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Abstract

Deformation theory of plasticity, originally introduced for infinites
imal strains, is extended to encompass the regime of finite deformations. 
The framework of nonlinear continuum mechanics with logarithmic 
strain and its conjugate stress tensor is used to cast the formulation. A 
connection between deformation and flow theory of metal plasticity 
is discussed. Extension of theory to pressure-dependent plasticity is 
constructed, with an application to geomechanics. Derivations based on 
strain and stress decompositions are both given. Duality in constitutive 
structures of rate-type deformation and flow theory for fissured rocks 
is demonstrated.

OSVRT NA DEFORMACIONU TEORIJU 
PLASTIČNOSTI

Izvod

U radu je data formulacija deformacione teorije plastičnosti koja 
obuhvata oblast konačnih deformacija. Metodi nelinearne mehanika 
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kontinuuma, logaritamska mjera deformacije i njen konjugovani tenzor 
napona su adekvatno upotrijebljeni u formulaciji teorije. Veza izmedju 
deformacione i inkrementalne teorije plastičnosti je diskutovana na 
primjeru polikristalnih metala. Teorija je zatim proširena na oblast 
plastičnosti koja zavisi od pritiska, sa primjenom u geomehanici. For
mulacije na bazi dekompozicija tenzora deformacije i napona su pose
bno date. Dualnost konstitutivnih struktura deformacione i inkremen
talne teorije je demonstrirana na modelu stijenskih masa.

INTRODUCTION

Commonly accepted theory used in most analytical and compu
tational studies of plastic deformation of metals and geomaterials is 
the so-called flow theory of plasticity (e.g., Hill, 1950,1978; Lubliner, 
1992; Havner, 1992). Plastic deformation is a history dependent phe
nomenon, characterized by nonlinearity and irreversibility of under
lining physical processes (Bell, 1968). Consequently, in flow theory 
of plasticity the rate of strain is expressed in terms of the rate of 
stress and the variables describing the current state of material. The 
overall response is determined incrementally by integrating the rate
type constitutive and field equations along given path of loading or 
deformation (Lubarda and Lee, 1981; Lubarda and Shih, 1994; Lubar
da and Krajcinovic, 1995).

There has been an early theory of plasticity suggested by Hencky 
(1924) and Ilyushin (1947,1963), known as deformation theory of plasti
city, in which total strain is given as a function of total stress. Such 
constitutive structure, typical for nonlinear elastic deformation, is in 
general inappropriate for plastic deformation, since strain there depends 
on both stress and stress history, and is a functional rather than a 
function of stress. However, deformation theory of plasticity found its 
application in problems of proportional or simple loading, in which 
all stress components increase proportionally, or nearly so, without 
elastic unloading ever occurring (Budiansky, 1959; Kachanov, 1971). 
The theory was particularly successful in bifurcation studies and deter
mination of necking and buckling loads (Hutchinson, 1974).

Deformation theory of plasticity was originally proposed for non
linear but infinitesimally small plastic deformation. An extension to 
finite strain range was discussed by Storen and Rice (1975). The purpo
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se of this paper is to provide a formulation of the rate-type deformation 
theory for pressure-dependent and pressure-independent plasticity at 
arbitrary strains. After needed kinematic and kinetic background is 
introduced, the logarithmic strain and its conjugate stress are con
veniently utilized to cast the formulation. Relationship between the 
rate-type deformation and flow theory of metal plasticity is discussed. A 
pressure-dependent deformation theory of plasticity is constructed and 
compared with a non-associative flow theory of plasticity corresponding 
to the Drucker-Prager yield criterion. Developments based on strain 
and stress decompositions are both given. Duality in the constitutive 
structures of deformation and flow theory for fissured rocks is demon
strated.

1. KINEMATIC PRELIMINARIES

The locations of material points of a three-dimensional body in its 
undeformed configuration are specified by vectors X. Their locations 
in deformed configuration at time t are specified by x, such that x = 
x(X, i) is one-to-one deformation mapping, assumed twice continuously 
differentiable. The components of X and x are material and spatial 
coordinates of the particle. An infinitesimal material element dX in 
the undeformed configuration becomes

d~x.dx = F • dX, F = — (1.1)
О Л.

in the deformed configuration at time t. Physically possible deforma
tion mappings have positive det F, hence F is an invertible tensor; dX 
can be recovered from dx by inverse operation dX = F-1 • dx.

