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A b s t r a c t

The S-distributions are defined in order to improve the concen
tration of signal’s time-frequency representation, along the instantane
ous frequency (IF). For a finite distribution order and non-linear IF, the 
S-distribution gives biased IF estimates. In the case of noisy signals, 
the optimal choice of the window length and the distribution order, 
based on asymptotic formulas for the variance and bias, can resolve the 
bias-variance trade-off usual for nonparametric estimation. However, 
the practical value of such optimal estimator is not significant since 
the optimal window length depends on the unknown smoothness of 
the IF. The main goal of this paper is to develop an adaptive, the S- 
distribution based, IF estimator with the time-varying and data-driven 
window length and distribution order which are able to provide the 
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quality close to the one that could be achieved if the smoothness of 
the IF was known in advance. The developed algorithm uses only the 
formula for the variance of the estimates. Simulation shows a good 
accuracy ability of the adaptive algorithm.

Keywords: Time-frequency analysis, Instantaneous frequency 
estimation, S-distribution

1. INTRODUCTION

Since there is no distribution from the Cohen class (with signal in
dependent kernel) which can produce the complete concentration along 
the instantaneous frequency (IF) when it is not a linear function of time, 
[4], [5], [17], various higher order distributions have been derived. For 
the analysis of signals with polynomial phase the Polynomial Wigner- 
Ville distribution are proposed by Boashash et all. in [2], [3]. The 
same class of signals may be efficiently treated by the local polynomial 
distributions, defined in [7], [8]. The L-Wigner distribution, introduced 
and described in [16], [18], [19], significantly reduces the influence of 
higher order terms in the phase function, when it is non-linear. The 
Polynomial Wigner-Ville distribution, as well as the L-Wigner distribu
tions, are closely related to the time-varying higher order spectra, [3], 
[14]. The recently proposed S-distributions may achieve high concen
tration at the IF, as high as the L-Wigner distributions, while at the 
same time satisfying energy unbiased condition, time marginal and, for 
asymptotic signals (signals whose amplitude variations are much slower 
than its phase variations, [3]), frequency marginal.

In this paper we analyze the IF estimator, in the case of noisy 
signals, using the S-distribution. The estimator’s variance and bias 
are highly dependent on the window length, as well as on the S- 
distribution order. Provided that the signal and noise parameters are 
known then, by minimizing the estimation mean squared error, an 
optimal window length and/or distribution order may be determined. 
But, those parameters are not available in advance. Especially it is 
true for the IF derivatives which determine the estimation bias. Here.
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we will present an adaptive algorithm which does not require a priori 
knowledge of the estimation bias at all and in particular a knowledge 
of the IF derivatives.

The basic idea of the method which we use for selection of the 
data-driven window length and order, is originated in [6] where it 
was proposed and justified for selection of a varying and data-driven 
window size in a local polynomial fitting a linear regression. The idea of 
this method was exploited in [9] for development of the adaptive local 
polynomial periodogram, giving estimates of the IF and its derivative. 
It was subsequently used in [10] for development of the nonparametric 
estimator of the IF, based on the Wigner distribution with the data- 
driven adaptive window size.

An analysis of the discrete nature of the optimization parameters 
of the S—distribution (window length and distribution order) as a 
contribution to the described algorithm itself, is done in this paper. 
This analysis may help in better understanding of the influence of 
parameters’ discretization, ant it could be a basis for suitable selection 
of their values. A discrete nature of optimization parameters, along 
with a small number of their possible values, resulted also in a modifi
cation of the original algorithm, [6]. We concluded that better results, 
in this case, may be achieved if we use the approach of sliding pair- 
wise confidence intervals, instead of the intersections of all previous 
confidence intervals considered in [6]. The analysis, presented in this 
paper, leads to one more interesting conclusion that not only higher 
order distributions may improve the time-frequency presentation, but 
also ’’lower order” distributions may be the best choice in some cases.

The paper is organized as follows. A review of the S-distribution 
definition, along with a noise modeling, is done in Section 2 of the 
paper. In Section 3 the variance and bias of the IF estimate, using the 
S-distributions, are derived. The optimal window length and distri
bution order are also discussed in this section. A numerical implemen
tation of the S-distribution is presented in Section 4. An adaptive IF 
estimator, with the data-driven window size and distribution order, is 
described in Section 5. Numerical examples are presented in Section 6.
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2. DEFINITIONS AND NOISE MODELING

The S-distribution of a time-discrete signal s(nT), at a given instant 
t, is defined in [17], [21]:

ОО rrt rn
SDL(f,u) = £ wh(nT)sW(i + n-)SW-(t-nT)e-^T“, (1)

1J Jun=—oo

where w/l(nT) = T/h • w(nT/7i), with w(t) being a real-valued finite- 
length symmetric window, w(t) = 0, for |t| > 1/2. A modification of the 
signal s(nT) = A(nT) exp(jф(пТ\) denoted by s^(nT) is obtained 
by multiplying a phase function by S, while keeping the amplitude 
unchanged:

sW(nT) = A(nT)ejL^nT\ (2)

