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Abstract

This paper is devoted to nonlinear discrete calculus of variations
problems with equality and inequality type of constraints on trajecto-
ries and on endpoints. We derive new nontrivial first and second-order
necessary optimality conditions.
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1. Introduction
We shall consider the following discrete calculus of variations problem:

N-1
minimize fy(zo, xn) + Z f(@ip1, Axy); (1)
i=0
p(;) =0, i=0,N, ¢(x;) <0 i=0,N, (2)
K1(9U073UN) = 07 KQ(xoa‘TN) < 07 (3)

where

fo(xo,zn) : R" x R* — R, f(z,u): R" x R" — R,
e(x): R" — R™, (x): R" — R™,
Ki(zg,zn) : R" x R" — RM| Ky(x¢,2n) : R" x R™ — R*

are twice continuously differentiable functions and where the forward differ-
ence operator is denoted by A, i.e., Azr; = x;,1 — x;. We assume that m; < n
and k; < 2n.



46 A. V. Arutyunov, B. Marinkovi¢

Vector £ = (zg, x1, ..., xyN) is called a trajectory. If the conditions (2) and
(3) are satisfied then we say that the trajectory £ is feasible. The discrete
calculus of variations problem is to minimize the function

N-1
J(§) = Ko(wo, 2n) + Z f(@ig1, Azy), (4)
i=0
on the set of feasible trajectories. A feasible trajectory f = (Zo, &1,...,ZN)

is called a local minimum for the problem (1)-(3) if for some ¢ > 0, the
trajectory & minimizes J(£) over all feasible trajectories £ satisfying

l|zi — || <€, i=0,N,

where || - ||, is any norm in R".

Optimality conditions for the initial problem without inequality type of
endpoint constraints and without constraints on trajectories have been a
research focus of many authors; see [5] and references therein. In [3] discrete
2-regularity condition was used for sensitivity analysis in discrete optimal
control problems. We also refer to [4] where discrete optimal control problems
with equality type of constraints are considered, and there were obtained
first and second-order necessary optimality conditions based on the discrete
2-regularity condition .

The obtained results in this paper are based on the general theory devel-
oped in [1].

2. First-order optimality conditions

Suppose that f is the optimal trajectory for the initial problem.
For convenience, we discard all constraints corresponding to indices j such
that
Ky (%, 2n) <0,

and we assume that
Ky(Zg,2n) = 0.
Put

9

5 @) = Wi (&) = Wy
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gKOl (G0, ) = Ko, %(@0,@) = Ky,
gfj (0, 3n) = Koo, %(ﬁ:mm) = Koy,
Poy=ve, Thay=wr Th)-w
%Q—Q{?(@O,JAUN) K, %QT[;(%,@N) = Kiy, aiz%ljv(%v@\f) = Kioy
and
%2—3?(@0, in) = K, %%2(@0, By) = Ky, 83‘2%@0’ in) = Kan

For a fixed vector h = (hg, hi, ..., hy)T € R+ let us define the linear

operator
N(E) . Rn(N+1) N le(NJrl) > Rkl

by B
N(h)h‘ = (g()a' "7@N72>T

where B
J :‘/;Z[hhhi]) iZO,N,

Z = Kjylho, ho] + Kin[hn, ] + Kigylho, hn] + Kigxlho, hin].

Let Q@ = {(§,2)|0 € RMmW+D 4% € R*M} be the solution set of the
following system of the linear equations:

VE)T@O + K%Z = Oa (5)
VIigi=0, i=1,N—1, (6)
Vign + Kiyz=0. (7)

and denote by P the orthogonal projector onto the linear subspace ) C
R (N+1) 5 Rkr,

Put

I={j: (@) =0} i=0N.
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Denote by A, B and C' the the following block matrix

Vo 0. 0 Wy 0 ... 0 7
0 V.. 0 0o Wy ... 0
A= . B= |
| Ko 0 ... Kin | | Koo 0 ... Koy |
and
[ Ao, . . of . . 1T
5 a_f;(w():;’N) - 8_(1'1,1'1 3.1'0)
C: %(£1’£1_£0)+8_£(£1’£1_£0)__('@2"%2_3?1)
a ) % 7 T o ol 2 ~
| G0 i) i sy ) + G~ |

where by 0 we denote the zero matrix of the corresponding size.
Let Hy(€) be the cone of all vectors h = (hg,hi,...,hy)T such that
Ah = 0, W]th <0, 7€ [, 1 =0, N and Kyohg + Kanyhy < 0 holds.

