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ON THE KIENZLER-DUAN FORMULA FOR THE HOOP
STRESS AROUND A CIRCULAR VOID

Abstract

The derivation of the Kienzler-Duan formula for the hoop stress around a circu-
lar void caused by either a remote loading or nearby internal source of stress is pre-
sented based on the Fourier series analysis without referral to the Poisson coefficient
of lateral contraction, as in the original derivation by Kienzler and Duan (1987).
The formula for the longitudinal stress below the free surface of a half-space due
to nearby internal source of stress is also derived by means of the limiting process
from the solution to the problem of an internal source of stress near an infinitely
large circular void, and by an independent analysis without referral to the former
problem. The use of the derived formulas in the dislocation and inclusion problems
of mechanics of solids and materials science is discussed.

O KIENZLER-DUANOVOJ FORMULI ZA OBRUCNI
NAPON OKO KRUZNOG OTVORA

Sazetak

Kienzler-Duanova formula za obru¢ni napon oko kruznog otvora usljed spo-
ljasnjeg opterecenja ili unutrasnjeg izvora napona je izvedena na bazi Fourierove
analize, bez uvodenja u analizu Poissonovog koeficijenta elasti¢nosti koji je kori-
$¢en u radu Kienzlera i Duana (1987). Formula za uzduzni napon ispod slobodne
povrsine poluprostora usljed obliznjeg unutrasnjeg izvora napona je izvedena kao
granicni slu¢aj unutrasnjeg izvora napona u blizini beskonacno velikog otvora, a
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zatim nezavisnom analizom ne pozivajuci se na rjesenje problema beskonacnog pro-
stora oslabljenog kruznim otvorom. Diskutovan je znacaj ovih formula za analizu
dislokacionih problema i inkluzija u mehanici ¢vrstih tijela i nauci o materijalima.

1 Introduction

The hoop stress along the boundary of a circular void in an infinite medium under
plane stress or plane strain conditions, due to remote loading or an internal source of
stress, can be expressed in terms of the stress field produced by the same loading in
an infinite medium without a void. This can be recognized from Green and Zerna’s
(1968) analysis in section 8.19, which yields an expression for the hoop stress along
the boundary of the circle in terms of complex potentials, but their final expression
(8.19.9) was left in a not fully disclosed form. It was in the paper by Kienzler and
Duan (1987), where the explicit formula for the hoop stress was first reported in the
following form

og(a,0) = 2[oh(a,0) —o’(a,0)] + % [05(0,0) +¢2(0,0)]. (1.1)

The stress field in an infinite medium without a void due to the same source of stress
is denoted by the superscript ©, and (r, #) are the polar coordinates with the origin at
the center of the void of radius a. In the subsequent sequence of papers, Honein and
Herrmann (1988,1990) developed the so-called heterogenization procedure, according
to which the solution to the problems of two or more inhomogeneities under remote
or other type of loadings is expressed in terms of the solution to the corresponding
homogeneous problems. They used in their analysis the complex potential approach,
and also interpreted the second part of the Kienzler-Duan formula (1.1), originally
left in an integral form, in terms of the first stress invariant at the center of the cir-
cle. The formula (1.1) has been applied by Kienzler and Kordisch (1990) to evaluate
the interaction between a circular hole and an edge dislocation, and has been further
discussed by Greenwood (1994), Golecki (1995), and Chao and Heh (1999). More
recently, Lubarda (2015¢) used (1.1) to evaluate the J and M integrals along the
boundary of a circular void due to a nearby circular inclusion under uniform dilata-
tional eigenstrain, and the change of the strain energy associated with the change of
relative position or the size of the inclusion and void, without solving the entire bound-
ary value problem at hand. The infinite medium solutions for the inclusions reported
in Lubarda (1998) and Lubarda and Markenscoff (1999) were utilized instead.

There is an analogous formula for the circumferential shear stress along the bound-
ary of a circular void in the case of antiplane strain, first recognized by Lin et al.
(1990), which states that this circumferential shear stress is equal twice the circum-
ferential shear stress along the corresponding circle in an infinite medium without a
void, under the same loading conditions, i.e.,

o20(a,0) = 20%(a, 0) . (1.2)
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Lubarda (2015a) employed this formula to determine the configurational force between
a circular void and a circular inclusion characterized by uniform eigenshear of the
antiplane strain type. For noncircular voids, the ratio of the circumferential shear
stress along the boundary of the void and a congruent curve in an infinite solid
without a void depends on the loading, as elaborated upon in the case of an elliptical
void by Lubarda (2015b).