Note that in the realization by definition (1), the signal has to be 
sampled with the sampling interval multiplied by factor of 1/L with 
respect to the sampling interval in the Wigner distribution1. Its values 
should be available not only at the instants defined by the Nyquist 
sampling rate tv/шт, where wm is the maximal signals frequency, but 
also at the points nTv/(2wmL). Note that this can be avoided, i.e., 

o>) can be realized without oversampling by using the S-method 
and procedure described in [17], [20]. This realization would also pro
duce the S-distribution which is, in the case of multicomponent signals, 
equal to the sum of S-distributions of each individual component, 
with a significant reducing of noise influence. Since in this paper the 
realization is not an issue, we will assume that the S-distribution is 
realized according to the definition (the worst case).

Consider a noisy signal:

®(nT) = s(nT) + б(пТ), s(t) = A exp(i70(t)) (3)

‘For an integer L > 1, as we used in our previous papers [15,16,17,18], this means 
signal oversampling L times. But, in this paper, we will allow values 0 < L < 1 (for 
example L = 1/2), which will be useful in some noisy cases and will mean signal 
downsampling.
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with s(nT) being a signal with a real-valued amplitude A and e(nT) 
being a white complex-valued Gaussian noise with mutually indepen
dent real and imaginary parts of equal variances a2/2. In the analysis 
presented in this paper we additionally assume that the noise is small 
with respect to the signal, i.e. a/A <C 1. Note that the last assumption 
has also been used in particular for the Wigner distribution analysis 
И, [13].

The modification of original observations ®(nT), provided
the assumption about the smallness of the noise, results in the following 
model with the additive noise:

х&\пТ) = s^(nT) + eL(nT). (4)

The following statement is crucial for the analysis which follows:
Let the noise e(nT) in (3) be complex-valued white such that 

Е(е(пТ}е*(пТУ)  = a2, then provided a/A <C 1 the noise еь(пТ} in (4) 
is also complex-valued white with the variance

E{eL{nTyL{nT)) = (L2 + 1)<t2/2. (5)

Proof. The signal s(nT) = A exp(jф(пТУ) can be represented by a 
vector having the amplitude A and phase ф(пТ). In x(nT) = s(nT) + 
e(nT) a small vector with coordinates (Де{е(пТ)}, 1т{б(пТ)}), re
presenting the noise, is added to the signal-vector. Thus, we get a 
resulting phase ф(пТ) + △е</>(пТ) and resulting amplitude A + AeA. 
For a moment let us assume a rotated coordinate system, with rotation 
angle </>(nT). The noise coordinates in this system are er(nT) and 
€ž(nT), which are radial and tangential components of the noise respec
tively. The radial component €r(nT) is collinear with A exp (Jф(пТ)), 
while the tangential components £t(nT) is normal to vector 
A exp(i7^>(nT1)). Now, let us form х^(пТ\ According to the definition 
(2) the amplitude A + AeA is kept unchanged, while the phase ф(пТ) + 
△^(nT) is multiplied by L. The new noise has the radial component 
whose amplitude is unchanged and equals |б7.(пТ)|. As the noise is 
small, |AeA/A| <C 1, the new tangential component has the amplitude 
L|ćt(nT)|. Therefore, one noise component is unchanged while the
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other is multiplied by L. Having in mind that the rotation does not 
change the noise statistical characteristics in this case we get (5). □

We wish to mention once more that (5) holds for a small noise. 
If it is not a case, then the variance is always less than given by (5). 
An exact expression may be derived for these cases, as well, but the 
analysis which follows is constrained with the small noise assumption 
only. If L = 1 the variances of the transformed and the original noise 
are equal to each other. For the case 0 < L < 1 which has not been 
considered previously, the variance of the transformed noise is less 
then the variance of the original noise. For example, L — 1/2 reduces 
significantly the noise variance with respect to L = 1 while L = 1/4 or 
L = 1/8 do not lead to further significant improvement because of the 
summand 1.

3. INSTANTANEOUS FREQUENCY ESTIMATION

Consider the problem of the signals’ instantaneous frequency (IF)

w(t) = (6)

estimation, from discrete-time observations (3). We will assume that 
u»(i) is a differentiable function with bounded derivatives —
|</>F+1)(i)| < M7.(i), r > 1.

