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1. INTRODUCTION

The theory, as well as solution methods of the variational inequal-
ity, have been well documented in the literature. Quasi-variational
inequalities can be used to formulate the generalized Nash game in
which each player strategy set depend on the other players strate-
gies, not only his payoff function. The quasi-variational inequalities
have recently attracted growing attention in relation to game theory.
Methods for solving quasi-variational inequalities have been studied by
Nesterov in [4]. In this paper, we present one of continuous gradient-
type method for solving quasi-variational inequalities, which iterative
method is presented in [4]. Note that similar method is presented in
[5], but the conditions of convergence are different.

Let we denote by H a Hilbert space. By πC(x) we denote the
Euclidian projection of point x onto the set C.

Let C : H → 2H be a set-valued mapping with nonempty closed
and convex values. Consider a continuous operator F (x) : C → H,
which is strongly monotone

〈F (x) − F (y), x − y〉 ≥ µ‖x − y‖2, ∀ x, y ∈ C, (1.1)

and Lipschitz continuous on C

‖F (x) − F (y)‖ ≤ L‖x − y‖, ∀ x, y ∈ C. (1.2)

The constant µ ≥ 0 is called the parameter of strong monotonicity of
operator F . If µ = 0, then F is a monotone operator. In what follows,
we always assume µ > 0. The constant L is called Lipschitz constant.

The problem of our interest is the following quasi-variational in-
equality (QVI):

Find x∗ ∈ C(x∗) such that 〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ C(x∗). (1.3)

In what follows, we will propose one continuous method for solving
this problem and we establish some sufficient condition of the conver-
gence of the proposed method. Since this method relies on the iterative
gradient-type method, described in [4], we explore it here.



17On a continuous gradient-type methods for solving…
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2. CONTINUOUS GRADIENT METHOD

The following theorem (see [4]) provides the necessary and suffi-
cient conditions for the existence of solutions of problem (1.3).

Theorem 1. Suppose that the following assumptations hold:

(a) Operator F is Lipschitz continuous and strongly monotone on H

whit constants L and µ > 0 respectively.

(b) There exists α < µ2

L(L+
√

L2−µ2)
such that

‖πC(x)(z) − πC(y)(z)‖ ≤ α‖x − y‖, ∀ x, y, z ∈ H. (2.1)

Then the problem (1.3) has a unique solution.

Under these assumptations, a problem (1.3) can be solved by a
standard gradient method:

xk+1 = πC(xk)(xk − λF (xk)), k ≥ 0 (2.2)

The following theorem has been proved in [4]:

Theorem 2. If operator F is strongly monotone and Lipschitz contin-
uous with constants L and µ, and multifunction C(x) satisfies condi-
tion (2.1) with α < µ2

L(L+
√

L2−µ2)
, then the gradient method (2.2) with

optimal stepsize λ = µ
L2 converges to the unique solution of problem

(1.3) with the following rate

‖xk − x∗‖ ≤ exp

{
−k

(
1

γ(γ +
√

γ2 − 1)
− α

)}
‖x0 − x∗‖. (2.3)

Note, we have seen that quasi-variational inequality (1.3) is solv-
able by gradient scheme (2.2) only if the variation rate of the feasible
set C(x) is very small.

For solving problem (1.3), one can use continuous gradient-type
method:

x′(t) + x(t) = πC(x(t))[x(t) − λ(t)F (x(t))], t > 0, x(0) = x0, (2.4)
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where x0 is a given initial point.We will prove convergence of this
method and convergance rate.

Theorem 3. If operator F is strongly monotone and Lipschitz contin-
uous with constants L and µ, and multifunction C(x) satisfies condi-
tion (2.1) with α < µ2

L(L+
√

L2−µ2)
, then the continuous gradient method

(2.4) with parameter µ−
√

µ2−L2(2α−α2)

L2 ≤ λ(t) ≤ µ+
√

µ2−L2(2α−α2)

L2

converges to the unique solution of problem (1.3) with the following
rate

‖x(t) − x∗‖2 ≤ exp {−a0(t − t0)}‖x0 − x∗‖2,

where

a(t) = 1 −
(
α +

√
1 − 2λ(t)µ + λ2(t)L2

)2
≥ a0 > 0.

