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Abstract
This paper is devoted to optimal sizing as well as to shape opti-

mization. As a model example we consider the problem of minimizing
the mass of the frame of an injection moulding machine. The defor-
mation of the frame is described by a generalized plane stress state
wherein the varying thickness is incorporated in case of the optimal
sizing. This constrained nonlinear optimization problem is solved by se-
quential quadratic programming (SQP) which requires gradients of the
objective and of the constraints with respect to the design parameters.
As long as the number of design parameters is small, finite differences
may be used. In order to handle also several hundreds of varying thick-
ness parameters, we use the reverse mode of algorithmic (also called
automatic) differentiation of the function evaluation. This approach
works fine but requires huge memory and disk capacities. Furthermore,
the use of iterative solvers for the governing state equation is limited.
Therefore, we combine it with the adjoint method to get a fast and flexi-
ble gradient evaluation procedure. The last approach is especially useful
in case of a shape optimization. The presented numerical results show
the potential of this approach and imply that this method can also be
used for finding an initial guess for a shape optimization.

1. Introduction

The design of a mechanical structure has to fulfill various constraints in
many industrial applications. In most cases, an optimal design subject to sev-
eral constraints is desired. Due to lack of time, engineers designing a machine

Key words: Optimal sizing, shape optimization, structural mechanics, finite elements,
adjoint method, automatic differentiation

1This work was partially supported by the Austrian Science Fund - ’Fonds zur Förderung
der wissenschaftlichen Forschung (FWF)’ - SFB F013 ’Numerical and Symbolic Scientific
Computing’, Project F1309

†email: gundolf.haase@uni-graz.at

Optimal Sizing and Shape Optimization in
Structural Mechanics1

G. Haase† , E. Lindner‡, C. Rathberger
†University of Graz, Institute of Mathematics and Scientific Computing,

Austria
‡University of Linz, Institute for Computational Mathematics, Austria

Abstract
This paper is devoted to optimal sizing as well as to shape opti-

mization. As a model example we consider the problem of minimizing
the mass of the frame of an injection moulding machine. The defor-
mation of the frame is described by a generalized plane stress state
wherein the varying thickness is incorporated in case of the optimal
sizing. This constrained nonlinear optimization problem is solved by se-
quential quadratic programming (SQP) which requires gradients of the
objective and of the constraints with respect to the design parameters.
As long as the number of design parameters is small, finite differences
may be used. In order to handle also several hundreds of varying thick-
ness parameters, we use the reverse mode of algorithmic (also called
automatic) differentiation of the function evaluation. This approach
works fine but requires huge memory and disk capacities. Furthermore,
the use of iterative solvers for the governing state equation is limited.
Therefore, we combine it with the adjoint method to get a fast and flexi-
ble gradient evaluation procedure. The last approach is especially useful
in case of a shape optimization. The presented numerical results show
the potential of this approach and imply that this method can also be
used for finding an initial guess for a shape optimization.

1. Introduction

The design of a mechanical structure has to fulfill various constraints in
many industrial applications. In most cases, an optimal design subject to sev-
eral constraints is desired. Due to lack of time, engineers designing a machine

Key words: Optimal sizing, shape optimization, structural mechanics, finite elements,
adjoint method, automatic differentiation

1This work was partially supported by the Austrian Science Fund - ’Fonds zur Förderung
der wissenschaftlichen Forschung (FWF)’ - SFB F013 ’Numerical and Symbolic Scientific
Computing’, Project F1309

†email: gundolf.haase@uni-graz.at

Optimal Sizing and Shape Optimization in
Structural Mechanics1

G. Haase† , E. Lindner‡, C. Rathberger
†University of Graz, Institute of Mathematics and Scientific Computing,

Austria
‡University of Linz, Institute for Computational Mathematics, Austria

Abstract
This paper is devoted to optimal sizing as well as to shape opti-

mization. As a model example we consider the problem of minimizing
the mass of the frame of an injection moulding machine. The defor-
mation of the frame is described by a generalized plane stress state
wherein the varying thickness is incorporated in case of the optimal
sizing. This constrained nonlinear optimization problem is solved by se-
quential quadratic programming (SQP) which requires gradients of the
objective and of the constraints with respect to the design parameters.
As long as the number of design parameters is small, finite differences
may be used. In order to handle also several hundreds of varying thick-
ness parameters, we use the reverse mode of algorithmic (also called
automatic) differentiation of the function evaluation. This approach
works fine but requires huge memory and disk capacities. Furthermore,
the use of iterative solvers for the governing state equation is limited.
Therefore, we combine it with the adjoint method to get a fast and flexi-
ble gradient evaluation procedure. The last approach is especially useful
in case of a shape optimization. The presented numerical results show
the potential of this approach and imply that this method can also be
used for finding an initial guess for a shape optimization.