If the signal is not noisy then, using the Taylor’s expansion of ф/t + 
— ф/t — n^) around t, its S-distribution is of the form

SDL(t,u) = A2 52
П- — oo

where

If <//2з+1)(£) = 0 for all s or L -4 oo, then the S-distribution would 
have a maximum at w = ф'(ф). Therefore, the S-distribution based IF
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estimator may be defined as:

w(i) = arg max SDb(t, o>) (8)

with Qw = {a; : 0 < |a?| < тг/(2Т)} being the basic interval along the 
frequency axis. As a measure of the estimate quality, at a given instant 
t, let us define the estimation error as:

△cv(i) = u>(i) — w(ž). (9)

Proposition:
Let cu(t) be a solution of (8), and A —> 0, T —> 0, h/T —> oo. Then 

the variance and bias of the IF estimate are given in the form

var(Aa>(ty) = (£2 + 1)Л-, , (£2 + 1)<-Et.
A2 1 4A2 F?1г

(10)

where

я {△*(*)}  = ^E^(2s+1W 
h 8 = 1

(И)

oo 1/2
Fh = E wh(nT)(nT)2h2 f w(t)t2dt, 

n=—oo —l/2
oo 1/2

Eh = E w2h(nT){nT)2 Th f w2(t)t2dt, 
n=-oo -1/2

OO
= (ГйЬ S МЭД2'+2 -> v n=—oo

-1/2

(12)

The limits hold for T —> 0, and h/T —> oo.
The proof is a straigthtforward extension of the one for the Wigner 

distribution given in [10].
Let us analyze the mean squared accuracy of estimation. Using only 

the first significant term in the bias, the mean squared error (MSE) can 
be presented in the following form:

e((M‘))!} = (Г2 + l)<z2 Е/, 
A2 F2 +

5h(l)^(3)(t) 
2ft£2 (13)
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provided that <C 1. Note also that the recursive S-distribution
realization, described in [17], [20], would significantly reduce the in
fluence of this noise component, anyway. For the rectangular window 
(Bh = ТД/12, Fh = h?/12, Bh(l) = -ћ4/240), we get:

в{(Дш(4))2} = 3cr2(L2 + 1) T
1? ft2+

O) 
40L2 (14)

where h is a width of the window (w(t) = 0 for \t\ > h/2) and T is the 
basic sampling interval.

It can be seen from (14) that the MSE has a minimum with respect 
to L. The optimal value of L is given by the formula

A2h7(^3)(t))2 
2400<t2T

1/6

(15)

The dependence of the optimal S-distribution order Lopt on the para
meters A, a ,T and the derivative is quite clear. In particular, the 
time-instants with a large |</>(3)(i)| require higher distribution orders, 
while for small |</>(3)(t)|, the distribution order L should be also small. 
This relation will be discussed in detail in one example, as well.

The optimal window length, minimizing the MSE (14) provided 
given L, is as follows

3600cr2(L2 + 1)T 1/7
^opi(^) —

A2(</>(3)(i))2 (16)

It is obvious that calculation of (15) or (16) is not possible in practice, 
since its requires, besides A and a2, the knowledge of the IF second 
derivative <//3)(t). It is a definitely unavailable value because the IF 
itself has to be estimated.

Simultaneous unrestricted minimization of the MSE with respect 
to L and h gives a trivial result: the MSE approaches zero as h —> 
oo and h/L —>■ 0. This result has no practical interest. However the 
minimization of the MSE with respect to a finite set of acceptable 
values of h and L gives optimal pairs of (h, L) which, as the simulation 
confirms, are able significantly improve the accuracy.
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4. NUMERICAL IMPLEMENTATION

The S-distribution (1), discretized over the frequency, is implement
ed as:

N/2-1 9
SDL(k,l)= £ w^nT'jx^XlT+nl'j^^lT-n^e-^’' (17) 

n=—N/2

where N = h/T is a number of samples determined by the window 
length h and sampling interval T given as T = 7r/(2u»m), where wm is 
the maximal signal’s frequency. The IF is estimated as:

Gjh(lT) = arg maxSD^k, Z) 7Г 

~NT (18)

for 0 < к < N/2 — 1, for signals with nonnegative-only frequencies.
Let us consider influence of a quantization error on the accuracy 

of the IF estimation, caused by the discretization of SD^k^l) in (17) 
along the frequency axis. Note also that the quantization error may also 
considered as a parameter closely related to the distribution concentra
tion (frequency resolution), which is very important for time-frequency 
distributions (especially in the case of multicomponent signals). For the 
quantization noise error, in the probability analyses, usually an uniform 
probability density is assumed. In (18) this probability density is uni
formly distributed over the segment (—7г/2Л,тг/2Д], since tv/(NT) — 
tv/h. Its variance is = ^-(^)2, producing the resulting MSE

ГЗег2 (L2+l) ■ 7г2 ) 1 i 
[A2 N ' 12J h2 '

z,212 i _1_ —
40L2 J 12 h2 ~ (19)

For a large signal-to-noise ratio and any reasonable number of samples 
N and distribution order L we have an<^ ^he estimation
variance is dominated by the quantization error.

As it is well known the quantization effects of the FFT can be 
reduced by an appropriate zero-padding in the time domain, which 
means an interpolation along the frequency axis. Provided that this 
interpolation of the S-distribution is done up to the widest considered 
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window length, the quantization error will be reduced and kept to a 
constant value.