Proof. We will use Lyapunov function

V (t) =
1
2
‖x(t) − x∗‖2, V (t0) =

1
2
‖x0 − x∗‖2 = V0,

and then it is enough to prove following statement

V (t) → 0 as t → ∞.

Consider derivative of Lyapunov function:

V ′(t) = 〈x(t) − x∗, x
′(t)〉.

Since x∗ = πC(x∗)[x∗ − λ(t)F (x∗)], we have

V ′(t) = 〈x(t) − πC(x∗)[x∗ − λ(t)F (x∗)], πC(x(t))[x(t) − λ(t)F (x(t))] − x(t)〉

=
1
2
‖πC(x(t))[x(t) − λ(t)F (x(t))] − πC(x∗)[x∗ − λ(t)F (x∗)]‖2

−1
2
‖πC(x(t))[x(t) − λ(t)F (x(t))] − x(t)‖2

−1
2
‖x(t) − πC(x∗)[x∗ − λ(t)F (x∗)]‖2. (2.5)

Now, we are going to estimate some of the terms in (2.5):

‖πC(x(t))[x(t) − λ(t)F (x(t))] − πC(x∗)[x∗ − λ(t)F (x∗)]‖
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where x0 is a given initial point.We will prove convergence of this
method and convergance rate.

Theorem 3. If operator F is strongly monotone and Lipschitz contin-
uous with constants L and µ, and multifunction C(x) satisfies condi-
tion (2.1) with α < µ2

L(L+
√

L2−µ2)
, then the continuous gradient method

(2.4) with parameter µ−
√

µ2−L2(2α−α2)

L2 ≤ λ(t) ≤ µ+
√

µ2−L2(2α−α2)

L2

converges to the unique solution of problem (1.3) with the following
rate

‖x(t) − x∗‖2 ≤ exp {−a0(t − t0)}‖x0 − x∗‖2,

where

a(t) = 1 −
(
α +

√
1 − 2λ(t)µ + λ2(t)L2

)2
≥ a0 > 0.

Proof. We will use Lyapunov function

V (t) =
1
2
‖x(t) − x∗‖2, V (t0) =

1
2
‖x0 − x∗‖2 = V0,

and then it is enough to prove following statement

V (t) → 0 as t → ∞.

Consider derivative of Lyapunov function:

V ′(t) = 〈x(t) − x∗, x
′(t)〉.

Since x∗ = πC(x∗)[x∗ − λ(t)F (x∗)], we have

V ′(t) = 〈x(t) − πC(x∗)[x∗ − λ(t)F (x∗)], πC(x(t))[x(t) − λ(t)F (x(t))] − x(t)〉

=
1
2
‖πC(x(t))[x(t) − λ(t)F (x(t))] − πC(x∗)[x∗ − λ(t)F (x∗)]‖2

−1
2
‖πC(x(t))[x(t) − λ(t)F (x(t))] − x(t)‖2

−1
2
‖x(t) − πC(x∗)[x∗ − λ(t)F (x∗)]‖2. (2.5)

Now, we are going to estimate some of the terms in (2.5):

‖πC(x(t))[x(t) − λ(t)F (x(t))] − πC(x∗)[x∗ − λ(t)F (x∗)]‖

Milojica Jaćimović, Nevena Mijajlović



19
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≤ ‖πC(x(t))[x(t) − λ(t)F (x(t))] − πC(x∗)[x(t) − λ(t)F (x(t))]‖
+‖πC(x∗)[x(t) − λ(t)F (x(t))] − πC(x∗)[x∗ − λ(t)F (x∗)]‖

≤ α‖x(t) − x∗‖ + ‖πC(x∗)[x(t) − λ(t)F (x(t))]