By polar decomposition theorem, F is decomposed into the product 
of a proper orthogonal tensor and a positive-definite symmetric tensor, 
such that (Truesdell and Noll, 1965)

F = R • U = V • R. (1.2)

Here, U is the right stretch tensor, V is the left stretch tensor, and R is 
the rotation tensor. Evidently, V = R • U • RT, so that U and V share 
the same eigenvalues (principal stretches A^), while their eigenvectors 
are related by л; = R-Nj. The right and left Cauchy-Green deformation 
tensors are

C = FT-F = U2, B = F-FT = V2. (1-3)
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If there are three distinct principal stretches, C and В have their 
spectral representations (Marsden and Hughes, 1983)

3 3
С = £Л?ЬГ;®М;, В = £ А? Щ ® Uj. (1.4)

i=l i=l

2. STRAIN TENSORS

Various tensor measures of strain can be introduced. A fairly general 
definition of material strain measures is (Hill, 1978)

1 / \ 3 1 / \
E<-> = u2n -10 = A>?n -1 Ni ® Ni- С2-1) 

4 Zn 4 7 r~ zn 4 7г=1

where 2n is a positive or negative integer, and Xi and Ni are the 
principal values and directions of U. The unit tensor in the initial 
configuration is 1°. For n = 1, Eq. (2.1) gives the Lagrangian or 
Green strain E^j = (U2 — I°)/2, for n = —1 the Almansi strain 
E(_j) = (I0 —U~2)/2, and for n = 1/2 the Biot strain E^/2) = (U—1°). 
The logarithmic or Hencky strain is

3
E(0) = In U = In Ai Ni 0 Ni. 

i=l
(2-2)

A family of spatial strain measures, corresponding to material strain 
measures of Eqs. (2.1) and (2.2), are

3
£(o) = InV = J^lnAiiii 0 ni. 

i=l
(2-4)

The unit tensor in the deformed configuration is I, and n^ are the 
principal directions of V. For example, £(i) = (V2 — I)/2, and £(-i) = 
(I — V-2)/2, the latter being known as the Eulerian strain tensor.
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Since U2n = RT • V2n • R, and щ = R • Nj, the material and spatial 
strain measures are related by

E(n) = RT • ^(n) • R, E(0) = RT • £(0) • R, (2.5)

i.e., the former are induced from the latter by the rotation R.
Consider a material line element dx in the deformed configuration 

at time t. If the velocity field is v = v(x,t), the velocities of the end 
points of dx differ by

dv = L • dx, F • F 1. (2-6)

The tensor L is called the velocity gradient. Its symmetric and an
tisymmetric parts are the rate of deformation tensor and the spin tensor

1 / r\ D = - L + LT), 1 / tAW = - (L-LT) .
2 V / (2-7)

3. CONJUGATE STRESS TENSORS

For any material strain E(nj of Eq. (2.1), its work conjugate stress 
T(n) is defined such that the stress power per unit initial volume is

т(?г) : E(n) = г: D, (3.1)

where т = (det F)cr is the Kirchhoff stress. The Cauchy stress is denoted 
by a. For n = 1, Eq. (3.1) gives

T(1) = F-1 • г- F“T = U"1 • r- U-1. (3.2)

The stress r = RT -r-R is induced from т by the rotation R. Similarly,

T(_1} = Ft-t.F = U.t.U.. (3.3)

More involved is an expression for the stress conjugate to logarithmic 
strain, although the approximation

Т(0) = г+о(Е^)-т) (3.4)

may be acceptable at moderate strains. If deformation is such that 
principal directions of V and т are parallel, the matrices E(n) and T(n) 
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commute, and in that case T(Oj = r exactly (Hill, 1978). If principal 
directions of U remain fixed during deformation,

E(0) = U-U-1 = D, T(0) = r. (3.5)

The spatial strain tensors in general do not have their conjugate 
stress tensors Tsuch that T(nj : E(n) = T (n) : £(n)- However, the 
spatial stress tensors conjugate to strain tensors can be introduced 
by requiring that

T(n) : E(n) = T(n) : ^(n), (3.6)

where objective, corotational rate of strain is defined by

£(n) = £(n) - ш • £(n) +£(n) • u> = R R-1. (3.7)

In view of the relationship = R ■ E(n) • RT, it follows that

7~(n) = R • T(n) • RT. (3.8)

This is the conjugate stress to spatial strains in the sense of Eq. 
(3.6).

Note that R t-Rt is not the work conjugate to any strain measure, 
since the material stress tensor T(nj in Eq. (3.8) cannot be equal to 
spatial stress tensor t. Likewise, although т : D = т : D, the stress 
tensor т = RT • r • R is not the work conjugate to any strain measure, 
because D = RT • D • R is not the rate of any strain. Of course, т itself 
is not the work conjugate to any strain, because D is not the rate of 
any strain, either.