In the next section we will first consider the case when the inter
polation is not done. It is simpler for analysis and more common in the 
time-frequency distribution realizations. An algorithm for the optimal 
window length determination will be derived for this case, and then 
extended to the cases with high interpolation rate (when quantization 
error may even be neglected).

5. ALGORITHM FOR ADAPTIVE ORDER AND WINDOW 
DETERMINATION

A. Basic Idea of the Window Length Optimization

The basic idea follows from the accuracy analysis, given in the Proposi
tion. Namely, at least for the asymptotic case of small noise and bias, 
the estimation error can be represented as a sum of the deterministic 
(bias) and random component, with the variance given in the Proposi
tion. For the estimated IF dg-ft) we may write the following relation:

|o?(i) — (d)/i(t) — bias(t, h))| < (20)

where the inequality holds with the probability F(/t) depending on к,.
In the case of dominant quantization noise error, which will be 

considered now, the probability density of ag-ft) around biasft, h~) is 
uniform. For this distribution value n = л/З guaranties (20) with proba
bility 1 (note that the same value of к, would guaranty only the proba
bility of 0.93, if the distribution were Gaussian).

Using the expressions for the variance and bias

гт2(1Д — Г 3<r2 (Z/24-l) . 7Г21 1 лј r i
U — [л2 N "Г 12 J /г2 — 12 7г3 \

bias(t,h) = ^h2

the MSE is given by
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Concerning the distribution order A, we may conclude that its highest 
value (as far as <C 1 is satisfied) should be used.

The MSE minimization with respect to h gives

^"(^opt) — y/2bicis(t, hopt)) (22)

where hopt denotes the optimal window length,

h<,pt = (200,r2L4/(3(^3>(i))2))1/6.

Let us introduce a discrete set H of window length values, h G H, 

H = {hs \hs = ahs-i, s = 1, 2, 3,..., J, a > 1} , (23)

The following arguments can be given in favor of such a set:
(a) Discrete scheme for window lengths is necessary for the efficient 

numerical realizations. The realizations of time-frequency distributions 
of form (17) are almost absolutely based on the FFT algorithms appli
cation (excluding only few recursive approaches, [1], [12], [11], [18]). 
The most common are radix-2 or radix-3 FFT algorithms which cor
respond to a = 2 or a = 3, when set H gives dyadic (hs = ho%s') 
or triadic (h5 = ho3s) window length schemes. In the realizations the 
smallest window length ho should correspond to a small number No 
of signal samples within it. For example, for radix-2 FFT algorithms 
No = 4 or No = 8 with Ns = 2Ns_i, s = 1, 2,..., J.

(b) A search of the optimal window length over H is a simplified 
optimization, because the set (23) consist of a relatively small number 
of elements. However, the discrete set of h inevitably leads to subopti- 
mal window length values due to the discretization of h effects (quanti
zation noise error and effects due quantization of h, although with 
similar names are two completely different notions). It is important 
to note that this effect, due to the discrete nature of h 6 H, would 
also exist even if we knew in advance all of the parameters required 
for the optimal window length calculation, and decided to use radix-2 
FFT algorithms in the realization. Thus, the discretization of h effect 
is present in any case. It always results in a worse value of the MSE, 
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but that is the price of efficient calculation schemes, available in this 
case. Fortunately this loss of the accuracy is not significant in many 
cases, because the MSE has a stationary point for the optimal window 
length h = hopt (and the MSE varies very slowly for the window length 
values close to h — hopt).

Now we are going to derive an algorithm for the determination of 
the optimal window size hopt, without knowing the bias, using the IF 
estimates (18) and the formula for the IF estimate’s variance only.

It is based on the following statement:
Let H be a set of dyadic window length values, i.e., a = 2 in (23), 

and к, = л/З. Define the upper and lower bounds of confidence intervals 
Dg -- [L3, ^Zs] ^S

Ls = whs (i) -(« + △«) ofhs), 
Us = Wh3 (i) + (« + △«) cr(hg),

where ^s(t) is an estimate of the IF, with h — h3 and er(hg) given by 
(21)-

Let the window length hs+ be determined as a length corresponding 
to the largest s (s = 2,..., J) when

Ls(t) < Ug-rtfi) or Ug(t) > Ls_i(i) (25)

is still satisfied, i.e., when Ds П Ds_\ ф $.
Let An = 1/2, and y/2hopt 6 H, then with probability 1

hg+ — y/2hopt, (26)

where hs+ is determined by the algorithm (2J)-(25). For such a deter
mined hs+ holds 2a(hs+} = bias(t, hs+).

