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Slobodan Dajovic*

O MATEMATICKIM METODAMA OPTIMALNOG UPRAVLJANJA
ON MATHEMATICAL METHODS OF THE OPTIMAL CONTROL

Abstract

We consider in this paper the optimal control problem with
differential constraints in Lagrange multiplier form by Pontryagin’s
maximum principle. We also consider the discrete optimal control
problem with phase constraints by Milyutin-Dubovitskii’'s Theorem
on interesection of convex cones.

1. Teorija optimalnog upravljanja je zasnovana na elementima
klasi¢nih metoda reSavanja ekstermalnih problema i metoda va iju-
cionog racuna, ali takode na njihovim uopStenjima koja su doprine-
la stvaranju savremene teorije ekstremalnih problema, koja je sre-
dinom ovog veka formirana kao rezultat reSavanja problema upra-
vljanja razlicitim leteCim objektima i tehnoloSkim procesima sloZe-
nije strukture.

Akojex* eXcRn vektor za koji data funkcija f(x) e C (1)(X)
u otvorenoj oblasti X c Rn dostiZze ekstremum (u daljem izlaganju
ogranicicemo se na minimum), tada mora biti zadovoljen uslov sta-
cionarnosti

8f(x*) .
bl €Y
odnosno
VI(x*) = 0, (LT

¢ime se polazni problem odredivanja minimuma funkcije (fx) svodi
na problem odredivanja skupa njenih stacionarnih tacaxa, za koje
vazi uslov

VE(x) = 0, (1.2)
Osnovni ekstremalni problem
f(x) -> min, x e X c Rn, (1.3)

u razlicitim primenama je prvo uopSten problemima tipa
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f(x) +a min, gix) = 0, xeXc RnnN=1...,m, (14

odnosno ekstremalnim problemima sa tzv. uslovnim ekstremumom,
kojisu reSavani metodom Lagranzovih multiplikatora, odnosno od-
redivanjem stacionarnih tacaka funkcije

F(x, Xo, X) = Xof(x) + <k,g(x)>,

O 04 e Rm, Xo + |X]| = 1, (1.5)

a zatim i problemima tipa
<c,X>-—>min, AxXx = B, X 0 (1.6)

koji je vrlo blizak linearnoj varijanti modela (1.4), mada se metoda
Lagranzovih multiplikatora ne moZe koristiti za probleme linearnog
programiranja (LP), jer je za probleme (1.4) oblast X otvoren skup,
a za probleme (1.6) X = {x e Rn: x > 0} je zatvoren skup.

S obzirom na vaznost primene problema LP (linearnog progra-
miranja), poCev od radova L. A. KantoroviCa razradivane su nove
metode za reSavanje problema tipa (1-6), medu kojima i Danzigova
simpleks-metoda za numeriCko reSavanje problema (1.6). Za metode
LP vezana je i teorija dualnosti, u kojoj posebno mesto ima' teo-
rema o razdvajanju konveksnih skupova.

Koriséenje metoda konveksne analize omogucilo je reSavanje
problema konveksnog programiranjla

f(xt)-> min, gix) X >i~ Lo m x e X a Rn, (W)
gde su f(x) i gi(x) konveksne funkcije, preko Kuhn-Tackerove te-
oreme, koja utvrduje da za svako reSenje, problema (1.7) odgova-
raju¢a LagranZzova funkcija dostize minimum.

Osnovni problem klasicnog varijacionog racuna

Jy(x)) = J x f(x, YX) Y(X) ) *dx—>m'm, 19)

y(xo) = Yo, y(xi) =i,

gde je y(x) e C() [x0, xi], a f(x,y,y’) neprekidna skalarna funk-
cija s neprekidnim izvodima po svim argumentima zakljucno sa
izvodima treCeg reda, jeste tzv. LagranZzov problem sa fiksiranim
krajevima, i predstavlja uopStenje polaznog ekstremalnog problema
(1.3{ akose stavi da je X = C(I) [x0,xi], a minimizacija funkcije f(x),
X e X c Rn, zameni minimizacijom funkcionala J(y(x) ), y(x) e '

