUtcRra, t = 0,1.........N—1;

3° fazna ogranicenja
x(0) e ,MO, x(l) e Mi, ..., x(N) e Mn, Mi <= Rn;

N-l
4° J = 2’ ft,(x(t), u(t))■-> min.

t =o
Takođe se može dokazati da se navedeni diskretni problem op­

timalnog upravljanja sa faznim ograničenjima može svesti na pro­
blem matematičkog programiranja.

U vrlo širokoj lepezi raznovrsnih ekstremalnih problema sa 
ograničenjima, navedeni problemi u kojima se kao neophodan uslov 
optimalnosti koristi princip maksimuma, sačinjavaju vrlo značajnu 
klasu, kako zbog mogućnosti primene u različitim dinamičkim si- 



О matematičkim metodama optimalnog upravljanja 237

stemima tako i zbog činjenice da predstavlja uopštenje klasičnih va- 
rijacionih problema.
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