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Abstract 

We propose to use Kuramoto models on Lie groups and spheres in order to 
develop new framework for a wide class of problems of Geometric Deep Learning. 
Our approach is illustrated on unsupervised learning on the data set that contains 
economic indicators of 16 countries for the time period between 1990 and 2020. 
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I. MACHINE LEARNING VIA CONTINUOUS-TIME  
DYNAMICAL SYSTEMS 

In recent decades neural networks have shown a surprising success in prob-
lems of Machine Learning and Artificial Intelligence. Explosive growth of neural 
networks with increasing number of layers have brought new perspectives into 
the field, leading to a great number of new challenges and applications that are 
broadly named Deep Learning. 

Traditionally, neural networks are trained by backpropagation, which is typi-
cally implemented by the stochastic gradient ascent. 
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Recently, many researchers have explored the idea of using continuous-time 
dynamical systems for problems of Machine Learning. This idea stems from the 
observation that neural networks are essentially discrete dynamical systems that 
map the input data into a certain output. From this point of view, continuous-
time dynamical systems can be seen as neural networks with infinitely many 
(continuum) of layers. In particular, residual neural networks can be interpreted 
as a discretization (Euler scheme) of certain systems of ordinary differential 
equations, see [1]. 

There are several potential advantages of such an approach that are still to be 
explored. One obvious advantage is that differential equations have been studied 
for centuries in Mathematics and other sciences, and a great number of sophisti-
cated solvers are available in various software packages for numerical mathe-
matics. Using these solvers for problems of Machine Learning is a tempting idea. 

A major step in this direction has been made in the highly influential paper 
[2], where authors have introduced so-called Neural ODE for problems of Deep 
Learning. Neural ODE is a neural network with infinitely many layers, in fact, a 
system of ODE's that is interpreted as a neural network. The main idea in [2] is 
to implement training of the network by backpropagation, using the classical ad-
joint method from theory of differential equations. In other words, neural net-
work is in fact a system of ODE's, while the corresponding adjoint system is used 
for gradual adjustment of parameters (weights). This approach places deep learn-
ing into the framework of classical mathematical control theory and Pontryagin's 
maximum principle. 

In parallel, normalizing flows have been introduced in [3, 4] for the problem 
of density estimation in Artificial Intelligence. The idea is to construct a se-
quence of invertible transformations in order to transform the data into a certain 
simple target density, from which one can easily obtain samples. This simple 
density is typically multivariate Gaussian density. Therefore, we construct a 
dynamical system, where initial conditions are randomly sampled from the 
Gaussian distribution and solve it in order to approximate the data chosen from 
a certain complicated probability distribution. This dynamical system can con-
sist of a finite number of invertible transformations, but can also consist of 
continuum of infinitesimal transformations. In the later case we obtain a con-
tinuous-time dynamical system, where initial conditions are sampled from 
Gaussian distribution. 

These approaches can greatly reduce the number of parameters (weights) to 
be learned, provided clever choice of the dynamical system, depending on the 
data and concrete problem.  
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II. GEOMETRIC DEEP LEARNING 

In the last decade there has been an explosive interest into machine learning 
on non-Euclidean spaces. These investigations have merged into a broad field 
that has been named Geometric Deep Learning. This implied a growing interest 
of the Machine Learning community into Riemannian geometry and optimiza-
tion on Riemannian manifolds. 

This interest stems from the fact that many data have intrinsic non-Euclidean 
structure. Such data include angles, rotations, and various group transformations. 
Moreover, many real-world data are naturally embedded into non-Euclidean 
spaces. For instance, the data with hierarchical structure (such as trees and com-
plex networks) hide an intrinsic structure that is described by hyperbolic geom-
etry, see for instance [5]. In whole, there are enormous efforts aimed at discov-
ering natural geometries that are hidden behind a certain data sets. 

Motivated by these new developments, some researchers have introduced 
normalizing flows on non-Euclidean spaces, [6]. 

III. KURAMOTO MODEL AND ITS EXTENSIONS  
FOR DEEP LEARNING 

One of paradigmatic models in Physics of Complex Systems has been intro-
duced by the Japanese physicist Yoshiki Kuramoto in 1975. Kuramoto model 
describes an ensemble consisting 𝑁𝑁 phase coupled oscillators, see [7]: 
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In this model, each oscillator is coupled to all other oscillator and 𝐾𝐾 stands 
for a (global) coupling strength. The notion 𝜔𝜔! stands for an intrinsic frequency 
of the 𝑖𝑖-the oscillator. In the absence of coupling (𝐾𝐾 = 0) each oscillator per-
forms simple rotations on the unit circle with the constant angular speed 𝜔𝜔!. 