In this paper, we shed additional light to the derivation of the formula (1.1) for
the hoop stress around a circular void under plane stress or strain conditions. The
derivation is based on the Fourier series analysis, but does not make a referral to
Poisson’s coefficient, as in equations (3a) and (3b) of the original Kienzler-Duan’s
(1987) derivation. In the limit as the radius of the void increases to infinity, the
problem of the source of internal stress near the free surface (y = 0) of a half-space is
deduced, in which case (1.1) simplifies to

ay(0,) = 2[o(0,) — 03(0,y)] - (1.3)

The formula (1.3) is confirmed by an independent analysis of the inclusion embedded
in a half-space, without performing the aforementioned limiting process in the solution
to the problem of a circular inclusion near a circular void.

2 Circumferential shear stress along the boundary of
the void

Consider a circular cylindrical void of radius @ in an infinitely extended isotropic
elastic medium (Fig. 1). Suppose that at point C, at distance d from the center O of
the void, there is a source of stress, such as an edge dislocation, a concentrated force,
or an inclusion with a uniform eigenstrain. Alternatively, the source of stress around
the void may be a remote loading. The inplane stress components are related to the
biharmonic Airy stress function ® = ®(r,0) by the well-known expressions
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The stress field around the void in an infinite medium due to the source of stress
at C' can be determined by the superposition principle. First, the stress distribution
is found in an infinite medium without the void due to the same source of stress at C
(Fig. 1b). Denote these stresses by a2 (r,0), o9 (r,6), and 0% (r, ). Then, the auxiliary
problem is solved for the void in an infinite medium, loaded on its surface » = a by

Or

the (self-equilibrating) traction 6,(a,0) = —02(a,0) and 6,9(a,0) = —0%(a,0), as
sketched in Fig. 2a. The stress distribution of the original problem from Fig. 1la
is the sum of the stress distributions for the problems from Figs. 1b and 2a, i.e.,
o (r,0) = a%(r,0) + 6,(r,0), and likewise for og(r,0) and o.9(r,0).
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Figure 1: (a) The source of internal stress at point C at distance d from the center of
the void of radius a. The polar coordinates at O are (r,0). The cartesian coordinates
at O are (z,y), while at C they are (£,7n). (b) The source of internal stress at point C
in an infinite medium without the void. The dashed-line circle of radius a coincides
with the boundary of the void in a voided infinite medium from part (a).

2.1 Cylinder problem

Consider a circular cylinder of radius a loaded on its boundary by o2(a,6) and
0% (a,0), as shown in Fig. 2b. The state of stress within this cylinder is the same
as the state of stress within the circle r = a of the infinite medium problem from
Fig. 1b. The stress function for the cylinder problem, chosen to give rise to unique
displacements within r < a, a self-equilibrating traction at r = a, and no singularity
at r =0, is (e.g., Timoshenko and Goodier, 1970; Malvern, 1968)

Oe = Aor® + 3 f1(0) + > [1" fu(0) + "2 Brgn (0)] . (2.2)
n=2

Here,
fn(0) = A, cosnd + Cpsinnf,  g,(0) = B, cosnd + D, sinnf , (2.3)

which are chosen to give rise to unique displacements within r < a, a self-equilibrating
traction at r = a, and no singularity at » = 0. The associated stresses, from (2.1),

oU(r,0) = 240 + 20 f1(0) = Y [n(n = Vr" 2 (0) + (n+ D)(n — 2)r"gu(9)] , (2.0
o§(1,0) = 240 + 67/2(0) + Y [n(n = Vr" "2 (8) + (n+ D)(n + 2)r"gu(9)] , (25)

oo

o%(r,0) = ~2rf1(0) = > [(n = Dr" 21 0) + (n+ Drg(0)] . (26)

n=2
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where the prime symbol ()" denotes the derivative with respect to 6. In particular, at
the center r = 0, the stresses are

02(0,0) =240 — 2f2(0), 09(0,0) =240 +2f2(0), 0%(0,0) = —f5(6). (2.7)

The constant 24y can be interpreted as the mean inplane normal stress at that point,
240 = 1}/2, where I} = ¢2(0,0) + 0(0,0). Along any circle or radius r < a, the
average radial and hoop stresses are equal to each other, both being equal to 2A,

ie.,
1 2

27
oo | oo = i/ o0(r,0) df = 24, . (2.8)

27
For the later purposes, from (2.5) it follows by inspection that

ag(a,0) —20%(a,0) = 2af(0) + Z {Bn a" 2 f,(0) + (3n — 2)(n + 1)a”gn(9)} .
n=2
(2.9)

2.2 Auxiliary problem

The stress field due to a self-equilibrating traction &,.(a,0) = —0%(a, #) and 6,4 (a, 0) =
—0%(a,0) of the auxiliary problem from Fig. 2a must vanish as r — 0o, or give rise
there to a uniform remote stress state. The corresponding stress function, yielding
the unique displacements and no singularities for r» > a, is