−πC(x∗)[x∗ − λ(t)F (x∗)]‖. (2.6)

Since F is strongly monotone and Lipschitz continuous, we have

‖πC(x∗)[x(t) − λ(t)F (x(t))] − πC(x∗)[x∗ − λ(t)F (x∗)]‖2

≤ ‖[x(t) − λ(t)F (x(t))] − [x∗ − λ(t)F (x∗)]‖2

= ‖x(t) − x∗‖2 − 2λ(t)µ〈F (x(t)) − F (x∗), x(t − x∗)〉
+λ2(t)‖F (x(t)) − F (x∗)‖2

≤ ‖x(t) − x∗‖2 − 2λ(t)µ‖x(t) − x∗‖2 + λ2(t)L2‖x(t) − x∗‖2

=
(
1 − 2λ(t)µ + λ2(t)L2

)
‖x(t) − x∗‖2. (2.7)

Combining (2.6) and (2.7), we have

‖πC(x(t))[x(t) − λ(t)F (x(t))] − πC(x∗)[x∗ − λ(t)F (x∗)]‖2

≤
(
α +

√
1 − 2λµ + λ2L2

)2
‖x(t) − x∗‖2.

If we combine this with condition x∗ = πC(x∗)[x∗ − λ(t)F (x∗)], we get

V ′(t) ≤ 1
2

[(
α +

√
1 − 2λ(t)µ + λ2(t)L2

)2
− 1

]
‖x(t) − x∗‖2,

i.e.
V ′(t) ≤

[(
α +

√
1 − 2λ(t)µ + λ2(t)L2

)2
− 1

]
V (t).

By condition 0 < α < µ2

L(L+
√

L2−µ2)
for µ−

√
µ2−L2(2α−α2)

L2 ≤ λ(t) ≤

µ+
√

µ2−L2(2α−α2)

L2 , the following estimate has a place

α +
√

1 − 2λ(t)µ + λ2(t)L2 < 1.

Finally,
V ′(t) ≤ −a(t)V (t),
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where x0 is a given initial point.We will prove convergence of this
method and convergance rate.

Theorem 3. If operator F is strongly monotone and Lipschitz contin-
uous with constants L and µ, and multifunction C(x) satisfies condi-
tion (2.1) with α < µ2

L(L+
√

L2−µ2)
, then the continuous gradient method

(2.4) with parameter µ−
√

µ2−L2(2α−α2)

L2 ≤ λ(t) ≤ µ+
√

µ2−L2(2α−α2)

L2

converges to the unique solution of problem (1.3) with the following
rate

‖x(t) − x∗‖2 ≤ exp {−a0(t − t0)}‖x0 − x∗‖2,

where

a(t) = 1 −
(
α +

√
1 − 2λ(t)µ + λ2(t)L2

)2
≥ a0 > 0.

Proof. We will use Lyapunov function

V (t) =
1
2
‖x(t) − x∗‖2, V (t0) =

1
2
‖x0 − x∗‖2 = V0,

and then it is enough to prove following statement

V (t) → 0 as t → ∞.

Consider derivative of Lyapunov function:

V ′(t) = 〈x(t) − x∗, x
′(t)〉.

Since x∗ = πC(x∗)[x∗ − λ(t)F (x∗)], we have

V ′(t) = 〈x(t) − πC(x∗)[x∗ − λ(t)F (x∗)], πC(x(t))[x(t) − λ(t)F (x(t))] − x(t)〉

=
1
2
‖πC(x(t))[x(t) − λ(t)F (x(t))] − πC(x∗)[x∗ − λ(t)F (x∗)]‖2

−1
2
‖πC(x(t))[x(t) − λ(t)F (x(t))] − x(t)‖2

−1
2
‖x(t) − πC(x∗)[x∗ − λ(t)F (x∗)]‖2. (2.5)

Now, we are going to estimate some of the terms in (2.5):

‖πC(x(t))[x(t) − λ(t)F (x(t))] − πC(x∗)[x∗ − λ(t)F (x∗)]‖
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L2 , the following estimate has a place

α +
√

1 − 2λ(t)µ + λ2(t)L2 < 1.