Proof: Let us denote by b the unknown bias

biasft, hopt) — b,

when the window length has its optimal value h = hopt. Without a loss 
of generality we will assume that b > 0. The window lengths belonging
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to 77, having in mind that we assumed y/2hopt G 77, can be represented 
as follows

/i(p) = hoptap+1/2, p = ..., -2, -1, 0,1, 2,...

where p = 0 corresponds to the window length \/2ho.pt, we are looking 
for (a = 2). Note that the optimal window length hopt is a geometric 
mean of lengths h(p) for p = — 1 and p = 0, hopt = -\/h(0)h(—1) = 
h\ty/y/2. The reason why we decided to look for A(0) = y/2hopt and 
not for hopt will be clarified later. Note also that we use two indexes for 
the window lengths, one s (i.e., hs) which denotes the indexing which 
starts from the narrowest window length, and the other p (used is form 
of an argument i.e., Д(р)) where the indexing starts from the \/2hopt 
window length (when p = 0), with narrower windows having negative 
p and wider window lengths having positive p.

The bias and variance values for any h(p), according to (21), may 
be rewritten as:

bias(t, h(p)) = a2p+1b, а(1г(рУ) = y/2a~p~D2b. (27)

From (27) we can conclude that for p <C 0 and a = 2 the bias is 
much smaller as compared to the variance since a2p <C y/2a~p, thus the 
estimate c2>^(t) is spread around the exact value cv(i) with a small bias 
(biasft, > 0 as h(p) —> 0) and large variance (cr(h(p)) —> oo as 
h(p) —> oo). A confidence interval of the estimate &h(p) CO > f°r a given 
h(p), is defined by

Dp = [^(P)(i) - к:сг(/г(р)),^ад(7) + K<r(h(p))].

For к, = л/З we have that u>(i) G Dp with probability 1, when 
bias(t, h(p\) = 0.

Now consider a confidence interval, modified in order to take into 
account the biased estimate cu^pj(i) in the following way:

Dp = [^(p)(0 - (« + + ДФ(ВД)]> (28) 

where △«. > 0 is to be found.
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It is obvious that cv(t) G D.p for p C 0 because in this case the bias 

is small and the segment Dp is wider than D.p as Ал > 0. Note also 
that all of the confidence intervals Dp, with p such that the bias is very 
small, have the true IF value u»(t) in common, or to be precise have 
at least region [w(t) - Ал a(h(p)), o>(t) + Ал a(h(p))] in common, i.e., 
[w(t) — + Дла(Ь(р))] C Dp П Bp_i for any p << 0.

For p >> 0 the variance is small but the bias is large as a2p+1 
л/2а~р-1/2. It is clear that always exist such a largep that DpC\Dp_\ = 
0 for any given Ал.

The idea behind of the algorithm (24)-(25) is that Ал in Dp can 
be found in such a way that the largest p for which a sequence of the 
pairs of the confidence intervals Dp_i and Dp has a point in common 
is p = 0. Such value of Ал exists because the bias and the variance 
are monotonic increasing and decreasing functions of h respectively. 
As soon as this value of Ал is found an intersection of the confidence 
intervals Dp_i and Dp works as an indicator of the event p = 0, i.e., 
the event when hs = y/2hopt is found. The algorithm given in the form 
(24)-(25) tests the intersection of the confidence intervals, where (25) 
is a condition that two sequential intervals and Ds is the last pair 
of the confidence intervals having a point in common (note again that 
indexes s and p only indicate if we assume the first confidence interval 
or the confidence interval when h = y/2hopt as the one having index 0).

Now let us find this crucial value of Ал. According to the above 
analysis, only three values of p = —1, 0, and 1 along with the cor
responding intervals P-i, Do, and should be considered, in this case. 
The intervals D_i and Dq should have and the intervals Dq and 
should not have at least a point in common. Since ufyp) (t) is a random 
(uniformly distributed) variable, then the confidence interval bounds 
are also random and uniformly distributed. Thus, we must consider 
the worst possible cases for the corresponding bounds. These worst 
case conditions, for b > 0, are given by:

min{C7_i} > max{L0}, 
max{I7o} < min{Li},

Let us, for example, consider U-i. The estimated IF may
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assume values within the interval о>цр)(£) G [cv(i) + bias(h(—1)) — 
K,a(h(—1)), w(t) 4- bias(h(—1)) + ft<r(h(—1))]. Consequently, the upper 
confidence interval bound U_i, according to (28), may take values 
from the interval U-i E [^(i) + bias(h(—1)) 4- Aftcr(h( —l)),u>(t) 4- 
bias(h(—1)) 4- (2ft 4- Aft)cr(A(—1))]. The minimal possible value of U_\ 
is min{U_i} = + bias(h(—1)) 4- Aftcr(h(—1)). In the same way we
may get other bound limits, required by (29), what results in

bias(h(—1)) 4- Aft<r(h(—1)) > bias[h{^)} — Afta(h(0)), 
5ias(h(0))4-(2/€4-A«Ocr(h(0)) < 6fns(h(l)) — (2ft4-Aft)<r(/i(l))

or

б(а-1 4- AftV^a1/2) > б(а — А/€л/2а-1/2), 
b(a 4- (2ft 4- Aft)\/2a-1/2) < б(а3 — (2ft 4- Aft)-\/2a-3/2).