4. DEFORMATION THEORY OF PLASTICITY

Simple plasticity theory has been suggested for proportional loading 
and small deformation by Hencky(1924) and Ilyushin (1947,1963). A 
large deformation version of this theory is here presented. It is conve
nient to cast the formulation by using the logarithmic strain E(0) = 
InU and its conjugate stress T(0). Assume that the loading is such 
that all stress components increase proportionally, i.e.

T(o) — c(ž) T* o1, (4-1)
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where is the stress tensor at instant t*,  and c(i) is monotonically 
increasing function of t, with c(t*)  = 1. Evidently, principal directions 
of T(q) in Eq. (4.1) remain fixed during the deformation process.

Since stress proportionally increases, with no elastic unloading tak
ing place, it seems reasonable to assume that elastoplastic response can 
be described macroscopically by the constitutive structure of nonlinear 
elasticity, in which total strain is a function of total stress. Thus, 
decompose the total strain into its elastic and plastic parts,

E(0) - E(0) + E(0)’

and assume that

e _ дфт
(0) бТ(0)’

Ep -ю ЁМ.
E(0) -^(O) бТ(0)’

(4-2)

(4-3)

(4.4)

where ф^ is a complementary elastic strain energy per unit unde
formed volume, a Legendre transform of elastic strain energy

ф(о) (Т(о)) = T(o) : Е(о) - V>(0) (Е(о)Ј ■ (4-5)

Isotropic elastic behavior will be assumed, so that ф^ = ф^ (уГ(о)Ј 
is an isotropic function of T(Op For plastically isotropic materials, i.e. 
isotropic hardening, a function jT(o) — /(o) a^so an isotropic
function of T(0). The scalar is an appropriate scalar function to 
be determined in accord with experimental data. Clearly, principal 
directions of both elastic and plastic components of strain are parallel 
to those of T(0), as are the principal directions of total strain E(Op 
Consequently, E(0) and U have their principal directions fixed during 
the deformation process, the matrix U commutes with U, and by Eq. 
(3.5)

E(o) = U • U-1, T(o) = RT ■ r • R. (4.6)

The requirement for fixed principal directions of U severely restricts the 
class of admissible deformations, precluding, for example, the case of 
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simple shear. This is not surprising because the premise of deformation 
theory - proportional stressing imposes at the outset strong restrictions 
on the analysis.

Introducing the spatial strain

£(o) — ■ E(o) • R, (4.7)

Eqs. (4.2)-(4.4) can be rewritten as

^(0) — ^(0) +£(0)’ (4,8)

ее _ <^(0) 
£(°)~ дт ’ (4-9)

CP _ gA°)
£ (0) - V’(O) dr ■ (4-Ю)

Although deformation theory of plasticity is total strain theory, 
the rate quantities are now introduced for later comparison with the 
flow theory of plasticity, and for application of the resulting rate-type 
constitutive equations approximately beyond proportional loading. 
This is also needed whenever the boundary value problem of finite 
deformation is being solved in an incremental manner. Since U • U-1 
is symmetric, we have

and

D = R • E(o) RT, W = R R"1, (4.11)

т(o) — Rr ■r ■ R, £(o) — D. (4-12)

By differentiating (4.2)-(4.4), or by applying the Jaumann derivative 
to (4.8)-(4.10), there follows

D = De + Dp, (4-13)

De = M(0):r, =
V V ’ ОТ$ОТ

(4-14)
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Dp = 9?(0)
d/(o) , <92/(o) о
~d7 + v^d^d~T:T- (4-15)

Assume quadratic representation of the complementary energy

</>(o) = I M(0) :: (t0t), M(o) = ~ (1 - '9„ T » V 1 ® , (4-1(5)
X pL \ X jJL О /л J

where A and џ are the Lame elastic constants. Furthermore, let the 
function /(o) be defined by the second invariant of deviatoric part of 
the Kirchhoff stress,

/(o) 2 (4.17)

Substituting the last two expressions in Eq. (4.15) gives

Dp = 7>(o) r' + ^(0) r'. (4-18)

The deviatoric and spherical parts of the total rate of deformation 
tensor are accordingly

D' = 9?(o) T' + 1 . A ° /
2Д + T ’

„ 1 « tr D = — tr r, 
3k

(4-19)