1. Introduction

The design of a mechanical structure has to fulfill various constraints in
many industrial applications. In most cases, an optimal design subject to sev-
eral constraints is desired. Due to lack of time, engineers designing a machine

Key words: Optimal sizing, shape optimization, structural mechanics, finite elements,
adjoint method, automatic differentiation

1This work was partially supported by the Austrian Science Fund - ’Fonds zur Förderung
der wissenschaftlichen Forschung (FWF)’ - SFB F013 ’Numerical and Symbolic Scientific
Computing’, Project F1309

†email: gundolf.haase@uni-graz.at

Optimal Sizing and Shape Optimization in
Structural Mechanics1

G. Haase† , E. Lindner‡, C. Rathberger
†University of Graz, Institute of Mathematics and Scientific Computing,

Austria
‡University of Linz, Institute for Computational Mathematics, Austria

Abstract
This paper is devoted to optimal sizing as well as to shape opti-

mization. As a model example we consider the problem of minimizing
the mass of the frame of an injection moulding machine. The defor-
mation of the frame is described by a generalized plane stress state
wherein the varying thickness is incorporated in case of the optimal
sizing. This constrained nonlinear optimization problem is solved by se-
quential quadratic programming (SQP) which requires gradients of the
objective and of the constraints with respect to the design parameters.
As long as the number of design parameters is small, finite differences
may be used. In order to handle also several hundreds of varying thick-
ness parameters, we use the reverse mode of algorithmic (also called
automatic) differentiation of the function evaluation. This approach
works fine but requires huge memory and disk capacities. Furthermore,
the use of iterative solvers for the governing state equation is limited.
Therefore, we combine it with the adjoint method to get a fast and flexi-
ble gradient evaluation procedure. The last approach is especially useful
in case of a shape optimization. The presented numerical results show
the potential of this approach and imply that this method can also be
used for finding an initial guess for a shape optimization.

1. Introduction

The design of a mechanical structure has to fulfill various constraints in
many industrial applications. In most cases, an optimal design subject to sev-
eral constraints is desired. Due to lack of time, engineers designing a machine

Key words: Optimal sizing, shape optimization, structural mechanics, finite elements,
adjoint method, automatic differentiation

1This work was partially supported by the Austrian Science Fund - ’Fonds zur Förderung
der wissenschaftlichen Forschung (FWF)’ - SFB F013 ’Numerical and Symbolic Scientific
Computing’, Project F1309

†email: gundolf.haase@uni-graz.at

Optimal Sizing and Shape Optimization in
Structural Mechanics1

G. Haase† , E. Lindner‡, C. Rathberger
†University of Graz, Institute of Mathematics and Scientific Computing,

Austria
‡University of Linz, Institute for Computational Mathematics, Austria

Abstract
This paper is devoted to optimal sizing as well as to shape opti-

mization. As a model example we consider the problem of minimizing
the mass of the frame of an injection moulding machine. The defor-
mation of the frame is described by a generalized plane stress state
wherein the varying thickness is incorporated in case of the optimal
sizing. This constrained nonlinear optimization problem is solved by se-
quential quadratic programming (SQP) which requires gradients of the
objective and of the constraints with respect to the design parameters.
As long as the number of design parameters is small, finite differences
may be used. In order to handle also several hundreds of varying thick-
ness parameters, we use the reverse mode of algorithmic (also called
automatic) differentiation of the function evaluation. This approach
works fine but requires huge memory and disk capacities. Furthermore,
the use of iterative solvers for the governing state equation is limited.
Therefore, we combine it with the adjoint method to get a fast and flexi-
ble gradient evaluation procedure. The last approach is especially useful
in case of a shape optimization. The presented numerical results show
the potential of this approach and imply that this method can also be
used for finding an initial guess for a shape optimization.

1. Introduction

The design of a mechanical structure has to fulfill various constraints in
many industrial applications. In most cases, an optimal design subject to sev-
eral constraints is desired. Due to lack of time, engineers designing a machine

Key words: Optimal sizing, shape optimization, structural mechanics, finite elements,
adjoint method, automatic differentiation

1This work was partially supported by the Austrian Science Fund - ’Fonds zur Förderung
der wissenschaftlichen Forschung (FWF)’ - SFB F013 ’Numerical and Symbolic Scientific
Computing’, Project F1309

†email: gundolf.haase@uni-graz.at



136 G. Hasse, E. Lindner and C. Rethenberger

136 G. Haase, E. Lindner and C. Rathberger

component have to stop their design process after a few iterations and take the
best design obtained so far because no more time is left for drafts that would
possibly meet the requirements to a larger extent.

Therefore, tools supporting such a design process have to fulfill mainly two
goals. On the one hand they have to be flexible enough to handle the various
requirements. Especially, it is desirable to spend only little work when the
requirements change. On the other hand, these tools have to be fast.

An extensive review of various methods for structural optimization using
finite elements is given in the monograph of Haslinger, Neittaanmäki[12] and
in the book of Haslinger, Mäkinen[11] . A monograph specializing more on
topology optimization is Bendsøe[1] and Bendsøe, Sigmund[2]. Mahmoud[16]
focuses on an optimal sizing approach similar to the one in this paper, but
he uses approximate representations of the objective and the constraints to
reduce the overall costs of the method. Stangl[24] presents a generalization of
that approach to a class of nonlinearly elastic materials. For approaches using
a topology optimization for getting an initial guess of the topology used in
shape optimization afterwards see e.g. Maute, Ramm[17] or Ramm, Bletzinger,
Reitinger, Maute[22].

Forth, Evans[5] and Kim, Hovlan[14] apply AD to similar problems in fluid
dynamics and in the field of inverse problems. Tadjouddine, Forth, Pryce[26]
describe an efficient combination of AD and hand-coded parts of the derivative
whose concept is similar to the approach in this paper.