Let Hy(&) be the set of all vectors h € H;(§) for which there exists
u € "+ such that

Au = —N(h)h, leul + Wﬁ[hz, hz] <0, V] el, i=0,N,

Kaoho + Konhy + Kag[ho, hol + Kx[hn, hn] <0

holds.
Denote by H(€) the set of all vectors h € Hy(€) such that for every

w € Hy(§) holds
PN(hw = Q

and there exists vectors 7t € R*™+D and n* € H,(€) such that the following
conditions

Ant = =N(h)n*,  Win; +Wilhi, i) <0, Vjel, i=0,N,

KQOT](% + K2N77]1\[ + KQQO[hOa 773] + K%N[hN’nJQV] <0
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hold.
Define the functions

H(Ep' p? ¢t a2 he) RPOTY 5 R™ x R™ x R™ x R™ x R"—R,i=0,N,

and

Uxo,xn A2 pt % ho iy ) :R™ R™ < RFY x RM x RF x R™ x R" x R"—R

by
0
HIEP %) = (0 plan) + (2 G ) + (a0
N-1

+ <q2, a_w(xi)hi> + fo(zo, zn) + Z flxipr, Ax;), 1=0,N,

T
0 =0

and
l<x0a$N7A17A27M1aM27h07hN) = <)\1,K1(l'0,l']\7)> + </~517K2(I07$N)>

+ </\2, %(xo,@v)(ho, hN)> + <u2, %(Jﬁo,@v)(ho, hN)> .

Theorem 2.1. Let & be the optimal solution for the problem (1)-

(3). Then there erists Lagrange multiplier X = (p*, p*, q', ¢*, \1, A2, b, p?),
ptp? € RWHD gl g2 € RN+ N A2 ¢ RF )l 12 € R*2, such that

for every h € H%(é), such that Ch < 0 holds, the following conditions are
satisfied:

0H ol

8_%(évp(l)7p37Qé7Qg7h0) = _a_xo(:v()aajNa)\17A27:u17,u/27h07h‘]\7)7 (8)
OH .
) (gapzlapquZlvqfahz)zov 2:1,N—1, (9)
T

o0H ol
_(§7p}\[7p§\[7q11\[7q12\77h1\7) = ——(Z07$N7)\1,)\2,M1,/,L2,h0, hN)v (10)

ory Orn
AT<p27)\2>T + BT(QQ,,UQ)T _ O, (11)

¢ >0, (g, ¥(#:)) =0,i=0,N, ¢ >0, (g ¢(#:)) =0, i=0,N. (12)
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Proof. Define the functions f(&), F(§) and g(&) by

N-1
F(&) = folwo, xn) + Y flwiss, Axy),
i=0

F(&) = (@(xo), R SO(xN)7 K1($07 xN))T7

g(g) = (77[}(1.0)7 o 72/}(1‘]\7)7 K2($Oa xN))T
We shall reformulate the initial problem into a mathematical program-

ming problem (see |2, 3, 4|):

minimize f(§); (13)

(&) =0, g(§) <0, (14)

Obviously, f is a local minimum for the preceding problem.
Put

T={i: g(é) =0}
Let us consider the following sets: K )
L Hi(€) = {h € RO | FiE)h = 0, (ql(€), h) <0, Vi € T},