(4.20)

where к == A + (2/3)/z is the elastic bulk modulus.
Suppose that a nonlinear relationship r = r (7) between the Kirch

hoff stress and the logarithmic strain is available from elastoplastic pure 
shear test. Let the secant and tangent moduli be defined by

T dr
hs = -, ht = —, (4.21)7 07

and let

/1 A1/2 /1 V/2
5т':т' = oT'(0):T'(0) - (4-22)
\ X J \ X J

(О . Ti'/ I^b(o) .
1/2

(4.23)
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Since from Eqs. (4.9) and (4.10)

£(o) “ foT + ^(o)} т/’ (4.24)

substitution into Eq. (4.23) provides an expression for

11 z“ 2< (4-25)

In order to derive an expression for the rate differentiate Eqs. 
(4.22) and (4.23) to obtain

r7=|rz:r, 77 = 2£'(0) : D. (4.26)

In view of Eqs. (4.21), (4.24) and (4.25), this gives

i т': г = 2Mt £'(o) : D' = ht г' : D'. (4.27)
Zj

When Eq. (4.19) is incorporated into Eq. (4.27), the rate is found to 
be

1/1 1 \ г : г
^(0) = 2 Ш ” M rz : tz * (4.28)

Taking Eq. (4.28) into Eq. (4.19), the deviatoric part of the total rate 
of deformation is

d' = A_
2hs (4.29)

Eq. (4.29) can be inverted to give

r' = 2/zs Dz- A _ \ (rz0 Tz) : D~
\ hs) т' : т' (4.30)

During initial, purely elastic stages of deformation, hb = hs = /z. The 
onset of plasticity, beyond which Eqs. (4.29) and (4.30) apply, occurs 
when г, defined by the second invariant of the deviatoric stress in Eq. 
(4.22), reaches the initial yield stress in shear. The resulting theory is 
referred to as the deformation theory of plasticity.
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5. RELATIONSHIP BETWEEN DEFORMATION AND FLOW 

THEORY OF PLASTICITY

For proportional loading defined by Eq. (4.1) the stress rates are

Т(0) = |Т(0). (5-1)

Consequently, from Eq. (4.28) the plastic part of the rate of deforma
tion tensor is

1 ( 1 1 \ č . .=2 к - hj ? (5-2)

while from Eq. (4.29)

D₽ = D'-D'' = l(i-l)|r'. (5.3)
2 џ / c

On the other hand, in the case of flow theory of plasticity,

E(o) = E(o) + Efo)> (5-4)

E(0) = M(0) : T(o), E₽o) = 70 T'(o). (5.5)

The yield surface is defined by

|т'(о):Т'(о)-й2(й) = 0, J? = ^‘(2E₽):E₽0))1/2dt, (5.6)

and the consistency condition gives (Lubarda, 1991,1994)

^ = 4^{Г':°ГУ (5'7)

Here, h% = dk/dti designates the plastic tangent modulus. Since T(0) = 
RT т-R and E(0) = RTDR, the plastic part of the rate of deformation 
becomes

i
dp = 5W(t'®t'):" (5'8)
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In view of Eq. (5.1), this simplifies to

D₽ = W = ^r' (5-9)

Constitutive structures (5.3) and (5.9) are in accord since

1 _ 1 1 
hb џ'

(5.10)

The last expression holds because in shear test к — т, $ = 7P, and

—n _ _e _ 1 _ d7p d7 1
7₽ = 7 — 7 =7--r, dF = j=---

Also note that by (4.25), (5.2) and (5.9) there is a connection

(5-И)

Č
7(0) - <?(o) = <?(o) -• (5.12)

5.1 Application of Deformation Theory Beyond Proportio
nal Loading

If plastic secant and tangent moduli are used, related to secant and 
tangent moduli with respect to total strain by

1 1 _ 1 JL _ 1
ht hf hs hl /1 ’ (5.13)

the plastic part of the rate of deformation can be rewritten from Eq. 
(4.29) as

dp = 1 °'. (_i_____L)
2hl \2^ 2hf / т' : т' (5-14)