A good introduction into shape optimizaion problems can be found in
Sokolowski, Zolésio[25], Delfour, Zolésio[4] and Henrot, Sokolowski[13]. First
results of the authors can be found in [9, 10].

This paper deals with minimizing the mass of the frame of an injection
moulding machine as an example for a typical optimization problem. Since
we want to use standard optimization procedures (such as SQP) we devote
its main part to the efficient and flexible calculation of the gradients of the
given objective and the constraints. We present a very flexible approach using
automatic differentiation as well as analytic derivatives inside the code. In
order to get also an efficient and fast method, automatic differentiation has to
be coupled with a well-known approach from shape optimization – the so-called
adjoint method. Numerical results show the strength of this approach.

We will start with the mathematical description of the optimal sizing prob-
lem and we will later emphasize the specifications with respect to the calcula-
tion of the gradient in case of shape optimization.
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2. Modeling of the problem

The frame of an injection moulding machine is briefly sketched by its 2D-cut
Ω given in Figure 1. For a frame of homogeneous thickness typical dimensions
are:

thickness of one plate 180 mm
mass of one plate 3.8 tons
clumping force (surface force) 300 tons ≈̂ 16 N/mm2

length 2.8 m
height 1.7 m
supporting areas 2

Figure 1: Cross section of the original shape

The primary goal of the design phase is to minimize the mass of the frame.
Several other requirements have to be fulfilled in addition.

Let V0 = {v ∈ H1(Ω) | v = 0 on ΓD, meas ΓD > 0} denote the set of admis-
sible displacements where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅. For a fixed thickness
ρ(x), the displacement field u ∈ V0 fulfills the variational equation

a(ρ; u, v) = F (v) for all v ∈ V0 , (1)

with

a(ρ; u, v) =

∫

Ω

ρ
∂ui

∂xj

Eijkl
∂vk

∂xl

dx, F (v) =

∫

Ω

〈f, v〉 dx +

∫

ΓN

g v ds
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where Eijkl denotes the elasticity tensor, f the volume force density and g the
surface force density on the part ΓN of the boundary ∂Ω. The design problem
can be stated as follows:

∫

Ω

ρ dx −→ min
u,ρ

subject to a(ρ; u, v) = F (v) for all v ∈ V0

0 < ρ ≤ ρ ≤ ρ, a.e. in Ω

σvM(u) ≤ σvM
max, σten(u) ≤ σten

max a.e. in Ω

α(u) ≤ αmax

(2)

σvM(u) denotes the v. Mises stress, σten(u) the tensile stress in the frame.
The change in the shrinking angle of the clumping unit (vertical edges on top,
called wings) is denoted by α(u).

For discretizing the problem, we use triangular finite elements with piece-
wise constant shape functions for approximating ρ and piece-wise quadratic
ones for approximating u. We denote the discrete approximation of ρ and u
again by ρ and u. In our application, the upper limits on the angle and the
stresses are treated either as constraints or as soft limits, which can be violated
to some extent, if the mass would be severely smaller then. Furthermore, the
pointwise constraints on σvM and σten are replaced by using a higher order
�p norm. Treating the upper limits as soft constraints leads to the following
reformulation:

mass(ρ) + ω1

(
max (‖σvM‖p − σvM

max, 0)
)2

+ ω2

(
max (‖σten‖p − σten

max, 0)
)2

+ ω3

(
max (α − αmax, 0)

)2 −→ min
u,ρ

subject to K(ρ) u = F and ρ ≤ ρ ≤ ρ .

(3)

3. A short sketch on the optimization strategy

From the optimization’s point of view the problem (3) is a special case of

J(u, ρ) −→ min
u,ρ

subject to K(ρ) u = f(ρ) and ρ ≤ ρ ≤ ρ ,
(4)

G. Hasse, E. Lindner and C. Rethenberger
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where ρ denotes the vector of design parameters and u the solution of the
governing finite element (FE) state equation. The splitting of the parameter
vector into design parameters ρ and the solution of the FE state equation
u is typical for design problems. From the optimization’s point of view the
discretized state equation can be interpreted as equality constraints. In our
case it is linear with respect to u and K(ρ) is symmetric and positive definite
for all admissible parameters ρ. Therefore, u can be formally eliminated which
leads to

J̃(ρ) = J(K−1(ρ) f(ρ), ρ) −→ min
ρ

subject to ρ ≤ ρ ≤ ρ .
(5)

As we want to use a standard SQP method for solving the resulting opti-
mization problems, the formulation in (5) is advantageous compared to (4) as it
has much fewer parameters. Details on these kinds of optimization procedures
can be found e.g. in Gill, Murray, Wright[7] or Nocedal, Wright[19].

The optimizer used in our code is based on a Quasi-Newton approximation
of the Hessian using a modified BFGS update formula following Powell[20] in
order to avoid the need for Hessian information of the objective.