Finally,
V ′(t) ≤ −a(t)V (t),
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where a(t) = 1 −
(
α +

√
1 − 2λ(t)µ + λ2(t)L2

)2
≥ a0 > 0.

Hence,
V (t) ≤ V0 exp {−a0(t − t0)},

so V (t) → 0 as t → ∞, i.e. x(t) converges exponentially towards to
x∗ with rate a0. Thus, we have proved the theorem.

4. METHOD FOR SET C(x)=c(x)+C

Now we mention that assumption (2.1) is a kind of strengthening
of the contraction property for multifunction C(x). An example (see
[4]) of such mapping is

C(x) := c(x) + C̄, (4.1)

where function c(x) is Lipschitz continuous with Lipschitz constant
l = α from condition (2.1) and C̄ is a closed convex set.

In this case, the corresponding iterative gradient method for solv-
ing quasi-variational inequalities (1.3) has the form

xk+1 = c(xk) + πC̄ [xk − c(xk) − λF (xk)], k ≥ 0

and continuous gradient method for solving quasi-variational inequal-
ities has the form

x′(t)+x(t) = c(x(t))+πC̄ [x(t)−c(x(t))−λ(t)F (x(t))], t ≥ 0, x(0) = x0.

(4.2)
Let us remark that the relation (4.2) is equivalent to the following

variational inequality

〈x′(t)+λ(t)F (x(t)), x′(t)+x(t)−c(x(t))−z〉 ≥ 0, ∀z ∈ C̄, t > 0. (4.3)

Setting z = x∗ − c(x∗) ∈ C̄ in (4.3), y = c(x∗) + x′(t) + x(t) −
c(x(t)) ∈ C(x∗) in (1.3) and multiplying (1.3) by λ(t) > 0, in the sum
of the obtained inequalities we will get

〈
x′(t), x′(t) + x(t) + c(x∗) − c(x(t)) − x∗

〉
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≤ λ(t)〈F (x(t)) − F (x∗), x∗ − x′(t) − x(t) + c(x(t) − c(x∗))〉

i.e.

〈x′(t), x′(t)〉 + 〈x′(t), x(t) − x∗〉 + 〈x′(t), c(x∗) − c(x(t))〉
≤ λ(t)〈F (x(t)) − F (x∗),−x′(t)〉 + λ(t)〈F (x(t)) − F (x∗), x∗ − x(t)〉

+λ(t)〈F (x(t)) − F (x∗), c(x(t) − c(x∗))〉. (4.4)

Now, we are going to estimate some of the terms in (4.4). We will use
the following equation

〈x′(t), x(t) − x∗〉 =
1
2

d

dt
‖x(t) − x∗‖2. (4.5)

Since c is Lipschitz continuous, we have

〈x′(t), c(x∗) − c(x(t))〉 ≥ −‖x′(t)‖ · ‖c(x∗) − c(x(t))‖ ≥

−1
2
‖x′(t)‖2 − 1

2
‖c(x∗) − c(x(t))‖2 ≥ −1

2
‖x′(t)‖2 − 1

2
l2‖x(t) − x∗‖.

Note that Lipschitz continuous and strongly monotone mapping
(with Lipschitz constant L and parameter of strongly monotonicity µ)
satisfies the following inequality (see [6], p.180)

‖F (u) − F (v)‖2 ≤ (L + µ)〈F (u) − F (v), u − v〉 − Lµ‖u − v‖2. (4.6)

If we combine this property of F with inequality 2ab ≤ a2 + b2, we
get

λ(t)〈F (x(t)) − F (x∗),−x′(t)〉

≤ λ2(t)
2

‖F (x(t)) − F (x∗)‖2 +
1
2
‖x′(t)‖2

≤ λ2(t)
2

(
(L + µ)〈F (x(t)) − F (x∗), x(t) − x∗〉 − Lµ‖x(t) − x∗‖2

)

+
1
2
‖x′(t)‖2.