C(1) [x0,xi],

Metoda varijacije pomocéu koje se reSava problem (1.8) analo-
gna je metodi ispitivanja diferencijala problema (1.3); pomocu ove
metode dobijeni su osnovni rezultati u vidu neophodnih i dovoljnih
uslova za ekstremum funkcionala (1.8).
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I Sli¢no kao i u prethodnim problemima sa uslovnim ekstremu-
mom (1.4), i za osnovni varijacioni problem se mogu uvesti dopun-
ska ograniCenja, Sto dovodi do tzv. izoperimetrijskog problema.

f(x, y(x), Y'(x)) dx -> min, X' g(Xy(x), y'(x) dx =0,

Y(Xo) = Yo, y(xi) = vyi, (1.9)
gde je g Rm, a uslov stacionarnosti izrazava se preko Ojlerove
jednacCine za odgovaraju¢u LagranZzovu funkciju

FOGYY', X, X) = Xof (x,y,y:) # < X glx,yy) >. (1.10)

Treba napomenuti da je osnovni problem varijacionog racuna,
tj. problem minimizacije funkcionala (1.8), ekvivalentan problemu
mmimizaeije tzv. Bolcovog funkcionala

x fxyX), y'(x)dx + o (y(x0), y(xi) ) -> min, (1.11)

sa ograniCenjima y(x,,) = Y0, y(xi) = yi.
2. Neka je u faznom prostoru Rn kretanje fazne taCke (objekta
upravljanja) dato u vidu diferencijalnog ogranicenja

X = F(x,u,t), (2.1)
gde je u e Rm vektor parametra upravljanja, x e Rn vektor faz-
nog stanja, a f = (fi,..., f) data vektorska funkcija.

Dopustivim upravljanjem nazivatemo deo po dec neprekidnu
funkciju

ut) eU(t) c Rm te [t0,T], (2.2)

koja na odseCku [t0,T] ima najvise konacno mnogo prekida prve
vrste. neprekidna ie zdesna u taCkama prekida i neprekidna sleva
u tacki T.

Pored klase deo po deo neprekidnih funkcija, Cesto se razma-
tra u tzv. problemima optimalnog upravljanja i Sira klasa dopusti-
vih upravljanja — klasa svih ogranicenih merljivih upravljanja ko-
ja zadovoljava ograniCenja oblika (2.2).

ReSenje sistema (2.1) koje odgovara nekom dopustivom zada-
tom upravljanju u(t)<= U (t) i poCetnom faznom stanju X, £ Rn
naziva se faznom trajektorijom objekta upravljanja definisanog re-
lacijama (2.1) i (2.2) i predstavlja reSenja KoSijevog problema

X(t) = f(x(t), u (t), t), t£ [t,T], xX(@0) = x,,. (23

Napomena. S obzirom na pretpostavku da je funkcija u(t) deo
po deo neprekidna, tj. da moze imati najvise konacno mnogo pre-
kida prve vrste, pretpostavimo da su prekidi u tackama ti, ..., tk
t,<ti< ... <tk<T. Ako se pretpostavi da postoji reSenje Kosije-
yog problema (2.3) na odsecku [toti], gde je x(ti) = xi, razmatra-
¢emo Kosijev problem

x = f(x(t), u(t),t), x(ti) = Xl
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i, ako pri tom pretpostavimo da postoji reSenje na odseCku [ti.te] i
da je x(tz2) = X2, dolazimo do KoSijevog problema.

X = fx(), U@, X(2) = X2

Produzavanjem ovog postupka na svim podintervalima na ko-
jima je data funkcija u(t) neprekidna, zakljuéno sa podintervalom
[tk,T], dobili bismo reSenje Kosijevog problema (2.3) na celom od-
seCku [t0,T] u obliku neprekidne funcije

X(t) = x0 + f fx(r), u(v), ndr. (2.4)

a ro

U monografiji [4] je dat dokaz sledee teoreme:

Teorema 1. Ako je vektorska funkcija f definisana i neprekid-
na po svim argumentima u oblastima RnXRmX[to,T] i zadovoljava
LipSicov uslov

[If(x,u,t) — FOC,ub)|| < Milx—xil,
XX E Rn  ue Rm tE [tT], (2.5)

tada za svako pocetno fazno stanje x0 e Rn i svako dopustivo upra-
vljanje u(t) KoSijev problem (2.3) ima jedmstveno reSenje (2.4) na
celom odsecku [t0, T].