4. Calculating gradients for the optimal sizing problem

Using a Quasi-Newton strategy and update formulas the remaining main
problem is the calculation of gradients for the objective and the constraints. In
most cases the implementation of analytic derivatives is by far too complicated
and time consuming. Furthermore, it would not be well suited for the use in a
design process, as we would loose the flexibility of the code completely. That
is the reason why we have to think of alternative methods for calculating the
gradients. On the one hand we have black box methods like finite differences
or automatic differentiation (c.f. Griewank[8]), on the other hand, methods ex-
ploiting the special structure of the state equation are available, e.g. the direct
method or the adjoint method (c.f. Haslinger, Neittaanmäki[12]). As none of
these methods is really well suited for our problem, a hybrid method combining
automatic differentiation and the adjoint method has been developed.

As our finite element code is completely written in C++ and uses heavily
virtual inheritance, we use ADOL-C for differentiating our code, c.f. Griewank,
Juedes, Utke[6]. We applied the reverse mode within our calculations, as we
have at most a few nonlinear constraints (c.f. (2), (3)) whereas the dimension
of the design space is usually large.

Optimal sizing and shape optimization in structural mechanics
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4.1. Direct and adjoint method

Both methods are well-known in the shape optimization community and
take into account the special structure of the FE state equation. Differentiating
the discretized state equation with respect to a design parameter ρi leads to

K
∂u

∂ρi

=
∂f

∂ρi

− ∂K

∂ρi

u. (6)

For the direct method, (6) is solved numerically by some direct or iterative
solver. Then the gradient of the objective can be calculated by (c.f. (5))

dJ̃

dρi

=
∂J

∂ρi

+ 〈∂J

∂u
,
∂u

∂ρi

〉. (7)

The adjoint method solves (6) formally and inserts the result in (7) which leads
to

dJ̃

dρi

=
∂J

∂ρi

+ 〈K−T ∂J

∂u
,
∂f

∂ρi

− ∂K

∂ρi

u〉. (8)

4.2. Comparison

ADOL-C needs a file containing the evaluation graph of the function in
a symbolic form which is generated at runtime. For structural optimization
problems, huge memory and disk capabilities are required for that purpose.
To give an example, the files storing the evaluation graph for a problem with
about 450 design parameters and about 7500 degrees of freedom (DOFs) in the
FE state equation take about 1 GB of disk space. The flexibility of ADOL-C
with respect to changes in the objective is similar to finite differences. For
the reverse mode, the calculation time of the gradient is independent of the
number of design parameters and takes the time of about 15 - 20 native C++
function evaluations as long as the evaluation graph can be stored in the main
memory of the computer. Compared to the use of finite differences, this is a
tremendous speedup, even for problems with only 10 - 20 design parameters.
The coupling of AD with iterative solvers is a problem of current research (see
e.g. Griewank[8] and references therein). As the use of iterative methods (e.g.
multilevel methods) is important for solving fine discretizations of the state
equation efficiently. For the moment, the applicability is limited to problems,
where direct solvers can be used.

G. Hasse, E. Lindner and C. Rethenberger
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The direct method needs the solution of one state equation per design pa-
rameter, whereas the adjoint method needs the solution of one adjoint problem
for the objective and in principle for each constraint. Depending on the number
of design parameters and constraints, the better suited method can be cho-
sen. As analytic partial derivatives of J with respect to ρ and u are needed,
both methods can only be applied to simple objectives, where this can be
done easily. Furthermore, the flexibility of the method suffers from the need
of hand-coded gradient routines. Compared to finite differences or the use of
AD for the whole function, this approach is much faster. Finite differences
need many more solutions of the FE state problem, compared to AD the huge
evaluation graph which originates mainly from the solution of the state equa-
tion is avoided. For both methods any solver can be used for solving the state
problem, especially the use of iterative solvers like conjugate gradient methods
with multilevel preconditioning is recommanded.

4.3. Hybrid method

Comparing the properties of the direct and the adjoint method and of AD
it can be seen that the strengths of these methods lie in completely different
areas. AD provides very high flexibility with respect to the used objective, but
has drawbacks with respect to the needed computer requirements, the use of
iterative solvers for the state equation and with respect to longer runtime. On
the other hand the direct and the adjoint method can easily be combined with
iterative solvers and provide a fast way for calculating the needed gradients,
but they lack from the needed flexibility. However, both approaches can be
combined to a new hybrid method combining their strengths in the following
way: The main drawback of the direct or the adjoint method is the need of
analytic partial derivatives of the objective and the constraints with respect to
ρ and u. But these derivatives can easily be provided by using AD tools. Then
only ∂K

∂pi
and ∂f

∂pi
remain, for which hand-coded routines have to be implemented

or AD can be used. For optimal sizing problems, these routines can be hand-
coded easily. Furthermore, they do not depend on the specific problem which
justifies the additional effort of coding even for more complex problems.