(i):AQIIlT"‘T +Z |: _nfn n+2An(9)i|7 (210)
where
f(0) = A, cosn + Cpsinnd,  §,(0) = By, cosnb + D, sinnf. (2.11)

The associated stresses, again from (2.1), are

500 = 20— 2 1) =3 [l e 2 u(0)+ (- D42 5,(6)] (212

60(r,0) = — A0+ = (0 +Z[ (4 1)r "2 (0)+ (1= 1) (n=2)r "G (6)] , (2.13)

brolr,0) = 5 O+ [0+ )20 + - e 0)] . 214)

n=2
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(a) (b)

Figure 2: (a) The auxiliary problem in which the void in an infinite medium is loaded
over its boundary r = a with a self-equilibrating traction &,(a,) = —02(a, ) and
6r0(a,0) = —a%(a,0) , where 02(a,0) and 0% (a,0) are the radial and shear stress
components along the circle r = a in an unvoided infinite medium. (b) A solid circular
cylinder loaded over its boundary r = a by the shear stress 2 (a, 0) and 0°(a, 0).

2.3 Boundary conditions

The boundary conditions at r = a are 6,(a,0) = —0(a,8) and 6,4(a,0) = —0%(a,0).
By using the stress expressions from the previous sections, the first of the boundary
conditions requires that

Ay 2 .

2B f1(0) = =240 — 2af1(0), (2.15)

and

M

[n(n + 1)(177172]?”(9) + (Tl - 1)(” + 2)‘17”‘6171(‘9)}

"2 (2.16)
=3 [0n = 10" 2£u0) + (1 + 1) — 2)a"ga(6)]
n=2
Similarly, the second boundary condition requires that
2 .
= F1(0) = 20£(0). (2.17)
and
> [0 2 f 0+ (=105, (0)] = 3 [(n=1)a" 2 1(0) + (n+1)a" g, (0)]
n=2 n=2
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Consequently,

AO == —2(12140, Al - a4A1 5 él == (1401 5 (219)
and
—n(n+1)a " 24, — (n—1)(n+2)a "B, = n(n—1)a" 24, + (n+1)(n — 2)a" B,

n(n+1)a " 24, + n(n —1)a™ "B, = n(n —1)a" A, +n(n+1)a"B, .
(2.20)

The analogous equations are obtained for the constants (C,,, ﬁ,L) in terms of (Cy,, Dy,).
Upon solving for (A, B,,), one obtains

a " 2A, = (n—1)a""%2A, +na"B,, a "B, =-na""%A,—(n+1)a"B,, (2.21)

and similarly for (C,,, D,,) in terms of (C,,, D,,). When this is substituted into (2.13)
the following expression is obtained for the hoop stress along the boundary of the

b

void of the auxiliary problem,

do(a,0) = 2A0+2af1(9)+z {Sn(nf1)a”_2fn(9)+(3n72)(n+1)a"gn(9)} . (2.22)

n=2

2.4 Kienzler—Duan’s formula

By comparing (2.22) with (2.9), it follows that

—_

Go(a,0) =240 + 0(a,0) —20%(a,0), 24y = = [0p(0,0) +0°(0,0)]. (2.23)

[N}

Since the total hoop stress along the boundary of the void is
o9(a,0) = ag(a,0) + 64(a,0), (2.24)

the substitution of (2.23) into (2.24) yields (1.1), i.e.,
0 0 L o 0
oo(a,0) =2[og(a,0) — 0,.(a,0)] + 3 [09(0,0) 4+ 0,.(0,0)] .. (2.25)

This formula was first derived through a somewhat different procedure by Kienzler
and Duan (1987). The determination of the hoop stress along the boundary of a cir-
cular void, based on the infinite medium stress field without the void, was previously
described by Green and Zerna (1968), who derived the formula (8.19.9) in their sec-
tion 8.19 in terms of complex potentials. Honein and Herrmann (1990) constructed
the solution to the problem of a circular inhomogeneity within an infinite matrix in
terms of the solution to the corresponding homogeneous problem. They also used in
their analysis the complex potential approach, and interpreted the second part of the
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(a) (b)

Figure 3: (a) A source of stress at distance ¢ from the free surface = 0 of a half-space.
(b) An infinite medium with the same source of stress as in part (a).

Kienzler-Duan formula (2.25), originally left in an integral form, in terms of the first
stress invariant at the center of the circle.

In the limit as the radius of the void increases to infinity, the problem of the
source of internal stress near the free surface of a half-space is deduced. In this case,
the formula (2.25) reduces to 0,,(0,y) = 2[oy(0,y) — 09(0,y)], because the stresses
in an infinite medium far away from the source of internal stress decay to zero. An
independent derivation of this result is given in the following section.

