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1. Introduction

This report is connected with a plan to write (in collaboration with G. G.
Magaril-Il’yaev and K. Yu. Osipenko) a paper devoted to the topic expressed
in the title. Extremal problems of approximation and recovery are considered
here as a test-field for the general theory of extremal problems.

Extremal problems and their formalization.

Extremal problems arising in mathematics, in natural science, or in prac-
tical enterprises, are stated initially without formulae, using the terminology
of fields in which they arise. Thus if we want to investigate an extremal prob-
lem by mathematical tools, it is necessary to formalize the problem (i. e. to
translate it into the mathematical language).

For the extremal problem:

find an extremum (i. e. maximum or minimum) of a function f :
X → R ∪ {±∞}, with respect to all x ∈ X that belong to a
constraint C ⊂ X

we use the following notation:

f(x) → extr, x ∈ C. (P0)

If C = X, the problem (P0) is called the problem without constraints.

The general theory of extremal problems is designed to create methods
and principles for solution of concrete problems. In this report the theory
of extremal problems will be applied to the problems of approximation and
recovery.
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Examples of extremal problems of approximation theory and
their formalizations

Example 1.1. (Polynomials of the least deviation.) Find a polyno-
mial of degree n with leading coefficient 1 of the least deviation from zero in
the space of continuous functions on the segment [−1, 1].

Formalization:

f(x) = max
t∈[−1,1]

|tn −
n∑

k=1

xkt
k−1| → min, x = (x1, . . . , xn).

One can see that this is a finite-dimensional problem without constraints.
Solution of this problem is the so called Tchebyshev polynomial Tn(t) =
2n−1 cos n arccos t (P. Tchebychev, 1854).

Example 1.2. Find the norm of derivative of trigonometric polynomials
of degree n if one considers them as a subspace of C([−π, π]). This problem
was solved by S. Bernstein (1912).

Formalization. The question can be reduced to the following extremal
problem:

ẋ(0) → max, ‖x(·)‖C([−π.π]) ≤ 1, x(t) =
n∑

k=0

(xk cos kt + xk+n sin kt).

This is a finite-dimensional problem with inequality constraints.

2. Extremal problems of approximation and recovery

Main classes of extremal problems in approximation theory are the
following:

1) Approximation of an individual element by a fixed approxi-
mating set

Let X be a normed space, A ⊂ X be an approximative set, x ∈ X \ A.
The problem of approximation of the element x by the set A in the space X
is posed as follows:

‖x − ξ‖X → min, ξ ∈ A. (P1)

The value of the problem, i. e. the distance from x to A in X is denoted
d(x) = d(x,A, X); a solution ξ̂ ∈ argmin(P1) is called an element of the best
approximation.
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Example 1.1. Problems on the best approximation of functions by polyno-
mials in the uniform norm are problems (P1) where X = C([t0, t1]), A is the
space Pn of algebraic polynomials of degree n, x(·) ∈ C([t0, t1]) (Tchebyshev
(1854))[1].

2) Extremal proprieties of polynomials

Let X be a normed space, L be a subspace of X (in our case it will be a
subspace of polynomials), l be a linear functional on L, Λ : L → X be a linear
operator. It is required to solve problems:

l(x) → max, ‖x‖X ≤ 1, x ∈ L, (P2a)

‖Λx‖X → max, ‖x‖X ≤ 1, x ∈ L. (P2b)

Example 2.1. Let p(·) ∈ Pn be an algebraical polynomial of degree n not
exceed unity on the interval [−1, 1]. What is the maximal value it may take
at a point τ outside this interval? This problem is called the extrapolation
problem for polynomials. (Tchebyshev (1886)).

This is the problem (P2a), where X = C([−1, 1]), L = Pn, l(x(·)) =
x(τ), τ ∈ R \ [−1, 1].

Example 2.2. Let x(·) ∈ Pn be a trigonometrical polynomial not exceed
unity on the interval [−π, π]. What is the maximal value may take the norm
of ẋ(·)? This problem is called the problem of inequality for derivatives for
trigonometrical polynomials. (Bernstein (1912)) [2]).