5. Numerical results for the optimal sizing problem

In the following, some numerical results for the problem stated in Section
are presented. They were calculated on an SGI Origin 2000 with 300 MHz.
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At the beginning, we tried to use only few design parameters. Therefore,
we divided our domain into a number of sub-domains and approximated the
thickness with a constant function per sub-domain. For evaluating the gra-
dient, either finite differences, an AD approach for (5) or the hybrid method
were used. For a better comparison, the calculation was terminated after a
fixed number of steps (The run using finite differences terminated earlier be-
cause the search direction was no descent direction anymore). Detailed results
can be found in Table 1. All 3 methods lead to a similar design with about

Finite Diff. Pure AD Hybrid M.
Problem Nr. of design par. 24 24 24
dim. Nr. of elements 3981 3981 3981

DOFs of state equ. 16690 16690 16690
Optimizer Iterations 83 100 100
statistics gradient eval. 12.40 h 6.00 h 0.18 h

function eval. 0.23 h 2.36 h 0.20 h
Runtime Total CPU time 12.4 h 4.88 h 0.39 h

Total elapsed time 12.6 h 8.42 h 0.40 h

Table 1: Comparison of the runtime for various differentiation strategies

5 % reduction of the mass compared to the starting configuration (which is
the current design of the frame). Compared to finite differences and the pure
AD approach, the hybrid method is severely faster, as it combines a fast func-
tion evaluation and a fast gradient evaluation. The gradient evaluation is the
main drawback for finite differences. For the pure AD approach we had to
implement additional safeguards. In order to detect when a regeneration of
the evaluation graph was necessary, we compared the value of the objective
using the evaluation graph and the value using a native C++ implementation
which explains the longer runtime of the function evaluation.

In the following we used the coarsest grid of our FE triangulation for dis-
cretizing the thickness. For solving the state problem, each coarse grid element
was subdivided into 16 elements using 2 levels of uniform refinement. On this
refined triangulation the state equation was discretized. Table 2 contains re-
sults for the pure AD approach and the hybrid method. Also results for an
even finer discretization of the state equation are presented.

Analyzing the runtime behaviour we see that the pure AD approach is
no more competitive due to the large file containing the evaluation graph.
Furthermore, it can be seen that for the hybrid approach the optimizer needs
already a considerable amount of the total runtime. Its relative amount of
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Pure AD Hybrid M. Hybrid M.
Problem Nr. of design par. 449 449 449
dim. Nr. of elements 1796 1796 7184

DOFs of state equ. 7518 7518 29402
Evaluation Operations 45521797 1399910 5578270
graph Total file size 953 MB 32.4 MB 129.2 MB
Optimizer Iterations 800 800 800
statistics gradient eval. 18.0 h 0.54 h 3.35 h

function eval. 16.5 h 1.29 h 8.13 h
Runtime Total CPU time 32.3 h 3.73 h 14.01 h

Total elapsed time 38.5 h 3.76 h 14.12 h

Table 2: Comparison of the runtime for many design parameters

the runtime even grows when using more design parameters as the complexity
of one optimization step is proportional to (dim ρ)3 (due to the use of dense
matrix linear algebra), whereas the complexity of solving one state equation
is proportional to dim u (if solvers with optimal complexity e.g. conjugate
gradients with multigrid or multilevel preconditioning are used).

6. Calculating the gradient for shape optimization

We have seen in the optimal sizing problem that a direct implementation
of the gradient can accelerate the code dramatically although it requires more
work on the implementation side. We were curious what performance gain can
be achieved when the gradient calculation in a 2D shape optimization problem
is fully implemented, i.e., no automatic differentiation or finite differences are
used therein. The shape under investigation is similar to the one in Fig. 1.
This shape can be easily described by corner points (x- and y-coordinates),
circular parts of the boundary (x- and y-coordinates of the center plus the
radius) connected with straight lines, see Fig. 2. Our set of design parame-
ters P contains all these parameters px, py,mx,my, r which are restricted via
box constraints. More details on topics discussed in the following sections can
be found in the master thesis by Rathberger[21].

6.1. A second look at the gradient

If we pick an arbitrary design parameter p ∈ P and if we assume that
our objective J depends only on the mass, the displacement in certain points
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(p_x, p_y)

(m_x, m_y)

r

Figure 2: Possible usage of design parameters in Shape Optimization

and the resulting van Mises stress σvM (the handling of tensile stresses will be
similar) we can write:

J = J(p, u(p), σvM(p, u(p))) (9)

where the explicit dependency on p is due to the fact that for homogeneous
objects the mass depends only on the boundary shape. If we want to calculate
the total differential with respect to design parameter p this leads to

dJ

dp
=

∂J

∂p
+

∂J

∂u
· du

dp
+

∂J

∂σvM
·
(

∂σvM

∂p
+

∂σvM

∂u
· du

dp

)

=
∂J

∂p
+

∂J

∂σvM
· ∂σvM

∂p
+

(
∂J

∂u
+

∂J

∂σvM
· ∂σvM

∂u

)
· du

dp
(10)

Again, we want to eliminate the term du
dp

by differentiating the state equation
Ku = f with respect to the design variable p and we get similarly to (6)

du

dp
= K−1

(
df

dp
− dK

dp
· u

)
(11)

Inserting equation (11) into equation (10) results in

dJ

dp
=

∂J

∂p
+

∂J

∂σvM
· ∂σvM

∂p
+

+

(
∂J

∂u
+

∂J

∂σvM
· ∂σvM

∂u

)
· K−1

(
df

dp
− dK

dp
· u

)

=
∂J

∂p︸︷︷︸
(i)

+
∂J

∂σvM
· ∂σvM

∂p︸ ︷︷ ︸
(ii)

+

+

〈
K−1 ·

(
∂J

∂u
+

∂J

∂σvM
· ∂σvM

∂u

)
,
df

dp
− dK

dp
· u

〉

︸ ︷︷ ︸
(iii)

(12)
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where we have used the fact that K is symmetric in the last transformation.
We will investigate the three principal parts of the derivative in (12) separately:

(i) As the objective only depends explicitly on the design parameters
through the mass, this partial derivative can be evaluated as

∂J

∂p
= � · ∂V

∂p
= � · d · ∂A

∂p
= � · d ·

m∑
e=1

∂Ae

∂p
(13)

where V is the volume, A the area, Ae the area of element e, � the
density of the material and d the thickness of the frame. Writing this
differential as sum over all elements has the advantage that the evaluation
is independent from the geometrical properties of the boundary shape
and it is not even inefficient regarding the computational effort. The
differential of the element areas by the design parameters will be required
in equation (18) in Section anyway.