3 Longitudinal stress below the free surface of a half-
space

Figure 3a shows the source of stress (e.g., an inclusion, an edge dislocation, a concen-
trated force, a doublet of forces, or a center of dilatation) near the free surface of a
half-space, at distance ¢ from it. The objective is to determine the longitudinal stress
0,(0,y) along the free surface x = 0 by using only the solution to the problem of the
same source of stress embedded within an infinite medium (Fig. 3b). If the infinite
medium from Fig. 3b is imagined to be divided along = = 0, the two configurations
(left and right portion of the infinite medium) are obtained, shown in 4. For the left
portion (Fig. 4a), the longitudinal stress along = = 0 can be written as the sum of
the contributions from the applied self-equilibrating tractions o, (0,y) and o4,(0,y)
(denoted for convenience by og and 7p), i.e.,

ay(0,y) = o5°(0,9) + 0;°(0,y) - (3.1)
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(a) (b)

Figure 4: The free body diagrams of the left and right portions of the infinite medium
from Fig. 3b. The infinite medium stresses along x = 0 are 00 and 09,.

To obtain the solution to the original problem from Fig. 3a, one needs to cancel the
tractions along x = 0 in Fig. 4b, i.e., to superimpose to this problem the solution
to the problem shown in Fig. 5a. The latter is related to the problem from Fig. 4a
(left portion of the infinite medium problem) by the obvious symmetry/antisymmetry
considerations, on the basis of which we can write

6y(0,y) = —07°(0,9) +0,°(0,9) . (3.2)
Therefore, by subtracting (3.1) from (3.2),
&y(oa y) - 02(07 y) = _2050 (07 y) y 0o = 02(07 y) . (33)

On the other hand, from the well-known result from two-dimensional elasticity, the
longitudinal stress along the surface of a half-space due to distributed normal stress
along that surface is exactly equal to that normal stress (Fig. 5b); see Timoshenko
and Goodier (1970), eq. (g) on page 108, or Asaro and Lubarda (2006), eq. (12.23)
on page 232. Thus,

a7 (0,y) = 05(0,y). (3.4)
The substitution of (3.4) into (3.3) yields
3y(0,y) = 0,(0,y) — 203(0,y). (3.5)

Since the longitudinal stress o,(0,y) along the free surface of a half-space of the
original problem from Fig. 3a is

ay(0,y) = 0(0,y) + 6,4(0,9), (3.6)
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(a) (b)

Figure 5: (a) To cancel the traction along = = 0 from Fig. 4b, the opposite traction
is applied along the boundary of a half-space. (b) The longitudinal stress below the
boundary z = 0 of a half-space, loaded by normal traction ¢2(0,y), is equal to that
traction, i.c., op(0,y) = 02(0,y).

—ay, /Gy

(a) (b)

Figure 6: (a) An edge dislocation at distance ¢ from the free surface of a half-space.
(b) The variation of the stress —oy,(—c,y) with y/c. The scaling factor is 7, =

p(by/c)/[r(1 = v)].
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by substituting (3.5) into (3.6) we deduce the desired formula

ay(0,) = 2[oy(0,y) — 03(0,)].. (3.7)

4 Discussion

Among other uses, formula (3.7) can be conveniently applied to determine the longi-
tudinal stress along the free surface of a half-space due to an edge dislocation beneath
the free surface, without using the complete Head’s (1953) solution to the edge dis-
location in a half-space. Indeed, from the classical solution for the edge dislocation
with the Burgers vector b, in an infinite medium, the normal stresses are (Hirth and
Lothe, 1982)

0 by, x(z? — y?) 0 1ty x(x? + 3y?)
7:(7,9) 27(1 —v) (22 +y?)2’ () 2n(1—v) (22 +y2)2 "’ (4.1)

with the coordinate origin at the center of the dislocation. Thus, if the free surface
is at distance c¢ from the dislocation, the longitudinal stress beneath the free surface
(Fig. 6a) is obtained from (3.7) and (4.1) as

4n? __ ulby/e)

oy(—c,y) = =0y TrmeE " xi-0) (4.2)

where 17 = y/c. The magnitude of the maximum stress in (4.2) occurs at y = +c¢, and
is equal to &,,. While in an infinite medium 02(—0, 0) = —ad,/2, for the dislocation in
a half-space this stress relaxes to o,(—c,0) = 0 (Fig. 6b). The interaction between
an edge dislocation and a circular void or inhomogeneity has been studied in great
detail by Dundurs and Mura (1964), and Dundurs (1969). Their results have been
used to address various problems in materials science. For example, the evaluation
of the attraction exerted on a dislocation by the free surface of a nearby void plays
a prominent role in the study of void growth by dislocation emission, which is a

precursor to material failure by spalling under dynamic loadings (Lubarda and Meyers,
2003; Lubarda et al., 2004; Meyers et al., 2009; Rudd, 2009; Lubarda 2011a,b).
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