It can be verified that Aft = 1/2 is smallest Aft > 0 satisfying first 
inequality in (31), for a = 2. This value of Aft, with ft = л/З, closely 
satisfies second inequality in (31), which requires ft 4- < 1.75.
Therefore ft 4- = л/З 4-1/2 ~ 2.25, with a = 2, satisfies both
inequalities in (31).

With (31) being satisfied we have that D.p (4 Dp-\ ty, for p < 0, 
with probability 1, and Dp П Dp-i = 0, for p > 1, with probability 1. 
This completes the proof of the statement. □

Note that the inequalities in (31) are true for arbitrary a,ft and Aft 
and they can be used in particular for a choice of Aft for а ф 2. It is 
easy to check that if, in the analysis, we used more natural discrete 
scheme hp = hoptdp, then we could not satisfy both inequalities in (31) 
with a = 2 and ft = л/З. We should then use larger a (for example, 
radix-3 FFT algorithms with a — 3), what would significantly increase 
the MSE due to the significant discretization of h effects.

We wish to emphasize that results of the statement are derived 
provided that л/2Лор4 assumes one of the dyadic values from H and 
the bias and variance are given by the asymptotic formulas (21). In 
applications, due to discrete nature of h we will never have that 
у/Žhopt € Я, what will result in the already described discretization of
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h effects, producing slightly suboptimal MSE values. This means that 
the values к, and Д/c, given in the statement, should be interpreted as a 
reasonable approximate values of these parameters which can be used 
in the algorithm (24)-(25), at least as far as the formulas (21) for the 
bias and variance holds.

B. Algorithm

According to the statement and the analysis in the previous subsection, 
we may define the following algorithm for the adaptive IF estimation:

1. Assume a set H is given by (23).
2. For a given instant t, start the S-distribution calculation from 

the smallest toward the wider window lengths hs E H.
3. Estimate IF using

d?^(t) = arg max SD^t, w) (32)
[wGQu, J

4. With <r(ha) = + and define
the segments

Ds(t) = [whs(t) - (« + Ак.)а(ћ3), whs(tj + (jt +&b)a(h3)], (33)

with their upper and lower bounds built as follows

Us(t) = Wh3(i) + (к + Ак,)а(ћ3) 
Ls{t) =whs{t) - (« +A/€)cr(hs)

with к, + Л/с « 2.25.
5. The adaptive window length h5+ is determined as the length 

corresponding to the largest s (s = 1, 2,..., J) when

Ls(t) < or Us(t) > (34)

is still satisfied..
Then, this s+ is the largest of those s for which the segments D3_i 

and D3, s < J, have a point in common. The adaptive window length 
is chosen as

h(t) = h,+(t) (35)
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and d)^^(i) is the adaptive IF estimator with data driven window 
for a given instant t. We have not used the optimal window length 
correction hopt(i) = h(i)/\/2, which follows from (26), since this cor
rection falls within the discretization of h error and, more importantly, 
would require one non radix-2 FFT calculation.

6. Take next t.
In contrast to [6], in our algorithm we apply the sliding pair-wise 

intersections (34) of the pairs of segments Ds and P3_i for s = 2, 3,..., J. 
The simulation shows that the results for the IF estimation on the base 
of this sliding pair-wise intersection are more accurate as compared with 
the algorithm using the intersection of all of the segments Ds starting 
from s = 1 as it is done in [6]. The convergence analysis given in [6] 
using intersections of all previous intervals is based on a large number 
of confidence intervals D3, while in this paper we have a relatively 
small number of possible window lengths, and therefore small number 
of considered confidence intervals. That may be one of the reasons why 
our two segments approach, produced better results here.

Further we will consider how a compromise, corresponding to the 
MSE minimization, can be achieved for the IF estimation with the S- 
distribution implemented with an appropriate interpolation mentioned 
above.

C. Estimation With Interpolation

In the case when the quantization error may be neglected, i.e. an 
appropriate interpolation is done, we have the variance and the bias 
strongly depending on both: the window length h and the distribution 
order L. Consider the cases of optimization with respect to h provided 
a fixed order L, as well as the simultaneous optimization with respect 
to both h and L.

a) Let the order L of a S—distribution be fixed and the bias and 
variance of estimation be determined by (14). It can be seen that for 
the optimal window size hopt we obtain, instead of (22), the following
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relation between the bias and the variance:

^(hopt) = ypL/Sbias(t, hopt). (36)

The significant difference from the previous case is that the inequality 
|o?(t) — (cu/i(t) — bias(t,h))\ < к,сг(Јг) holds with the probability P(/c) 
depending on к, and there is no к, such that F(ft) = 1, as it was the 
case earlier.