This is the problem (P2b), where X = C([−π, π]), L = Tn, Λ(x(·)) = ẋ(·).
3) Landau – Kolmogorov problems of inequalities for derivatives

of smooth functions on the line R or the half-line R+

Let T be R or R+. The problem of inequalities for derivatives consists of
finding the least constant K in the relation

‖x(k)‖Lq(T ) ≤ K‖x‖α
Lp(T )‖x(n)‖1−α

Lr(T ), (P3)

where n ∈ N, k ∈ N or 0, k < n, 1 ≤ p, q, r ≤ ∞, α = n−k−r−1+q−1

n−r−1+p−1 . Denote
the best constant by KT (k, n, p, q, r).

Example 3.1. If (in (P3)) T = R+, k = 1, n = 2, p = q = r = ∞ , then
KR+(1, 2,∞,∞,∞) = 2 (Landau(1913))[3]

Example 3.2. If (in (P3)) T = R, 1 ≤ k ≤ n − 1, n ≥
2, p = q = r = ∞, then KR(k, n,∞,∞,∞) = Kn−k

K
(n−k)/n
n

, where Kr =

4
π

∑
j∈N

(−1)(i+1)(r+1)

(2j−1)(r+1) (Kolmogorov 1938) [4].
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4) Problems on deviation of functional classes from polynomials

Let X be a normed space, A ⊂ X be an approximative set, C ⊂ X be a
class of elements. Consider the problem:

d(x,A, X) → max, x ∈ C. (P4)

The value of the problem is denoted by d(C,A, X). It is called a deviation of
C from A.

Example 4.1. If (in (P4)) X = C(T), C = W r
∞(R), A = Tn−1, we obtain

the problem of finding of deviation of Sobolev class W r
∞(R) from the space of

trigonometrical polynomials in the space C(R): d(W r
∞(R), Tn−1, C(T)) = Kr

nr

(Favard (1936))[5].

5) Problems of the best tool of approximation

Let X be a normed space, A = {A} be a class of approximative sets, C ⊂ X
be a class of elements. Consider the problem:

d(C,A, X) → min, A ∈ A. (P5)

If A = {Ln} is the set of all n-dimensions subspaces of X, then the value of
the problem (P5) is denoted dn(C, X) and is called Kolmogorov n-width [6].

Example 5.1. Kolmogorov n-widths of Sobolev class W r
2 (T) in L2(T):

d2k(W
r
2 (T), L2(T)) = d2k−1(W

r
2 (T), L2(T)) = 1

kr , k ∈ N [6].

6) Extremal problems of recovery [7]

Let C be a class of elements, (Z, d) be a metric space and f : C → Z.
It is required to “recover” an element f(x) (or the whole mapping f) from a
certain “information” y ∈ I(x) about x, where I is a multivalued information
operator I : C → Y (where Y is some set). A mapping m : I(C) → Z is called
a method of recovery. We denote the problem of recovery of f on C from the
information I by (f, C, I). The simplest problem of such type is the problem
of finding the quantity

e(f, C, I,m) := sup
x∈C,y∈I(x)

d(f(x),m(y)), (1)

which is called the error of this method of recovery. The value
E(f, C, I) = inf

m : I(C)→Z
e(f(x), C, I, m) is called the error of the problem

(f, C, I). Any method m̂ such that e(f(x), C, I, m̂) = E(f, C, I) is called an
optimal recovery method , and we write in this case f(x) � m̂(y)(y ∈ I(x)).
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3. On principles of the theory of extremum

A) The Lagrange principle for necessary conditions

Here we only sketch these procedures and it will be easy to apply them,
but one can reduce them to this general principle: If a function of several vari-
ables should be maximum or minimum, and there are between these variables
one or several equations, then it will suffice to add to the proposed function
the functions that should be zero, each multiplied by an undetermined quan-
tity and then to look for the maximum or the minimum as if the variables
were independent; the equations that one will find, combined with the given
equations, will serve to determine all the unknowns.