U odnosu na klasi¢ne varijacione probleme, u kojima se traZi
neka dovoljno glatka funkcija y(x) za koju zadati funkcional dostize
minimalnu vrednost, u problemima optimalnog upravljanja se po-
javljuju dve komponente, x(t) i u(t), a njihov naziv (trajektorija i
upravljanje) vezan je za reSavanje prvih problema teorije optimal-
nog upravljanja koji su, svakako, uticali i na Cinjenicu da se kao
klasa dopustivih funkcija uzima skup deo po deo neprekidnih funk-
cija.

Osim ogranicenja (2.2) koja se odnose na dopustiva upravljanja,
mogu se razmatrati i ograniCenja na fazne koordinate

x(t) e X(t), te [t0,T], ; (2.6)
kao i granic¢ni uslovi na krajevima trajektorija
x(t0) e S0(t0), x(T) eS(T), w600 Te OT (2.7

gde

S0(t0), S(T)cR", 00,0Tc R, t0<T.

U sluCaju fiksiranih t0 i T imali bismo jednoclane skupove
00 i OT i tzv. problem sa fiksiranim vremenom. Ukoliko je SO0(t) —
= {x0}, reC je o problemu sa fiksiranim levim krajem, odnosno sa
fiksiranim krajevima ako je i S(T) = {x(T)} = {xT1}. U slucaju da
je So(t)) = Rn, S(T) = Rn, imamo problem upravljanja sa slobodnim
krajevima, odnosno u ostalim sluCajevima problem sa pokretnim
krajevima. i



O matematickim metodama opt.imalnog upravljanja 233

U problemima upravljanja definisanim relacijama (2.1), (2.2)
za trajektorije i upravljanja uz ograniCenja (2.6), (2.7), treba odre-
diti upravljanje u(t) koje Ce minimizirati funkcional

J f,,(x(Hu(t),n)dt + O(x(T),T), ©(2.8)

Sto predstavlja tzv. Bolcov problem optimalnog upravljanja, koji se
naziva LagranZzovim problemom optimalnog upravljanja u slucaju
kada funkcional (2.8) sadrzisamo integralni, odnosno Majerovim pro-
blemom ako sadrzi samo terminalni deo funkcionala ®(x(T),T).
Razmotrimo problem optimalnog upravljanja

x(®) ~ fx(@®.u(0).9,

X)) e So, x(T) eSS, u(t) eU. te [tT], J
sa granicnhim uslovima
Si={xeRngi(x) =0 1i=1,., T}
S ={xeRn hix) =0, j=1, ., ,..k}, U)
sa fiksiranim vremenom i sa funkcionalom
J r fox(),u(),ndt + ¢ (x(T)) -> min. (***)

Uvedimo tzv. Hamiltonovu funkciju

Hx,u,t¥04) = 2 Tifi(x,u,t) (2.9)
1=0
gde je vro = const If'(g = (Pi(t), ..., 'Pn(t) )» Tada se pomocu
Hamiltonove funkcije (2.9) moZe napisati sistem jednaCina za fazne
promenljive
. _ 9
X 04'

odnosno sistem za konjugovane promenljive u odnosu na upravlja-
nje u(t) i trajektoriju  x(t)
3H

y = — ox * (2.10)
to jest
) 0 ft 0
B4 = -4\, “oxi foxx(t),u(t),t) - j2= 1ZA(t) Al fj(x(t),
u,), i — 1 ..., n

Na osnovu Teoreme 1 moze se zakljuciti da sistem (2.10) ima
na celom odseCku [t0,T] jedinstveno, neprekidno reSenje '/'(t), pod
proizvoljino datim pocetnim uslovima.
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3. Sledeéa teorema koja, kao i sve slicne teoreme koje se za-
snivaju na tzv. uslovu maksimuma odgovaraju¢e Hamiltonove funk-
cije, predstavlja tzv. Pontrjaginov princip maksimuma, daje neop-
hodan uslov optimalnosti za problem optimalnog upravljanja defi-
nisan relacijama (*), (**) (***).