The accurate analysis in this case is quite complex because the 
intersections of the intervals D.p_i and Dp are random events having a 
place with probabilities depending on h(p).

Nevertheless, we will present the analysis which may help to de
termine the parameters а, к, and A/c of the defined algorithm in this 
case.

We will follow the same reasoning as in the subsection 5. A, with 
the assumption that for a certain к, we may assume that

|u>(t) — (a)/i(t) — bias(t, h))| < к,сг(К) (37)

holds with a probability close to 1. Again assume that the window 
length is dyadic hs G H and h(p) = y/2hoptap 6 H with a = 2. The 
bias and variance as functions of unknown parameter b = bias(t, hopt) 
are о

bias(t, h(p)) = ba2p+\ a(h(pY) = —=ba~3^p+1^2^2
У 3

then the conditions that D-i A Dq 0 and Dq A Di = 0, with b > 0, 
are of the form (30) and produce the inequalities similar to (31):

a-1 + ^Дка3/4 > a — A/c^a~3/4
a+ (2к + Дк)^а* 3/4 < a3 - (2к + Дк)^а-9/4. (38)

For a = 2 these inequalities give as a smallest positive value Дк = 0.57 
and largest к, = 2.942. Thus, for the confidence interval we obtain 
finally

к, + Ae 3.5. (39)
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Note that this values would result in к & 3 i.e., the inequality (37) holds 
with the probability P(k) = 0.997. Therefore our assumption that we 
are working with probability P(/t) close to 1 is almost absolutely true.

We wish to mention once more that this analysis has more a qualita
tive meaning than a quantitative one. Nevertheless, in the numerical 
realizations (experimenting with various к, + △/£.), we found that the 
value к, + △/€ « 3.5, given by (39), produces the best results in all 
examples we considered.

With these hints and parameter values we can now use the algo
rithm (32)-(35) as described in subsection 5.В for the adaptive window 
length determination.

In this case the standard deviation cr(ha) could not be neglected, 
thus the estimation of signal and noise parameters |A|- and a2 can be 
done using Д + <r2 = j? ^2n=i lv(n^)|2 > where the sum is calculated 
over all N observations and N is assumed to be large, as well as T is 
small. The variance is estimated by <r = {median (|т/(пТ) — y((n—1)T)| : 
n = 2,.., Я)}/1.349. where T is sufficiently small.

b) Consider the simultaneous optimization with respect to both 
parameters in question L and h. Let us start with an introduction of 
two sets

H. — {h3 I hi <C h-2 h2 <C ... hj}, (40)
Л = {Д. I Л < L2 < ... < LK}, 1 J

where h £ H is a set of values of the window lengths h, and A is a set 
of distribution orders, denoted by Lr.

Consider a direct product of H and A as a set H X A = {(h3, Lr) | 
s = 1, 2,..., J, r = 1, 2,.., K} of all possible pairs (hs, L,.). Now let us 
reorder the elements of Я X A in such a way that we get a new set Ф 
whose elements gq — (L2 + l)/h^, q = 1, 2, 3,..., J К form an decreasing 
sequence:

$ = {gq = № + i)/^ I 9i > 92 > ... > 9jk}- (41)

The elements gq forms a decreasing sequence of the estimation variance

(42)
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The confidence intervals corresponding to the sequence gq are as follows

Dq - [£(£) - (/€ + △fc)a(^), o>(i) + (к + △A?)(t(^)] (43)

and the algorithm (32)-(35) can be applied in a straightforward man
ner. The only difference is that the set H is replaced by the set Ф and 
instead of the window size selection, we find q+ which immediately 
determines a pair of the corresponding (hs+ , L,.+ ).

The set A can be determined by any reasonable way. In simulation 
we use a dyadic set with Lr — 2,,_2, r = 1, 2, 3,4, as well as Kf △/€ 
given by (39). Note that distribution with Lr = 1 (r = 2) is the 
Wigner distribution, distributions with Lr = 2,4 are higher order 
distributions, while L = 1/2 would be a ’’lower order” distribution 
(notion ’’higher order” and ’’lower order” are used with respect to the 
Wigner distributions)

6. EXAMPLES

The discrete S-distribution is calculated using the standard FFT 
routines, after the signal is modified according to (2) and product 
Wh{nT}x^L\lT + n^)®W*(ZT  — n^) is calculated. Note that if we use 
L < 1 (for example L = 1/2 as we did in this paper) then we have to 
take care about the phase continuity of x^2\nT} over the % borders. 
We have found such a function only in some older versions of the 
MATLAB, where the m-file ’’phase.m” does exactly what we needed.

The algorithm is tested on two examples. In all of them we assumed 
signal of the form ж(пТ) = Aехр(јф(пТ)) + б(тгТ), with a given IF 
as(nT) and the phase ф(пТ) = w(nT)/T.