Underline that each oscillator is fully described by its phase 𝜑𝜑!, while ampli-
tudes are neglected. Since the phase is just an angle, each oscillator is described 
by a point on the unit circle 𝑆𝑆%. Hence, the Kuramoto model (1) can be seen as a 
dynamical system on the unit circle (or on the 𝑁𝑁-torus). Since the circle is the 
simplest example of non-Euclidean manifold, the Kuramoto model provides a 
simple, but highly non-trivial example of a dynamical system on non-Euclidean 
manifold. 

Kuramoto model and its variations have been studied for decades, mostly in 
context of synchronization and pattern formation in large ensembles of simple 
individuals. 
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Subsequently, the Kuramoto model has been extended from the circle to 
higher-dimensional non-Euclidean manifolds: matrix groups [8-10], homogene-
ous spaces [11], and spheres [12, 13]. 

This class of (extended) Kuramoto models provides a new framework with 
possible applications to problems of Machine Learning in non-Euclidean geom-
etries. The main issue that is still to be explored is the problem of training Ku-
ramoto networks, i.e. learning the couplings based on the data. 

In the present paper, we focus on Kuramoto models on spheres. To that end 
we introduce the model: 
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Here, 𝑥𝑥! is generalized "phase" of the 𝑖𝑖-the "oscillator", i.e. 𝑥𝑥! is a unit vector 
in ℝ', that is - a point on the 𝑑𝑑 − 1-dimensional sphere 𝑆𝑆'(%. The symbol 〈⋅,⋅〉 
stands for standard inner product in ℝ' , while 𝐾𝐾 denotes the global coupling 
strength. Finally, 𝑊𝑊!  is a 𝑑𝑑 × 𝑑𝑑 anti-symmetric matrix, that is interpreted as a 
"frequency" of generalized "oscillator" with index 𝑖𝑖. 

IV. KURAMOTO MODEL ON SPHERE FOR GEOMETRIC DEEP 
LEARNING 

It is tempting to apply Kuramoto models on manifolds to various problems of 
supervised and unsupervised Machine Learning. Arguably, the most important 
problem of unsupervised learning is clustering of data. In the present paper we 
continue investigations on clustering functional and dynamical data that have 
been presented in our previous papers [14, 15]. 

We extract some knowledge from the data set that contains economic and 
societal indicators of 16 developed countries. In such a way we investigate eco-
nomic trends and the impact of recent crisis on economies of developed coun-
tries. The data set has been taken from [16]. 

In order to draw some conclusions, we solve the system (2) on the 3-sphere, 
where the data are encoded into time-dependent frequency matrix 𝑊𝑊!(𝑡𝑡). Since 
𝑊𝑊! is a 3 × 3 anti-symmetric matrix, we can encode 6-dimensional data into 𝑊𝑊!. 
For the data of higher dimension, we propose to use Kuramoto model on spheres 
of higher dimensions. 

Hence, the data is encoded into generalizes frequencies of "oscillators", while 
initial conditions for the system (2) are randomly sampled from the uniform dis-
tribution on 𝑆𝑆). 
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Our simulation results are presented in the next Section. As one can see, our 
method successfully performs clustering of data and recognizes trends and 
changes of the situation.    

V. SIMULATION: ECONOMIC INDICATORS OF 16 DEVELOPED 
COUNTRIES IN 1990-2020. 

In this section, we present simulation results of our method on a data set con-
taining economic indicators of 16 developed countries in the period from 1990 
to 2020.  

The method identifies two big clusters and four separate clusters as follows 
(see Figure 1): 

I cluster: Belgium, Denmark, France, Netherlands, Sweden, Switzerland, 
United Kingdom, Finland, 

II cluster: Canada, New Zealand, United States, Japan, 
III cluster: Spain, 
IV cluster: Norway, 
V cluster: Ireland, 
VI cluster: Australia. 
Spain, Norway, Ireland and Australia are set into separate clusters. There are 

various reasons that led to this. Spain was classified out in a separate cluster 
mainly due to the high unemployment rate and high interest rates in the early 
1990s. As for Norway, the main reasons lie in the low unemployment rate, high 
exports in 2000 and low exports in 2015 and 2020. Ireland did not fall into big 
clusters because it had a high rate of GDP and industrial production from 1995 
to 2000 and its rapid growth in 2015. Also, one of the reasons is its high interest 
rate in 2011. When it comes to Australia, the reason for being classified into a 
separate cluster can be found in high export rates in 2008 and 2010. 
 

 

a) 
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Figure 1. Simulation results: (a) Growth of GDP, (b) Import, (c) Unemployment,  
(d) Export, (e) Industrial production,  and (f) Interest rates. 
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