Teorema 2. Pretpostavimo da su funkcije f,, fi,..., fu O,
gi, -.-, g, hi, ..., hk neprekidne i neprekidno diferencijabilne po
svim promenljivim xi, ..., xn, a neprekidne po promenljivim
ui, ---ura gde x e Rn,ue U c Rm te [t,T|. Neophodan uslov

optimalnosti procesa (u(t), x(t) ), te [t,T], defir.isanog relacijama
C), > (*m jeste egzistencija reSenja ® konjugovanog sistema
(2.10) koje odgovara procesu (u(t),x(t) ), i konstante '[, 0,
(Y. + Myl # 0, ts [t,,T]), tako da vaze sledeci uslovi:
1" uslov maksimuma, tj. za svako te [t,0T]
HX(®),u(t),t,VV(t)) = max H(x(t),u,t,40, T() ); (3.2)

2° uslov transverzalnosti na levom kraju, tj. postoje takvi ska-

lari ai, cooy ar da je
Yym =3|, aigi(x(to ), (3.2)
3° uslov transverzalnosti na desnom Kkraju, tj. postoje takvi
skalari Oi, ..., pk da je
¥(T) — Yod (x(T) ) :j’I\(l,Ll,b,Cl,x(T) ). (3.3)

Ova teorema se moZe dokazati za slu€aj tzv. igli¢astih varija-
cija upravljanja (impulsa) oblika
[ n—u(T), t t<t+f
VEM ” t 0, TG[t0,T] \ [t,t + £],

gde je u(t) optimalno, a ue U proizvoljno dopustivo upravljanje.

4. Sa razvojem metoda optimalnog upravljanja n kojima je
koriS¢en princip maksimuma pojavila se potreba za zasnivanjem ne-
ke opStije teorije za reSavanje ekstremalnih problema jer su, zah-
valjujuéi intenzivnom razvoju funkcionalne analize, mnogi varija-
cioni problem! poprimili apstraktniji oblik. U radu [6] Dubovicki i
Miljutin su formulisali jednu opStu metodu za razmatranje ekstre-
malnih problema, koja je koriScena za dobijanje novih rezultata
teoriji optimalnog upravljanja, posebno kad je re€¢ o optimalnim
problemima sa faznim ograni¢enjima. Pomocu konveksnih konusa
koji aproksimiraju date skupove (pomocu kojih se defmiSu fazna o-
graniCenja) i odgovarajucih konjugovanih konusa dobijeni su opsti
uslovi minimuma, nazvani Ojlerove jednaCine, odakle je izveden
princip maksimuma. Zahvaljujuc¢i ovom rezultatu, Boltjanski je do-
kazao da je princip maksimuma neophodan uslov optimalnosti za
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diskretni problem optimalnog upravljanja sa pokretnim krajevima
i sa faznim ogranienjima.

U konacnodimenzionoj varijanti metode Dubovickog — Milju-
tina u slu€aju problema odredivanja uslovnog ekstremuma

f(x) -> min, g(x) = 0,
xeRn, f(x),0(x) e C(l), VF(X)#O0, Vg(x) =# 0,

pretpostavimo da je X0 reSenje datog ekstremalnog problema. Vek-
tor r e Rn predstavlja zabranjenu varijaciju ako je

x  EhoroM g5 1T 8x 0.
odnosno predstavlja dopustivu varijaciju u odnosu na ogranicenje
g(x) = 0 ako je

1
%90x.) lim o<|;-g(x,, + .-

3g(x.)
ar e=50+0

=0 (I

S obzirom da su skupovi zabranjenih varijacija i dopustivih
varijacija u tacki x0 konveksni, pomo¢u teoreme o0 razdvajanju kon-
veksnih skupova izrazene preko koeficijenata linearne forme koja
predstavlja hiperravan koja razdvaja date skupove, moZe se poka-
zati da skupovi (I) i (II) nemaju zajednickih tacaka; ova dva skupa
se rnogu razdvojiti ako i samo ako je

A f(xo) 9g(x0)_
X Ox

Sto se posredstvom LagranZove funkcije mozZe napisati u obliku
F(x, X) = f(x) — X g(x),

Sto znaCi da je uslov minimuma sveden na uslov disjunktivnosti
konveksnih skupova.