Since F and c are Lipschitz continuous with Lipschitz constants L

and l, respectively, next inequality holds

〈F (x(t)) − F (x∗), c(x∗) − c(x(t)))〉 ≤ Ll‖x(t) − x∗‖2.
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Now, inequality (4.4), multiplying by 2 becomes

2‖x′(t)‖2 +
d

dt
‖x(t) − x∗‖2 − ‖x′(t)‖2 − l2‖x(t) − x∗‖2

≤ λ2(t)
(
(L + µ)〈F (x(t)) − F (x∗), x(t) − x∗〉 − Lµ‖x(t) − x∗‖2

)

+‖x′(t)‖2 − 2λ(t)〈F (x(t)) − F (x∗), x(t) − x∗〉
+2lLλ(t)‖x(t) − x∗‖2,

i.e.

d

dt
‖x(t) − x∗‖2 ≤

(
l2 − λ2(t)Lµ + 2lLλ(t)

)
‖x(t) − x∗‖2 +

λ(t) (2 − λ(t)(L + µ)) 〈F (x(t)) − F (x∗), x∗ − x(t)〉.

Let us suppose that

2 − λ(t)(L + µ) > 0,

then bacause of (1.1), it follows

d

dt
‖x(t) − x∗‖2 ≤

(
l2 − λ2(t)Lµ + 2lLλ(t)

)
‖x(t) − x∗‖2

−µλ(t) (2 − λ(t)(L + µ)) ‖x(t) − x∗‖2,

hence

d

dt
‖x(t) − x∗‖2 ≤ −A(t)‖x(t) − x∗‖2,

where

A(t) =
(
−l2 − 2lLλ(t) − µ2λ2(t) + 2µλ(t)

)
≥ A0 > 0.

Finally, we have inequality

dV (t)
dt

≤ −A0V (t).

This yields that

‖x(t) − x∗‖2 ≤ ‖x0 − x∗‖2 exp{−A0(t − t0)}.
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5. SECOND-ORDER GRADIENT-TYPE METHOD

In previous sections we discussed first-order methods for solving
quasi-variational inequalities. Here, we will describe a continuous
second-order method for solving QVI.

The method is based on the differential equation

β(t)x′′ + x′ + x = ΠC(x)(x − λ(t)F (x)), β(t) > 0, λ(t) > 0. (5.1)

where x = x(t). Instead of β(t) and λ(t) we will write β and λ, re-
spectively. If the sets C(x) are given as in (4.1), this method has the
form

βx′′ + x′ + x = c(x) + ΠC̄(x − λF (x) − c(x)), β > 0, λ > 0.

This relation is equivalent to the following variational inequality
〈
βx′′ + x′ + λF (x), z − βx′′ − x′ − x + c(x)

〉
≥ 0,∀z ∈ C̄. (5.2)

Setting z = x∗−c(x∗) ∈ C̄ in (5.2), y = βx′′+x′+x+c(x∗)−c(x) ∈
c(x∗) + C̄ in (1.3) and multiplying (1.3) by λ > 0, in the sum of the
obtained inequalities we will obtain

〈
βx′′ + x′, βx′′ + x′ + x − x∗ + c(x∗) − c(x)

〉
≤

λ〈F (x) − F (x∗), x∗ − βx′′ − x′ − x − c(x∗) + c(x)〉.