Deformation theory agrees with flow theory of plasticity only under 
proportional loading, since then specification of the final state of stress 
also specifies the stress history. For general (non-proportional) loading, 
more accurate and physically appropriate is the flow theory of plasticity, 
particularly with an accurate modeling of the yield surface and harden
ing behavior. Budiansky (1959), however, indicated that deformation 
theory can be successfully used for certain nearly proportional loading
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paths, as well. The rate т' in Eq. (5.14) does not then have to be 
codirectional with т'. The first and third term (both proportional to 
l/2hp) in Eq. (5.14) do not cancel each other in this case (as they do for 
proportional loading) , and the plastic part of the rate of deformation 
depends on both components of the stress rate т', one in the direction 
of т' and the other normal to it. In contrast, according to flow the
ory with the von Mises smooth yield surface, the component of the 
stress rate т' normal to r' does not affect the plastic part of the rate 
of deformation. Physical theories of plasticity (e.g., Hill, 1967) indicate 
that yield surface of a polycrystalline aggregate develops a vertex at 
its loading stress point, so that infinitesimal increments of stress in 
the direction normal to r' indeed cause further plastic flow. Since the 
structure of the deformation theory of plasticity under proportional 
loading does not use a notion of the yield surface, Eq. (5.14) can be 
adopted for an approximate description of the response in the case 
when the yield surface develops a vertex. When Eq. (5.14) is rewritten 
in the form 

Dp = —
2hp

1 (tz 0 rz) : r 
+ t' : t' (5.15)

the first term on the right-hand side gives the response to component 
of the stress increment normal to т'. The associated plastic modulus 
is hp. The plastic modulus associated with component of the stress 
increment in the direction of т' is hp. Therefore, for continued plastic 
flow with small deviations from proportional loading (so that all yield 
segments which intersect at the vertex are active - fully active load
ing), Eq. (5.15) can be used to approximately account for the effects 
of the yield vertex. The idea was used by Rudnicki and Rice (1975) 
in modeling inelastic behavior of fissured rocks, as will be discussed in 
Subsection 7.1. For the full range of directions of stress increment, the 
relationship between the rates of stress and plastic deformation is not 
expected to be necessarily linear, although it should be homogeneous in 
these rates in the absence of time-dependent (creep) effects. A corner 
theory that predicts continuous variation of the stiffness and allows 
increasingly non-proportional increments of stress is formulated by 
Christoffersen and Hutchinson (1979). When applied to the analysis 
of necking in thin sheets under biaxial stretching, the results were in 
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better agreement with experimental observations than those obtained 
from the theory with smooth yield characterization. Similar conclusions 
were long known in the field of elastoplastic buckling. Deformation 
theory predicts the buckling loads better than the flow theory with a 
smooth yield surface (Hutchinson, 1974).

6. PRESSURE-DEPENDENT DEFORMATION THEORY OF 
PLASTICITY

To include pressure dependence and allow inelastic volume changes 
in deformation theory of plasticity, assume that, in place of Eq. (4.4), 
the plastic strain is related to stress by

1/2 „1 
I ,Ep

2 /1(o) = *>(□)  T'(o) + -^(-T'(o) : T'(0) (6-1)
2

where /3 is a material parameter. It follows that the deviatoric and 
spherical parts of the plastic rate of deformation tensor are

Dp/ = 9?(o) + (6-2)

trDp = 2/3J21/2 ^(o) + S^(o)
i . °\ т : T \

1ЦГJ ’ (6.3)

The invariant — (1/2) т' : т' is the second invariant of deviatoric 
part of the Kirchhoff stress.

Suppose that a nonlinear relationship т — r (7P) between the Kirch
hoff stress and the plastic part of the logarithmic strain is available from 
the elastoplastic shear test (needed data for brittle rocks is commonly 
deduced from confined compression tests; Lubarda, Mastilovic and 
Knap, 1996a). Let the plastic secant and tangent moduli be defined by 

h*  = - у? h*  = —
‘ dyP’ (6-4)

and let in three-dimensional problems of overall compressive states of 
stress

1+ -atrr,
О
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(2^(o) : £(o/) — 2У’(о)Л>/ •

131

(6.6)

The friction-type coefficient is denoted by a. Note that from Eq. (6.1), 
= ^(o) т'. By using the first of Eq. (6.4), therefore,

1 t

2АГ 4^' (6-7)

In order to derive an expression for the rate <£>(□), differentiate Eqs. 
(6.5) and (6.6) to obtain

— 1 T~1/2/' / °\ , 1 . °T= 2J2 (t :t)+ 3 trT> (6-8)

-P О Г • T1/2 i 1 Г-1/2/ ' °\7=2 ¥>(o)J2 + 2 V’(O) J2 (T -T)

Combining this with the second of Eq. (6.4) gives

_ i / i 1 r 
- 2

т' : T 11 tr T 
2J2 + 2ДР 3Q jJ/2’

(6-9)

(6.10)