5. Neka su sada u Banahovom prostoru zadati funkcional <E(w),
konaCan broj ogranienja tipa jednakosti i ograniCenja tipa nejed-
nakosti. Svako ograniCenje tipa nejednakosti jeste skup koji pred-
stavlja zatvaranje nekog otvorenog skupa u prostoru B, a ograniCe-
nja tipa jednakosti predstavljaju zatvorene podskupove prostora B,
bez unutradnjih tacaka u odnosu na prostor B. Ako je w* taCka mi-
nimuma funkcionala <I>(w), tada se odreduju skup zabranjenih va-
rijacija Qo elemenata w*, skup varijacija dopustivih po i-tom ogra-
niCenju tipa nejednakosti Qi i skup varijacija dopustivih po ogra-
niCenju tipa jednakosti Q. Ako se pretpostavi da su svi skupovi £7,,
Q;, Q neprazni, tada je Q zatvoren konus, a Qo, Q: su otvoreni ko-
nusi sa centrom u koordinatnom pocetku.
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Iz definicije konusa sledi da konus Qo predstavlja aproksima-
ciju skupa {w: &(w) << ®(m)} u okolini tacke w*, konus £?; u okoli-
ni taCke w* aproksimira skup elemenata dopustivih po i-tom ogra-
nicenju tipa nejednakosti, a konus aproksimira skup elemenata
tipa jednakosti u okolini taCke w*.

Prvi neophodan uslov minimuma u metodi Dubovickog-Milju-
tina je zasnovan na Cinjenici da je presek svih konusa Qo
i = 1, ..., n, prazan skup, a drugi neophodan uslov je izrazen
preko konjugovanlh konusa. OznaCimo sa Q+, Q,+ konuse konjugo-
vane sa konusima Q (zatvoreni konveksni konusi) i Qi, i = 0,
1, ... , n (otvoreni konveksni konusi). Ako je w* taCka minimuma
funkcionala o(ur), tada postoje takvi funkcionali Wje.Q", i = 0,1,

.., N, wsQ+ (od kojih je bar jedan razliCit od nule) da vaii tzv.
Ojlerova jednacina

wl +wi + ... +wn + w =0, t

kojom se izrazava drugi neophodan i dovoljan uslov da presek kon-
veksnih skupova Q, U, i = 0,1, ..., n, bude prazan skup, odakle
sledi teorema o razdvajanju konveksnih skupova [7].

Ovaj rezultat je omogucio Boltjanskom [5] da dokaZe da je
princip maksimuma neophodan uslov optimalnosti za diskretni pro-
blem optimalnog upravljanja sa faznim ograniCenjima u smislu mi-

nimuma odgovarajuceg zbirnog funkcionala u kome treba odrediti
dopustivo upravljanje u(0), u(l)......... u(N-1) i odgovarajuce trajek-
torije x(0), x(I),..., x(N) tako da budu zadovoljeni uslovi:

1° promene faznih stanja

xX(t + 1) = ft(x(t), u(t)), x(t)eRn t =01, ..., N—I;
2° ograniCenja za dopustiva upravljanja

u(t) eUtcRra, t = 0,1......... N—1;
3° fazna ogranicenja

x(0) e MO, x(I) e Mi, ..., x(N) e Mn, Mi<=Rn;

N-I
€3 = 2 fi(d), u)m>min

Takode se mozZe dokazati da se navedeni diskretni problem op-
timalnog upravljanja sa faznim ograniCenjima moze svesti na pro-
blem matematiCkog programiranja.

U vrlo Sirokoj lepezi raznovrsnih ekstremalnih problema sa
ogranicenjima, navedeni problemi u kojima se kao neophodan uslov
optimalnosti koristi princip maksimuma, saCinjavaju vrlo znacajnu
klasu, kako zbog moguénosti primene u razlicitim dinamickim si-
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stemima tako i zbog Cinjenice da predstavlja uopstenje klasi¢nih va-
rijacionih problema.
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