2. Hy(€) is the set of all h € H;(€) for which there exists v € RPN+
such that

F/(&v+ F"(€)[h,h] = 0, (g}(€),v) + g/ (E)[h,h] < 0,Vie I

holds.
3. HY() is the set of all h € Hy(€) such that

im F'(§) + F"(€)[h, Hy ()] = R™M VD +h (15)
and for which there exists ' € R*™* and 2 € H,(€) such that
F'(&n' + F"©)lh,n*] = 0, (6i(&).n") + g/ (O[h,n?] <OVie I  (16)

holds.
4. C~’2( ) {h € ﬁQ(

: ){7/€).h) < 0},
5. CH(€) = Culé) N AY(E).
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Let us introduce the generalized Lagrangian function by
Ly(&, A h) = (&) + (B', F() + (7*, F'(§)h) + (7", 9(€)) + (@ g ()h) ,

where A = (5", 72, ", ¢?) and where h € C} is a parameter. )
In theorem 3 from [1] was proved that there exists Lagrange multiplier A
such that for every h € C3(€) the following conditions hold:

G_S(S)A’h) — Y, (17)
(F'())"D" + (¢ ()¢ =0, (18)
it >0, (3" 9€))=0, ¢ >0, (G g())=0. (19)

~

First, it is easy to see that F’(é) is given by the matrix A, ¢'(£) is given
by the matrix B and f'(€) is given by the matrix C.

>From the definition of the operator N(h) and from the preceding facts,
we have that Hy(€) = Ha ().

Also, from the fact that

A\ L ~
(im (F'(§)) =ker F/(€)",
and from the equations (5)-(7), we have that H}(E) = HL(€).

Finally, it is easy to see that C} (5) is equal to the set of all h € HI(E)
such that

Ch<0
holds.
Let us clarify the relation (17). From the fact that
o N-1 N
L2(§7 Aah) - fO('%Oa'QA:N) + f(j}iJrlanl) Z<pz790($1)>
i=0
N N
Do, . 0
+Z< : a—¢<xl>hl> 3 g+ Y <qz,—w l>hl>
i=0 i=0
. 0K .
+AL Ko (20, 2v)) + )\Zam(f?ﬁo,l’zv)(ho,hzv)
0K,

+(u', Ky(Zo, En)) + Maa(—(IO,JCN)(ho,hN)

Zo, T )
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= (ql>ﬂl), and 672 = (q2,u2), we have

where p' = (p', A1), p* = (p?, \?),

Ly » < ol oH
s\ h) = — 2
833()( 8330 + aiL'()’ ( 0)
SEEA = S =TT, 1)
Ly - - /)
= e — 22
8xN( Ah al’N 8:131\[7 ( )
where A
ol ol
8.1'0 axo(xO;xN7)\ )\27/’L N’ hOahN)
ol ol ,
axN aiEN(:CO’xN’)\ )‘)/'l’ ,LL h07hN)
and .
oH O0H -

(E)pzlvp?aqllaq@?vhz)

8371' - al'i
Obviously that from (20), (21) and (22) we obtain that (8), (9) and (10)
hold. From (18) and (19) we have that (11) and (12) hold. Theorem was

proved.

3. Second-order optimality conditions

Suppose that the functions fo(zo,zn), f(x,u), o(z), ¥(z), Ki(zo,xN)
and Ky(zg, xy) are three times continuously differentiable.
For a given Lagrange multiplier A define the bilinear form

~

il 02
o [h h] oxg Q[ho’ho] 83:?\[ [hN>hN]+
82l aZfO . R
QMULO, hn] + 28 oaxN (20, 2n)[ho, hn]+

Z hz,h 22 o axm (B, hita).
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Ply Py, % PH Lo e dieed analosons]
and ———— are introduced analogous
Ok’ 0% Oxgdry’ Ox? 02,0211 BOUSLY
as in the previous section only with p?/3, ¢?/3, A?/3 and p?/3 instead of p?,

q?, \* and p2.

Theorem 3.1. Let & be the optimal solution for the problem (1)-(3).
Then there exists Lagrange multiplier A such that the assertions of theorem
2.1 hold, and for every h € HZ(E), such that C(h) < 0 holds, we have

where

Qalh, B] > 0. (23)

Proof. Analogously as in the proof of theorem 2.1 we consider the math-
ematical programming problem (13)-(14). Tt is easy to see that 2, is the
second derivative with respect to £ of the function Lz(g, A, h). From [1], the-
orem 4 and from the preceding facts we obtain that the assertions of theorem
3.1 hold.
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