(ii) Differentiating the objective by the van Mises stress gives us only some
constant of proportionality. Partially differentiating the van Mises stress
by the design parameters is a little more complicated, but can be basically
reduced to repetitive applications of product and chain rule differentia-
tion. We will give the explicit expressions in Section .

(iii) Finally, the handling of the derivatives in the scalar product < ., . > is
the main effort and requires some more considerations.

Examining the left hand side of the scalar product in equation (12) in more
detail, the first thing we can do is to rewrite it as the adjoint problem

vleft := K−1 ·
(

∂J

∂u
+

∂J

∂σvM
· ∂σvM

∂u

)

K · vleft =
∂J

∂u
+

∂J

∂σvM
· ∂σvM

∂u
, (14)

where K is the stiffness matrix already known from the state problem. We
obviously can evaluate the left hand side vleft simply by solving the state
problem with the only difference that we use a different right hand side instead
of f , namely

∂J

∂u
+

∂J

∂σvM
· ∂σvM

∂u
(15)

Here the partial differential of the objective by the displacement field u will be
an n-dimensional null vector except for those entries corresponding to nodes
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on the boundary affected by angular constraints. The differentials involving
the van Mises stress again will considered in Section .

6.2. Differentiating the state equation

First we have a closer look at the right hand side df
dp

− dK
dp

· u of the scalar
product (iii) in (12). The gravity of mass can be neglected in comparison to
the large forces acting on the C-frame. Additionally, the shape is also strictly
fixed in those regions where these surface tractions act. Therefore, we can
use ∂f

∂p
= 0 in our considerations (see [21, §10.1]). The displacement field u

is already available from solving the state equations Ku = f , The differential
of the stiffness matrix K can be expressed by the differentials of the element
stiffness matrices Ke through the connectivity matrices Ce.

dK

dp
=

m∑
e=1

Ce
dKe

dp
CT

e (16)

We took advantage of the fact that the connectivity matrices contain only
"topological" data and they are therefore independent from the design pa-
rameters. Additionally, we restrict ourselves to triangular finite elements with
quadratic shape functions. The derivative of the element stiffness matrix will
be shown for one of the 4 × 36 entries of Ke (the others work completely by
analogy). Selecting K12

xy from Ke, i.e., the discretization of ∂ψ(1)

∂x
· ∂ψ(2)

∂y
with

ψ(1) and ψ(2) denoting two quadratic shape functions of the triangular finite
element, we get

K12
xy =

1

4Ae

[
ν(x1−x3)(y2−y3) +

(1 − ν)

2
(y3−y1)(x3−x2)

]
(17)

and consequently

dK12
xy

dp
= − 1

4A2
e

dAe

dp
[ν(x1−x3)(y2−y3) +

(1 − ν)

2
(y3−y1)(x3−x2)]

+
1

4Ae

[
ν{(dx1

dp
− dx3

dp
)(y2−y3) + (x1−x3)(

dy2

dp
− dy3

dp
)} (18)

+
(1−ν)

2
{(dy3

dp
− dy1

dp
)(x3−x2) + (y3−y1)(

dx3

dp
− dx2

dp
)}

]

which looks very complicated, but again consists only of differentials of Ae and
the vertices of the element by the design parameter p.
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The element area Ae can be easily calculated for triangular elements (with
corner points (x1, y1),(x2, y2) and (x3, y3)) and the appropriate derivative is

dAe

dp
=

1

2
·
[
(
dx2

dp
− dx1

dp
)(y3 − y1) + (x2 − x1)(

dy3

dp
− dy1

dp
)

−(
dx3

dp
− dx1

dp
)(y2 − y1) − (x3 − x1)(

dy2

dp
− dy1

dp
)

]
(19)

So the differential of the element area can be expressed by the differential of
the corner points by the design parameters as well. Obviously the central task
when trying to differentiate the objective is differentiating the coordinates of
the nodes by the design parameters.

Therefore, the difficulties in the gradient calculation are shifted to the
dependencies of the finite element mesh from the changes in the geometry.
That dependency consists again of two parts:

Design parameters P
i.−→ Boundary Nodes Γh

ii.−→ Interior Nodes Ωh

i. The boundary mapping from P to Γh is described in detail in [21, §9.1].
Differentiating this expression will be extremely long-winded though
mathematically not very difficult [21, §10.3] and we skip this part in
the paper.

ii. The mesh mapping from the boundary Γh to the interior nodes Ωh re-
quires a transformation of the f.e. mesh. For calculating this differential
we will have to differentiate the mesh smoother, which is either an algo-
rithm based on the Jacobi method or one involving the solution of the
linear elasticity problem.