J.-L. Lagrange [8]

To solve concrete problems we will further use a single general idea which
we call the Lagrange principle for necessary conditions in the theory of extrema.

I formulate it as follows: to solve an extremal problem with con-
strains it is reasonable to construct the Lagrange function of the
problem, and then to write down the necessary conditions in the
similar problem of the extremum of the Lagrange function “as if the
variables were independent” (in Lagrange’s own words) and finally
investigate the relations which were obtained.

The fruitfulness of this principle as a tool for solving of concrete problems
will be repeatedly demonstrated further.

B) On some principles and phenomena in Convex Analysis. (See [9])

Convexity plays an important role in the theory of extremal problems. One
of the most important special features of convexity is the duality principle,
according to which every convex set, function or problem has two descriptions:
a primal one in the origin space and a dual one in the conjugate space.

First of all we illustrate the principle of duality on an example of functions.
The dual object for a convex function f : X → R∪{∞} is its conjugate function
f∗(x∗) = sup{x ∈ X | 〈x∗, x〉 − f(x)}. f ∗(x∗) = sup{x ∈ X | 〈x∗, x〉 − f(x)}.
The function f ∗∗(x) = sup{x∗ ∈ X∗ | 〈x∗, x〉 − f∗(x∗)} is called the second
conjugate of f.

The theorem of duality of convex functions can be formulated in the fol-
lowing form:
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Fenchel – Moreau theorem. Let f : X → R ∪ {+∞}; then f = f ∗∗ iff
f is a convex closed function.

Let f be a convex function on X. The set ∂f(x̂) = {x∗ ∈ X∗ | f(x)−f(x̂) ≥
〈x∗, x − x̂〉} is called the subdifferential of f at x̂. The following formulae of
subdifferential calculus hold:

1. Moreau – Rockafellar formula. Let f1 : X → R, be a convex
function continuous at a point x ∈ X where |f2(x)| < ∞. Then ∂(f1+f2)(x) =
∂f1(x) + ∂f2(x).

2. Dubovitskii – Milyutin formula. Let fi : X → R, i = 1, 2, be
convex functions continuous at a point x ∈ X and f1(x) = f2(x). Then
∂ max(f1, f2)(x) = co(∂f1(x) ∪ ∂f2(x)).

The following phenomenon of convexity plays an important role in the
theory of extrema: integration has a deep connection with convexity.

In finite dimensional case this phenomenon can be illustrated as follows:

Lyapounov theorem. Let ∆ be a segment in R, p(·) = (p1(·), . . . , pn(·)) be
an integrable vector-function. Then the set M = {x ∈ Rn | ∫

A

p(t)dt, A ∈ A},
where A is the σ-algebra of all Lebesgue measurable sets, is a convex compact
in Rn. (See [10]).

Another phenomenon of convexity is a phenomenon of “cleaning”: searching
for minimax of a family of finite dimensional convex functions, it is possible to
restrict oneself by a finite subfamily of the functions.

This phenomenon has the following exact formulation:

Theorem of V. Levin. Let T be a compact topological space and F :
T×Rn → R be a mapping such that F (·, x) is an upper semicontinuous function
for every x and F (t, ·) be convex for every t ∈ T and m := inf

x
max
t∈T

F (t, x) < ∞.

Then there exists a number r ∈ N, r ≤ n + 1 and r points {τi}r
i=1, τi ∈ T such

that m = inf
x

max
1≤i≤r

F (τi, x) (decomposition theorem). (see [9]).

4. Application of the general theory to solution of
concrete problems of approximation and recovery

In all cases we realize the following plan of investigation:

1. Formulation of a problem

2. Application of principles (Lagrange, duality or cleaning)
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3. Investigation of the relations obtained in 2.

4. Formulation of the final result

1. Tchebyshev problem on the best approximation of functions
by polynomials in the uniform norm.

1. Formalization:

f(x(·)) → min, f(x) = max
t∈[a,b]

|x(t) −
∑

0≤k≤n+1

xkt
k−1|, x ∈ Rn+2. (1)

This is a convex problem without constraints.