Substituting Eqs. (6.7) and (6.10) into Eqs. (6.2) and (6.3) yields

np / _ _1___ T о, , 1 / J___ L _2_\ (T' ® -r') : r
2/£ jV2 T + 2 2J2

11 trr , 
+ 2ДР 3 "//2 т ’ 

ь U 9

(6.11)

trDp = Tp + • (6-12)
ht 3 /

If a = 0, i.e. r = J^2, Eqs. (6.11) and (6.12) reduce to ‘

/3 т' : T
trDp = (6.14)
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6.1 Non-Coaxiality Factor

It is instructive to rewrite Eq. (6.11) in an alternative form as

1 о+ -cxtrr
о + 2ДР rV2 r

J2 L
(6.15)

The first part of Dp/ is coaxial with r'. The second part is in the 
direction of the component of the stress r&te т' that is normal to т'. 
There is no work done on this part of the plastic strain rate, i.e.

• Dp/ = — 
2ДР

( I о . 2 Tl/2, o\ т : rd— aJ, tr т I .
\ 3 2 )

(6.16)

Observe in passing that from Eqs. (6.12) and (6.16),

trDp =/3
r: Dp/ 

7-1/2
J2

(6-17)

which offers a simple physical interpretation of the parameter /3. 
The coefficient

1 7 _ 1
Ж 4/2 ” Ж (6.18)

in Eq. (6.15) can be interpreted as the stress-dependent non-coaxiality 
factor. Other definitions of this factor appeared in the literature, e.g., 
Nemat-Nasser (1983).

6.2 Inverse Constitutive Relations

The deviatoric and volumetric part of the total rate of deformation are 
obtained by adding to (6.11) and (6.12) the elastic contributions,

DZ _ ( 1 , 1___ , 1 /2__________ L T A (T' ® -r') : T
\2џ + 2hf j^) T + 2 hi 2J2

11 tr T ,
+ 2Л₽ 3“}p2T ’

(6.19)
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1/1 aP\ 0 /3 т' : гtrD_ 3 U + ftf)trr+2ftP jl/2 ■ (6.20)

т' : D

3r' — 2// XD' °1 -т' ® т') : D 1 к т' _
(p. 911I ---- La /Jj bD be 2J2 c 2^ 4/2 D , ^0.21)

о 3 Av trr = — 
c

1 + — I trD - (3
7-1/2 
J2

(6.22)

The introduced parameters are

4 (1 + a/3 A₽) ’ 6-1+fe₽jl/2’ <6-23)

and

. hf кc = 1 H-------[- afl —. (6-24)

7. RELATIONSHIP TO PRESSURE-DEPENDENT FLOW 
THEORY OF PLASTICITY

For geomaterials like soils and rocks, plastic deformation has its 
origin in pressure dependent microscopic processes and the yield condi
tion depends on the hydrostatic component of stress. Drucker and 
Prager (1952) suggested that inelastic deformation commences when 
the shear stress on octahedral planes overcomes cohesive and frictional 
resistance to sliding. The resulting yield condition is

f = Ј21/2 + |«Л-А = 0, (7.1)

with a as the coefficient of internal friction, and k as the yield shear 
strength. The first invariant of the Kirchhoff stress is Д = trr, and 
is the second invariant of the deviatoric part of the Kirchhoff stress. 
Constitutive equations in which plastic part of the rate of deformation 
is normal to locally smooth yield surface in stress space are referred 
to as associative flow rules. A. sufficient condition for this constitutive
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structure is that material obeys the Ilyushin’s work postulate (Ilyushin, 
1961). However, pressure-dependent dilatant materials with internal 
frictional effects are not well described by associative flow rules. For 
example, they largely overestimate inelastic volume changes in geo
materials, and in certain high-strength steels exhibiting the strength
differential effect (by which the yield strength is higher in compression 
than in tension). For such materials, plastic part of the rate of strain 
is taken to be normal to the plastic potential surface, which is distinct 
from the yield surface. The resulting constitutive structure is known as 
a non-associative flow rule. For geomaterials whose yield is governed by 
the Drucker-Prager yield condition, the plastic potential can be taken 
as

,r = J21/2 + ^/3 Л-£ = 0. (7.2)
О

The material parameter fl is in general different from a in Eq. (7.1). 
Thus,

D₽ = 7^ = 7(p2-1/V+.^l). (7.3)

The loading index 7 is determined from the consistency condition. 
Assuming known the relationship к = &(i9) between the shear yield 
stress and the generalized plastic shear strain

= f(2Dp/ : Dp/)1/2 dt, (7.4)
Jo

the condition f = 0 gives

The plastic tangent modulus is hp = dk/d$. Substituting Eq. (7.5) into 
Eq. (7.3) results in