If we take into consideration the way the mesh coordinates are stored in our
data structure (coordinates of the initial geometry plus a certain deformation
field) we can write the mesh deformation with respect to the design parameters
more precisely:

xi = xinitial
i + (um)i(Γ(P )) ∀i ∈ ωh (20)

where um is the result of the mesh smoothing problem. Consequently this
leads to

dxi

dp
=

∑
j∈γh

dxi

dxj

· dxj

dp
∀i ∈ ωh (21)
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6.3. Differentiating the mesh mapping

Talking about the mesh mapping we have to distinguish between the two
possible implementations. Let us first discuss the very easy case of the Jacobi
iteration.

6.3.1. Differentiating the Jacobi iteration. If we want to calculate the
derivative of the Jacobi method we have to differentiate the iteration scheme

xt+1
j =

1

|Nj|
∑
i∈Nj

xt
i ∀j ∈ ωh (22)

which it is based on. Where we first had to transform the boundary nodes (not
affected by the smoothing algorithm) and then iterate according to equation
(22) to extend the transformation to the interior, we now first have to differ-
entiate the boundary nodes by the desired design parameter and then extend
the derivative into the interior by using the differentiated iteration scheme

dxt+1
j

dp
=

1

|Nj|
∑
i∈Nj

dxt
i

dp
∀j ∈ ωh (23)

The idea behind the derivative is precisely the same as for the mesh mapping
itself.

As brilliantly simple as this may seem it is also a grave disadvantage, be-
cause this means that we have to repeat the (already very high) computational
effort required for mesh mapping again for each design parameter in order to
get the gradient. Of course the number of iterations has to be the same for the
mapping as for the derivative in order to get correct results! So if the Jacobi
iteration was for a certain problem 5 times slower than the elasticity mapping
and we have 9 design parameters, this widens the gap to a factor (1+9)·5 = 50
at least! That would be for example more than a day compared to 30 minutes!

Although we could reduce the computational effort a little by calculating
the differential of the mesh smoother in the same loop as the mesh smoother
itself, this does not change the general disadvantages of this approach. Obvi-
ously we should really find a different smoother!

6.3.2. Differentiating the elastic mesh mapping. Looking a little
bit closer at how the deformation field for the mesh um is influenced by the
deformation of the boundary Γ we recall that it is calculated as solution of

Kh · uw = 0 (24)
with Dirichlet boundary conditions dependent on Γ ,

G. Hasse, E. Lindner and C. Rethenberger



149
Optimal Sizing and Shape Optimization in Structural Mechanics 149

where Kh itself is independent from the design parameters, because the de-
formed geometry is always calculated from the optimal, undeformed initial
geometry and therefore the Kh for mesh transformation is always (the same)
stiffness matrix for the initial setting of the design parameters. So we have
to differentiate the solution of the given system of linear equations by the
Dirichlet boundary conditions. How can this be done?

For answering this question we have to remind ourselves how Dirichlet
data is actually incorporated into the linear system. One way to do this is
by discrete homogenization, which leads to (if we look at only one equation,
respectively row, of the system)

(
Kinner · uinner

m

)
i
=

(
−

∑

k∈γh

Kh
ik · xk

)

i

∀i ∈ ωh (25)

Solving for um and differentiating by the coordinate of a boundary node (this
is what we actually have to do accordingly to equation (21)) leads to

dum

dxj

= −K−1
inner · K̂•j (26)

where K̂•j is the j-th column of the initial Matrix Kh with the lines corre-
sponding to the boundary nodes removed. Equation (26) results from

dxk

dxj

= δjk (27)

and it requires to solve one linear system per boundary node! This would
be, of course, terribly ineffective and is therefore absolutely unthinkable! Fur-
thermore storing the results of equation (26) would require an array of the
dimensions |ωh|× |γ|, which is far too large to be practicable as well. But both
problems can be solved with one idea.

If we now calculate dum

dp
instead of dum

dxj
, then equation (20) yields the equiv-

alence
dum

dp
=

dx

dp
, (28)

because xinitial is constant in this context. Using equation (23) this leads to

dx

dp
=

(∑
j∈γh

dxi

dxj

· dxj

dp

)

i∈ωh

=

({ ∑
j∈γh

dxi

dxj
· dxj

dp
i ∈ ωh

dxi

dp
i ∈ γh

)

i∈ωh

=

({
−∑

j∈γh

(
K−1

inner · K̂•j
)

i
· dxj

dp
i ∈ ωh

dxi

dp
i ∈ γh

)

i∈ωh
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which can be rewritten as

dx

dp
= M−1 ·

∑
j∈γh

N•j · dxj

dp
(29)

where

M = (−K with boundary-rows and -columns set to δij)

N = (K with boundary-rows set to δij)

N•j = j-th column of N.

Furthermore setting

b =
∑
j∈γh

N•j · dxj

dp
(30)

leads to
M · dx

dp
= b (31)

so that we now can evaluate equation (21) with the effort of solving only one
linear system (solved with PEBBLES2 , see also Reitzinger[23]) per design pa-
rameter. We furthermore notice from (30) that only b depends on the boundary
and therefore on the design parameters in equation (31). The matrix M has
to be assembled only once, which speeds things up even further.