Using ab ≤ a2/2 + b2/2, we can write

‖βx′′ + x′‖2 + 〈βx′′ + x′, x − x∗〉 + 〈βx′′ + x′, c(x) − c(x∗)〉 ≤

≤ 1
2
‖βx′′ + x′‖2 +

λ2

2
‖F (x) − F (x∗)‖2 + λ〈F (x) − F (x∗), x∗ − x〉

+ λ〈F (x) − F (x∗), c(x) − c(x∗)〉. (5.3)

From here, multiplying by 2, because of the strong convexity, Lip-
schitz continuity and conditions (4.6) we get the estimate

‖βx′′ + x′‖2 + 2〈βx′′ + x′, x − x∗〉 − l‖βx′′ + x′‖2 − l‖x − x∗‖2 ≤
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λ[2 − (L + µ)λ]〈F (x) − F (x∗), x∗ − x〉 − Lµλ2‖x − x∗‖2

+λlL‖x − x∗‖2 ≤ 0, t ≥ 0

Suppose the condition for choice of the parameter λ

2 − (L + µ)λ > 0,

and having in mind strong monotonicity of F , it follows

(1 − l)‖βx′′ + x′‖2 + 2〈βx′′ + x′, x − x∗〉 ≤
(l + λlL − µλ[2 − µλ]) ‖x − x∗‖2. (5.4)

Now we use equalities (4.5) and

〈x′′(t), x(t) − x∗〉 =
1
2

d2

dt2
‖x(t) − x∗‖2 − ‖x′(t)‖2, (5.5)

and inequality (5.4) can be written as

(1 − l)β2‖x′′‖2 + [1 − l − 2β]‖x′‖2 + (1 − l)β
d

dt

(
‖x′‖2

)
+

β
d2

dt2
(
‖x − x∗‖2

)
+

d

dt

(
‖x − x∗‖2

)
+ A(t)‖x − x∗‖2 ≤ 0,(5.6)

where
A(t) = λ(t)µ(2 − λ(t)µ) − l − lLλ(t) > 0,

for l < min
{

µ
L , 2µ

L2

(
L + µ −

√
µ(2L + µ)

)}
.

Let be h(t) = exp
{∫ t

0 b(s)ds
}

, where b(s) = 1
β

(
1 −

√
1 − 4A(s)β

)
.

If we inequality (5.6) multiply by h(t) and integrating on segment [0, t],
for β = const we get

(1 − l)β2

∫ t

0
h(s)‖x′′(s)‖2ds + (1 − l)βh(t)‖x′(t)‖2

+ βh(t)
d

dt

(
‖x(t) − x∗‖2

)
+ h(t) (1 − βb(t)) ‖x(t) − x∗‖2

+
∫ t

0
h(s) (1 − l − 2β − βb(s)) ‖x′(s)‖2ds
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+
∫ t

0
h(s)

(
β(b2(s) + b′(s)) − b(s) + A(s)

)
‖x(s) − x∗‖2ds

≤ C0, t ≥ 0, (5.7)

where C0 = (1 − l)βh(0)‖x′(0)‖2 + h(0) (1 − βb(0)) ‖x(0) − x∗‖2. All
the integrals on the left side of the inequality are nonnegative, so we
have

(1 − l)βh(t)‖x′(t)‖2 + βh(t)
d

dt

(
‖x(t) − x∗‖2

)

+ (1 − βb(t))h(t)‖x(t) − x∗‖2 ≤ C0, t ≥ 0. (5.8)

Note that the first term on the left side of inequality (5.8) is nonnega-
tive and 1−βb(t) > 0, for t ≥ 0. Whence, multiplying inequality (5.8)
by (βh(t))−1 finally we get linear differential inequality

d

dt

(
‖x(t) − x∗‖2

)
+ β−1(1 − βb(t))‖x − x∗‖2 ≤ C0 (βh(t))−1 , t ≥ 0.

If we multiply this inequality by

H(T ) = exp
{∫ t

0
f(s)ds

}
, where f(s) = β−1(1 − βb(s)),

it will have the following form

d

dt

(
‖x(t) − x∗‖2H(t)

)
≤ C0H(t) (βh(t))−1 , t ≥ 0.

From this inequality, integrating on segment [0, t], we get

‖x(t) − x∗‖2H(t) ≤ ‖x(0) − x∗‖2 + C0

∫ t

0
H(s)(βh(s))−1ds, t ≥ 0.

Whence

‖x(t) − x∗‖2 ≤ ‖x(0) − x∗‖2H−1(t) + C0ρ(t)h−1(t), t ≥ 0,

where ρ(t) = h(t)H−1(t)
∫ t
0 H(s)(βh(s))−1ds.