D₽ = i[(p2-l/2r' + |/3l)®(b2-1/2r' + |al)] :r. (7.6)

A physical interpretation of the parameter fl is obtained by observing 
from Eq. (7.3) that

(2D₽':D₽')I/2 = ^-^ = 7,- trD₽ = /37, (7.7)
J
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i.e.,

B =____ hP!____
(2DpZ : Dpz)1/2

Thus, /3 is the ratio of the volumetric and shear part of the plastic 
strain rate, which is often called the dilatancy factor (Rudnicki and 
Rice, 1975). Representative values of the friction coefficient and the 
dilatancy factor for fissured rocks indicate that a = 0.3-1.0 and /3 = 
0.1-0.5 (Lubarda, Mastilovic and Knap, 1996b). Frictional parameter 
and inelastic dilatancy of material actually change with progression 
of inelastic deformation, but are here treated as constants. For more 
elaborate analysis, which accounts for their variation, the paper by 
Nemat-Nasser and Shokooh (1980) can be consulted.

The deviatoric and spherical parts of the total rate of deformation 
are

, °T' 1 Г' - 2/z + 2^ ji/2
/ т' : г 1 o\
\24/2 + з“‘гТ

~ 1 о /3 1trD = -trr+^l —atr?- . (7.10)
<2J21/2 3 /

These can be inverted to give the deviatoric and spherical parts of the 
stress rate

т' = 2џ
t 1 (rz ® т') : D 

c 2 J2 c 4'“ J (7.11)

o 3/€ trr= —
C

■ n : D 
trD-^^i7F 

<>2
(7.12)

The parameter c is defined in Eq. (6.24). The last expression is identical 
to (6.22), as expected since (6.20) and (7.10) are in concert.

If the friction coefficient a is equal to zero, Eqs. (7.11) and (7.12) 
reduce to

т' = 2/z D'
1 (tz 0 т') : D’

1 T h-P / џ 2 J2
(7.13)
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trr = Зк trD —
/3 rz:P\

1 + hl/џ. J ' (7-14)

With vanishing dilatancy factor (/3 = 0), these coincide with the consti
tutive equations of isotropic hardening pressure-independent 
metal plasticity.

7.1 Relationship to Yield Vertex Model for Fissured Rocks

In a brittle rock, modeled to contain a collection of randomly oriented 
fissures, inelastic deformation results from frictional sliding on the fis
sure surfaces. Individual yield surface may be associated with each 
fissure, so that the macroscopic yield surface is the envelope of indivi
dual yield surfaces for fissures of all orientations (Rudnicki and Rice, 
1975). Continued stressing in the same direction will cause continuing 
sliding on (already activated) favorably oriented fissures, and will initi
ate sliding for a progressively greater number of orientations. After 
certain amount of inelastic deformation, the macroscopic yield envelope 
develops a vertex at the loading point. The stress increment normal to 
the original stress direction will initiate or continue sliding of fissure 
surfaces for some fissure orientations. In isotropic hardening idealization 
with smooth yield surface, however, a stress increment tangential to 
the yield surface will cause only elastic deformation, overestimating 
the stiffness of the response. In order to take into account the effect of 
the yield vertex in an approximate way, Rudnicki and Rice, (op. cit.) 
introduced a second plastic modulus hp, which governs the response to 
part of the stress increment directed tangentially to what is taken to be 
the smooth yield surface through the same stress point. Since no vertex 
formation is associated with hydrostatic stress increments, tangential 
stress increments are taken to be deviatoric, and thus

Dp/ = —---- —
,__ 1 ( ° t
+ 2hp у

The dilation induced by the small tangential stress increment is as
sumed to be negligible, i.e.,

trDp =
£ 1 o\— a tr г .

3 /
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Comparing Eq. (7.15) with (6.15) of the pressure-dependent deforma
tion theory of plasticity, it is clear that the two constitutive structures 
are equivalent, provided that identification is made

71/2 1
hp = ДР Г2— = ± (7.17)

s r 2? k 7

This derivation reconciles the differences left in the literature in a 
debate between Rudnicki (1982) and Nemat-Nasser (1982). It should 
also be noted that the constitutive structure in Eq. (7.15) is intended to 
model the response at a yield surface vertex for small deviations from 
proportional loading т ~ т'. For increasingly non-proportional stress 
increments, the relationship between the stress and plastic deformation 
rates is not expected to be necessarily linear.