6.4. Differentiating the van Mises stress

What now remains in term (iii) and (ii) of equation (12) are the two deriva-
tives

∂σvM

∂u
and

∂σvM

∂p
, (32)

where the second can be written as

∂σvM

∂p
=

∂σvM

∂x
· ∂x

∂p
. (33)

To evaluate this we remind that the van Mises stress is calculated by interpo-
lating the displacement field u on an element e. We split up the mapping into

2http://www.numa.uni-linz.ac.at/Research/Projects/pebbles.html
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three parts, where ax, bx, ay, by denote the derivatives of the f.e. shape function
(expressed as a · x + b · y + c) and gain

(�x, �u) −→ (ax, bx, ay, by)

(ax, bx, ay, by) −→ (σ11, σ22, σ33, σ12)

(σ11, σ22, σ33, σ12) −→ σvM (34)

How complicated this gets can be seen by calculating

∂σvM

∂u
=

∂σvM

∂σ11

(
∂σ11

∂ax

∂ax

∂u
+

∂σ11

∂ay

∂ay

∂u
+

∂σ11

∂bx

∂bx

∂u
+

∂σ11

∂by

∂by

∂u

)

+
∂σvM

∂σ22

...

As the principle behind all this is always the same and fairly easy, we will not
go into further detail here.

6.5. Implementation

Summing up the results of the previous sections we now can list the se-
quence of program steps required for evaluating the gradient at a given point
in the parameter space. We will also keep track of the number of linear systems
(LIN) that have to be solved. Evaluation of equation (12) takes place in the
following way:

1. Solve the state problem and store the displacement field u. (1 LIN)

2. Calculate and store dxj

dp
, j ∈ γh for all boundary nodes and design pa-

rameters. This is the derivative of the boundary mapping.

3. Calculate (using the results from the previous step) and store dxi

dp
, i ∈ ωh

for all nodes and all design parameters. This is the derivative of the
mesh mapping. (|P | LIN)

4. Calculate dAe

dp
for all elements and all design parameters.

5. Calculate the left hand side (LHS) of
〈

K−1 ·
(

∂J

∂u
+

∂J

∂V
· ∂V

∂u

)

︸ ︷︷ ︸
LHS

,
df

dp
− dK

dp
· u

︸ ︷︷ ︸
RHS

〉
(35)

using the stiffness matrix from the state problem in step 1 and store it.
(1 LIN)
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6. Calculate df
dp

and initialize the RHS of the scalar product in (35) with
the result.

7. Calculate dK
dp

by means of element matrices and update the RHS element-
wise with −dKe

dp
ue.

8. Evaluate the scalar product < LHS,RHS > in (35).

9. Evaluate the terms of equation (12) outside the scalar product.

10. Sum up the results and store them into the respective row of the gradient

The steps 6 to 10 will have to be repeated for each design parameter. In
total the number of linear systems to be solved is obviously the number of
design parameters plus two with the additional aspect that several of the field
problems share the same stiffness matrix and differ only in the load vector. If
used correctly, this increases the speed of the algorithm even more.

A further (and completely different) possibility for calculating the gradient
is the automatic differentiation approach presented in Griewank[8].

7. Numerical results for the shape optimization problem

The formulation for the design problem was already introduced in Section
2with the only difference that now the geometry Ω changes but the thickness ρ
remains constant. We do not take into account the hole in the middle of the
C-frame because we want to simplify the geometry. We use a mesh with 828
triangular finite elements. If we now start the shape optimization with all the
constraints from Section 2, we see that the critical constraints will be the angles
of the wings. Although σ11 can reach critical values on some single elements, on
most elements the constraints on the stresses are automatically fulfilled if the
constraints on the angles are fulfilled. In the optimal design both wings almost
reach their maximal allowed deformation, which can be seen in figure 3. The
final design fulfills all constraints and the mass has been reduced to 81.83%
of the original value. For the original mass of 5.4223t that means a weight
reduction of 985.1kg. The optimization process required 79 iterations and 43.2
seconds for a set of 29 design parameters. That is a dramatic reduction in
computing time compared to the 6 hours when finite differences were used for
the calculation of the gradient.
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Figure 3: Comparison of the original and of the final deformed geometry

8. Remarks and conclusions

In this paper differentiation strategies needed for solving a real life design
problem were presented. During the comparison we focussed our attention
on the flexibility of the gradient routine and on the possibility to combine the
gradient module with iterative solvers for the state equation. A hybrid method
combining the strengths of AD and the adjoint method was presented. This
method preserves the flexibility of the pure AD approach more or less at the
costs of a completely hand-coded gradient routine. Furthermore, the huge
memory and disk requirements of the pure AD approach are reduces severely.
The fully implemented gradient in the shape optimization approach shows
clearly the very high acceleration that can be achieved. Nevertheless that
implementation depends strongly on the geometrical description of the bound-
ary and on the specifications of the finite elements chosen for discretization.
Therefore this approach is very fast but not as flexible.

Coming back to the optimization routine itself it must be noted that our
current implementation of the optimizer is based on dense matrix linear algebra
and therefore, it is only well suited for small to medium size optimization
problems. But in order to close the gap to topology optimization, which is of
high practical importance, new optimization methods for large scale problems
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have to be developed. An approach using multigrid methods also for solving
the optimization problem was proposed by Maar, Schulz[18].
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