2. Application of the cleaning principle. As it follows from the cleaning
principle, if
x̂ = (x̂1, . . . , x̂n+2) ↔ p̂(t) =

∑
0≤k≤n+1

x̂kt
k−1 is a solution of the problem and

d is its value, we can restrict ourselves by the problem of minimization of
g(x) = max

1≤i≤r
|x(τi) −

∑
0≤k≤n+1

xkτ
k−1
i |, r ≤ n + 2 with |x(τi) − p̂(τi)| = d.

3. Investigation. From the Fermat theorem for convex functions it follows:
0 ∈ ∂f(x̂). From the formula of Dubovitskii – Milyutin we obtain that there

exist αi ≥ 0,
r∑

i=1

αi = 1 such that
r∑

i=1

αisgn(x(τi) − p̂(τi))τ
j
i = 0, 0 ≤ j ≤ n.

From this immediately follows that r = n + 2 and ((x(τi) − p̂(τi))(x(τi+1) −
p̂(τi+1)) < 0. We proved that n + 2-alternance holds.

4. Formulation of the final result.

Theorem 1 (of Tchebyshev on alternance, 1854). If p̂(·) ∈ absmin(1)
then there exists (n + 2)-alternance (i. e. n + 2 points a ≤ τ1 < τ2 < . . . <
τn+2 ≤ b such that |x(τi) − p̂(τi)| = ‖x(τi) − p̂(τi)‖C([t0,t1]), 1 ≤ i ≤ n + 2 and
(x(τi) − p̂(τi))(x(τi+1) − p̂(τi+1)) < 0, 1 ≤ i ≤ n + 1).

It is very easy to show that alternance is a sufficient condition for the
solution.

Analogously many generalizations of the Tchebyshev’s theorem (which were
due to S. Bernstein, A. Kolmogorov, S. Zukhovitski, M. Krein, S. Stechkin and
others) can be proved.

It immediately follows from Theorem 1 that Tn∞(t) = 2n−1 cos n arccos t is
a polynomial of degree n with leading coefficient 1 of the least deviation in
C([−1, 1]).
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2. Bernstein inequality for trigonometrical polynomials

1. Formalization.
f0(x) → max, f1(x) ≤ 1, (2)

where x = (x0, . . . , x2n) ↔ x(t) =
∑

0≤k≤n

xk cos kt + xn+k sin kt, f0(x) =

ẋ(0), f1(x) = max
π≤t≤π

|x(t)|. This is the problem of convex programming.

2. Lagrange principle. According to the Lagrange principle, there exists a
number λ such that a solution x̂ of (2) is a solution of the problem −f0(x) +
λf1(x) → min without constraints.

3. Investigation. Applying the cleaning principle, Fermat theorem and for-
mula of Dubovitskii – Milyutin we obtain that there exists r ≤ 2n+2, {τi}r

i=1,

τi ∈ [−π, π), {αi}r
i=1, αi > 0,

r∑
i=1

αi = 1 such that ẋ(0) =
r∑

i=1

αisgnx(τi)x(τi) =

0 for all trigonometric polynomials x(·) of degree n. From this it is easy to
deduce that r = 2n.

Thus the polynomial x̂(·) attains its extrema in 2n points, i. e. satisfies
the equation ẋ2 = n2(1 − x2), After integrating we obtain that x̂(t) = sin nt.

4. Formulation of the final result.

Theorem 2. (Bernstein inequality) The following inequality holds:

‖ẋ(·)‖C(T) ≤ n‖x(·)‖C(T) ∀x(·) ∈ Tn.

3. Landau – Kolmogorov inequalities on the line and the half-line

1. Formalization. We consider only one problem:

x(0) → max,

∫

R+

x2(t)dt ≤ 1, Var ẋ(·) ≤ 1. (3)

We reformulate this problem in a style of Optimal Control (however, with a
nonstandard constraint for control function):

x(0) → max,

∫

R+

x(t)2dt ≤ 1, ẋ = u, Var u(·) ≤ 1. (3′)

2. Lagrange principle. We will apply the Lagrange principle to this problem
“heuristically”. The Lagrange function here has the form: −x(0)+

∫
R+

(λx2(t)+

p(t)(ẋ(t) − u(t)))dt.
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Application of the Lagrange’s idea leads to the following identity:
x(0) =

∫
R+

(2λx̂(t)x(t) + p(t)ẋ(t))dt ∀x(·) (i) and condition of minimum:
minVaru(·)≤1 −

∫
R+

p(t)u(t)dt = − ∫
R+

p(t)û(t)dt.