Nedić (see [4]) has considered and studied similar method and
proved that limn→∞ h(t) = limn→∞ H(t) = +∞ and limn→∞ ρ(t) =
const. Hence, we have proved the following theorem.
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Theorem 4. Let operator F be strongly monotone and Lipschitz con-
tinuous with constants L and µ. Let multifunction C(x) be given as
C(x) = c(x) + C̄, where function c(x) is Lipschitz continuous with
constant l such that l < min

{
µ
L , 2µ

L2

(
L + µ −

√
µ(2L + µ)

)}
and C̄

is a closed convex set. If parameters of method λ(t) ∈ C1[0,+∞) and
β satisfies conditions

α(t) > 0, β > 0, α′(t) ≤ 0, t ≥ 0; α(0) < 2(L + µ)−1,

lim
t→∞

α(t) = α∞ > 0,
√

1 − 4A(0)β ≥ 4β − 1,

1 − 4µα∞β(2 − µα∞) − 4lβ(1 + Lα∞) > 0,

then, the second-order gradient type method (5.1) converges to the
unique solution of problem (1.3) with the following rate

‖x(t) − x∗‖2 ≤ ‖x(0) − x∗‖2 exp
{
−

∫ t

0
f(s)ds

}

+ C0ρ(t) exp
{
−

∫ t

0
b(s)ds

}
,

where

f(t) =
1
2β

(
1 +

√
1 − 4A(t)β

)
= β−1(1 − βb(t)) > 0,

C0 = (1 − l)βh(0)‖x′(0)‖2 + h(0) (1 − βb(0)) ‖x(0) − x∗‖2,

ρ(t) = h(t)H−1(t)
∫ t

0
H(s)(βh(s))−1ds,

b(t) =
1
β

(
1 −

√
1 − 4A(t)β

)
,

A(t) = λ(t)µ(2 − λ(t)µ) − l − lLλ(t) > 0.
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[3] Nedić, A. , High-order continuous and iterative methods of mini-
mization, PHD dissertation, Moscow 1994 (in Russian)

[4] Nesterov, Yu., Scrimali, L., Solving strongly monotone variational
and quasi-variational inequalities, Core discussion paper, 2006/107

[5] Ryazantseva, I. P., First-order methods for certain quasi-variational
inequalities in a Hilbert space, Computational mathematics and
mathematical physics, Volume 47, Number 2, 183-190

[6] Vasiliev, F. P., Methods of optimization, Moscow, Factorial press,
2002 (in Russian)
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α(t) > 0, β > 0, α′(t) ≤ 0, t ≥ 0; α(0) < 2(L + µ)−1,

lim
t→∞

α(t) = α∞ > 0,
√

1 − 4A(0)β ≥ 4β − 1,

1 − 4µα∞β(2 − µα∞) − 4lβ(1 + Lα∞) > 0,

then, the second-order gradient type method (5.1) converges to the
unique solution of problem (1.3) with the following rate

‖x(t) − x∗‖2 ≤ ‖x(0) − x∗‖2 exp
{
−

∫ t

0
f(s)ds

}

+ C0ρ(t) exp
{
−

∫ t

0
b(s)ds

}
,

where

f(t) =
1
2β

(
1 +

√
1 − 4A(t)β

)
= β−1(1 − βb(t)) > 0,

C0 = (1 − l)βh(0)‖x′(0)‖2 + h(0) (1 − βb(0)) ‖x(0) − x∗‖2,

ρ(t) = h(t)H−1(t)
∫ t

0
H(s)(βh(s))−1ds,

b(t) =
1
β

(
1 −

√
1 − 4A(t)β

)
,

A(t) = λ(t)µ(2 − λ(t)µ) − l − lLλ(t) > 0.
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