The expressions for the rate of stress in terms of the rate of deforma
tion are obtained by inversion of the expressions based on (7.10) and 
(7.15). The results are given by Eqs. (6.21) and (6.22), with the para
meters

a = 6=1 + #-, (7.18)
Др y hP ’ Др ’ v 7

and with c given by Eq. (6.24). In view of the connection (7.17), 
expressions in Eq. (7.18) are clearly in accord with (6.23). This demon
strates a duality in the constitutive structures of deformation and flow 
theory for the considered models of pressure-dependent plasticity.

8. DEFORMATION THEORY BASED ON STRESS 
DECOMPOSITION

In the flow theory of plasticity the constitutive structure can be 
built by either decomposing the rate of strain or the rate of stress 
into elastic and plastic constituents (Hill, 1978; Lubarda, 1994,1999). 
It is appealing to formulate the deformation theory of plasticity in a 
similar manner. Thus, instead of decomposing the total strain, which 
was done in Section 4, decompose the stress tensor into its elastic and 
plastic part,

T(o) — T(o) + Tpop (8.1)
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and assume that for isotropic pressure-independent plasticity

T(0) = 2/zE(Oj + A tr E(0) 1°, (8.2)

T₽O) = -V-(O)E'(O), (8.3)

where -0(O) is an appropriate parameter. Note that is a deviatoric 
tensor, so that deviatoric part of the total stress is

T(o) = (2M “ ^(о))Е/(о)- (8.4)

Since re/ = 2/j,D', from (8.4) by differentiation,

(8.5)

Suppose that a nonlinear relationship 7 = 7 (~^p) between the 
logarithmic strain and plastic part of the conjugate stress is available 
from elastoplastic pure shear test. Let the corresponding secant and 
tangent compliances be defined by

= = (8-6)

and let
/1 A1/2 /1 A1/27₽ = _ р:тр =- T₽ :T₽) , (8.7)

while 7 is defined as in Eq. (4.23). It follows that
2

V’(o) = “p, (8-8)
9s

and

Substituting Eq. (8.9) into Eq. (8.5), the plastic part of the Jaumann 
rate of the Kirchhoff stress becomes

2 
gf

D' + ( % - 1 
\9t

£(0) ® £(0)J • 

^(0) ■ ^(0)
(8.10)
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By adding the elastic contribution, the deviatoric part of the Jaumann 
rate of stress is

1 \ (^(°) ® ^(°)) ' Đ 

9$ / ^(o) : ^(o)
(8.11)

This constitutive structure is in agreement with (4.30), because r = 
^7 + r p, and

hs — M p > ht — џ p.
9s gt

(8-12)

It is also noted that the parameter is related to parameter of 
Section 4 by

„ V’(O)

= (8.13)

In the case of pressure-dependent plasticity, we can take the plastic 
part of the stress to be related to strain according to

T(0) = -V-(O) [e'(0) + |/3*  (2E'(0) : E'(0))1/2I° (8-14)

where /3*  is a new material parameter. Furthermore, define

7 = (2 E'(o) : E'(o))1/2 + I tr E(o), (8.15)

/1 \l/2
=p / _  ( _ rpP / . npP / I

\2 (°) ' (°)) ’ (8.16)

and assume known the relationship 7 = 7(—rp/)- The friction-type 
coefficient is denoted by a*.  It is easily verified that (6.5) and (8.15) 
cannot lead to equivalent constitutive descriptions, if a and a*  are both 
required to be constant (although distinct) coefficients. Having this in 
mind, and with the plastic secant and tangent compliances defined by

op = __i_ ff» = —hi 
rP ’ ’ drP ' ’ (8-17)
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it follows that

/ _ 2 7
W) ~ aP A .1/2’9s W

(8.18)

and

/2 2 7 \ 2£'(0) :D 2 1 „trD
n°) ~ I 7p “ aP л .1/2 I ; + aP 3 a .1/2 *

\at 9s 4ј2' ) J2 9t о j2'
(8.19)

The notation is used 7'2 = 2 £’^ : . Consequently,

°p'_
" s? 71/2 at 72

2^(o) : D 
.•1/2 
J2

2 7
пР и -1/29s

D, _ 2 (g(p) 0 £(q)) 

h

tr°P_ 2^/2£'(0):D
+ - ct*  tr D

3

(8.20)

(8.21)

1 *H— a tr D
3

These give rise to dual, but not equivalent constitutive structures to 
those associated with Eqs. (6.12) and (6.15). Finally, it is noted that 

о 2^01:тР'tr?-p=(°) (8.22)

which parallels Eq. (6.17).
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