3. Investigation. These relations give possibility to define all unknowns:
x̂(t) = (T − t)+, ṗ(t) = 2λx̂(t) ⇒ p(t) = −λ(T − t)2

+, p(0) = −1 ⇒ λ = 1
T 2 ,

‖x̂(·)‖L2(R+) = 1 ⇒ T = 3
1
3 . Thus the value of the problem which is equal to

x̂(0) = T = 3
1
3 . But it is a heuristical solution. Now we must prove that we

found the real solution of the problem.
Substituting into (i) the values of T , p(·) and λ which were defined heuristi-

cally, one obtains the identity x(0) =
∫

R+
( 2

T 2 (T−t)+x(t)+(1− t
T
)2
+ẋ(t))dt (ii).

This identity one can be checked directly. Substitution into (ii) the function
x̂(·) gives us estimate from below (S ≥ 3

1
3 ) and application the Cauchy –

Bounyakovskii inequality leads to the estimate S ≤ 3
1
3 .

4. Formulation of the final result.

Theorem 3. (Magaril-Il’yaev inequality, 1983.) The following exact
inequality holds true

‖x(·)‖Cb(R+) ≤ 3
1
3‖x(·)‖

2
3

L2(R+)‖ẋ(·)‖
1
3

V ar(R+).

4. Favard problem on deviation of the Sobolev class W r
∞(T) from

trigonometrical polynomials in the uniform norm

1. Formalization. One can reduce the problem to the following:

x(0) → max,

∫

T
x(t) cos kt ∨ sin ktdt = 0, 0 ≤ k ≤ n, |x(r)(t)| ≤ 1. (4)

This problem can be investigated both by means of the Lagrange principle
and by duality principle in the Convex Analysis.

2. Application of the duality principle. The dual problem to the problem
(4) is the problem

‖Br(·) − p(·)‖L1([−π,π]) → min, p(·) ∈ Tn, (i)

where Br(·) is the Green function of the operator dr

dtr
in the periodic case (i.

e. 2π-periodical solution of equation drB(t)
dtr

= δ(t) − 1
2π

; the function B(·) is
called the Bernoulli function), Br(t) = 1

π

∑
k∈N

k−r cos(kt − πr
2

).



40 V. M. Tikhomirov
40 V. M. Tikhomirov

3. Investigation. The problem (i) is the problem on the best approximation
of functions by polynomials. From Rolle theorem it follows that the trigono-
metric polynomial p̂(·) which interpolates Br(·) at the roots of cos · in the case
when r is even and at the roots of cos · in the case when r is even has no other
roots besides those of cosine and sine correspondingly. Thus the polynomial
Br(·) − p̂(·) has the least deviation from zero. Thus ‖Br(·) − p̂(·)‖L1([−π,π]) =
| ∫−π

(Br(t) − p̂(t)sign cos nt ∨ sin ntdt| = | ∫−π
Br(t) cos nt ∨ sin ntdt|. The last

integral was calculated by Euler. Its value is equal to Kr

nr .
We proved

Theorem 4 (Favard – Akhiezer – Krein (1936 – 1937)). The devi-
ation of the class W r

∞(T) from the space Tn is equal to Kr

nr .

5. A. Kolmogorov problem on the best tools of approximation.

1. The problem: calculate dn(W r
2 (T), L2(T)).

This problem can be reduced to solution of two problems: a) Bernstein
problem on derivatives of trigonometrical polynomials in L2-norm and Favard
problem of deviation of Sobolev class W r

2 (T) from trigonometrical polynomials.
Both problems are trivial from the point of view of the general theory of
extremal problems.