Signal amplitude was A = 1 and 201og(A/cr) = 15[dB], (A/cr = 
5.62). Considered time interval was 0 < nT < 1.

Example 1: Signal with IF defined by

iv(nT) = 107rasinh(100(i — 0.5)) + 64%

Several S-distributions with constant orders (L = 1,2,4) and window 
lengths (A = 32,128) are presented in Fig.la)-f).
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Fig. 1: Time-freqeuncy representation and IF estimation of a signal with 
non-linear IF. S-distribution with: a) L=l, N=32, b) L=l, N=128, 
c) L=2, N=32, d) L=2, N=128, e) L=4, N=32, f) L=4, N=128, 
g) Adaptive window length, h) S-distribution with adaptive window 
length, i) Signal’s IF, j) IF estimation with L=1 and N=32, k) with L=4 
and N=128, 1) IF estimation with L=4 and adaprive window length.
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Fig. 2: Mean absolute error for various window lengths and S- 
distribution orders in the case of dominant quantization error.

Since, in this example, we have not done any additional interpola
tion, in order to find an adaptive distribution, then according to results 
in 5.A, we considered distributions with maximal order L = 4 and 
various window lengths hs corresponding to the following number of 
signal samples within it: Ns = 16, 32,64,128, 256. The adaptive window 
lengths, determined by the algorithm (32)-(35) with к, + Ак = 2.25, 
are shown in Fig.lg. We can see that when the IF variations are small 
then algorithm uses the widest window length in order to reduce the 
variance. Around the point nT = 0.5, where the bias is large, the



An algorithm for the Instant. Frequency Estim. Using the S-Distribution 111

Fig. 3: Time-freqeuncy representation and IF estimation of a signal 
with step-wise IF: a) Signal’s IF, b) IF estimation with L=l/2 and 
N=32, c) with L=4 and N=32, d) with L=4 and N=128, e) Adaptive 
window length, f) Adaptive distribution order, g) The S-distribution 
with adaptive window length and distribution order, h) Estimated IF 
using the S-distribution with adaptive order and window length.
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Fig. 4: Mean absolute error for various window lengths and S- 
distribution orders.

windows with smaller lengths are used. The S-distribution with adapti
ve window length is presented in Fig.lh. The IF, as well as its estimates 
with (L = 1,N = 32), (L = 4, N = 256), and estimate with adaptive 
window length using L = 4, are given in Fig.li)-!), respectively. Absolu
te mean error, normalized to the minimal discretization step, for each 
considered distribution order and window length, is shown in Fig.2. 
This figure confirms that for each window length, S-distribution with 
L = 4 produces smallest error, as well as that the closest one to 
the distribution with adaptive window length (given by solid line) is 
distribution with L = 4, N — 128 presented in Fig.If. Example 2: Signal
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with step-wise IF

w(nT) = 32TTsign(t — 0.5) + 64тг

In this example we did additional interpolation for each window length, 
up to the widest N = 128, as well as choose such IF values, that 
the quantization error can be even neglected. The estimated IF using 
the S-distributions with some constant orders and window lengths are 
presented in Fig.3a)-d).

The adaptation is done with respect to both window length and 
distribution order, according to the algorithm (32)-(35) and hints in 
5.D. The adaptive window length 2Vs+(nT) and distribution order 
T7.+ (nT), as well the S-distribution with that parameters, using к, 4- 
△/€ = 3.5, are presented in Fig.3e)-g), along with the estimated IF, 
Fig.3h). As expected, the algorithm produced the smallest possible 
variance (with Д.+ (пТ) = 1/2 and N3+ (nT} = 128) in the regions 
where the instantaneous frequency estimator is not biased (i.e., IF 
is constant). Algorithm application resulted in small window lengths 
and high distribution orders in the region where the bias is large, 
around the point nT = 0.5. Absolute mean error, normalized to the 
minimal discretization step, is shown in Fig.4. It further illustrates our 
considerations about window lengths and distribution orders influence 
to the accuracy of the IF estimation. Here we will also discuss the 
optimal distribution order dependence on the window length. From 
Fig.4 we see that for the narrowest window length the smallest mean 
absolute error is obtained with the distribution having L = 1/2 order. 
Increasing the window length the best distribution order also increases. 
For a reasonably large window lengths (what is important from the 
distributions’ resolution point of view) the best results are obtained for 
the highest distribution order L = 4. This is in complete agreement 
with (15).

7. CONCLUSION

The S-distribution with the data-driven and time-varying window 
length and order is presented, as an adaptive estimator of the IF. The



114 Ljubiša Stankovic, Vladimir Katkovnik
choice of the window length and the distribution order is based on 
the intersection of the confidence intervals of the IF estimates. The 
developed algorithm uses only the formula for the asymptotic variance 
of the IF estimates. Simulation shows a quite valuable accuracy im
provement of the adaptive algorithm.
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