The result was formulated in the p.1.
2. The problem: Calculate dn(Hω(T), C(T))), where Hω(T) = {x(·) ∈

C([a, b]) | |x(t + τ)− x(t)| ≤ ω(|τ |)} with an increasing concave function ω(·),
ω(0) = 0, one can reduce to the following extremal problem:

∫ 1

0

y(t)x(t)dt → max, |x(t) − x(τ)| ≤ ω(|t − τ |). (5)

It is neither the problem of mathematical programming, nor the problem
of Optimal Control. But the Lagrange principle for this problem still holds.

This problem is the convex problem and in this case the duality principle
can be used. The duality principle also is a corollary of the Lagrange principle.

According to the duality principle, there exists a measure dµ(t, τ) such that
the dual problem has the form ([0, 1] = I):

∫

I×I

ω(|t − τ |)dµ(t, τ) → min,

∫

I

dµ(t, τ) = dy(t),

∫

I

dµ(t, τ) = dy(τ)

It is nothing else but the so called Monge – Kantorovich duality. In our
case it has a very beautiful interpretation, which leads to the solution of the
problem.
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6. Optimal recovery of linear functionals
Consider the particular case (x∗, C, I) of the general problem. This is the

problem of recovery x∗ ∈ X∗ on a class C ⊂ X using the information y ∈
F (x), where X and Y are normed spaces, X∗ is the space conjugate to X and
F : C → Y .

Any function m : F (C) �→ R we call a method of recovery. The error of
this method of recovery in the (x∗, C, F ) problem is given by

e(x∗, C, F,m) = sup
x∈C, y∈F (x)

|〈x∗, x〉 − m(y)|.

We denote
E(x∗, C, F, m) = inf(x∗, C, F,m),

where the lower bound is taken over all methods of recovery.
Theorem. (Magaril-Ilyaev – Osipenko (1991.)) Let X, Y be normed

linear spaces, grF = {(x, y) ∈ C × Y | y ∈ F (x)} be a convex centrally
symmetrical set, and x∗ ∈ X∗. Then E(x∗, C, F ) is the solution of the following
problem:

sup{〈x∗, x〉 | x ∈ C, y ∈ F (x), y∗ ∈ Y ∗}. (P ∗
1 )

This result gives possibility to apply the duality principle in convex analysis
to the problems of recovery of linear functionals.

Example 1. Polynomials of the least deviation from zero and the
problem of the best recovery of moments.

1 ≤ p < ∞ ⇒ E(mn, BLp([−1, 1]), Fn mom) = ‖Tnp′(·)‖Lp′ ([−1,1]);

E(mn, BVar([−1, 1]), Fn mom) = ‖Tn∞(·)‖C([−1,1]) = 2−(n−1).

This result is a direct corollary of the principle of duality.

Particular cases:
1.1. E(mn, Var([−1, 1]), Fn mom) = ‖Tn∞‖C([−1,1]) =2−(n−1),

mn �
n−1∑
k=0

λkn∞mk.

1.2. E(mn, BL2([a, b], ρ(·)), Fn mom) = ‖Tnρ(·)‖L2([a,b],ρ),

mn �
n−1∑
k=0

λkρmk.

1.3. E(mn, L1([−1, 1]), Fn mom) = ‖Tn∞‖L1([−1,1]) = 2−(n−1),

mn �
n−1∑
k=0

λkn1mk.
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7. Recovery problems connected with inequalities for derivatives

In the problem of recovery of the value x(·) ∈ Pn at a point τ ∈ R \ [−1, 1]
using a continuous function y(·) for which ‖x(·) − y(·)‖C([−1,1]) ≤ δ, the error
E(δ(τ),Pn, δBC([−1, 1])) is equal to δ|Tn(τ)|, and the optimal method is the
value at τ of the interpolation Lagrange’s polynomial, which interpolates y(·)
at the alternance points of Tn(·) .
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les bornes supérieures des dérivées successeives d’une fonction. C. R. Acad.
Sci., Paris, 207, (1938), 764 – 765

[5] J. Favard, Sur l’approximation des fonctions périodiques par les
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