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Abstract

In this paper we study continuous gradient-type method for
solving quasi-variational inequlities and establish sufficient con-
ditions for the convergence of the proposed methods.
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Sazetak
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1. INTRODUCTION

The theory, as well as solution methods of the variational inequal-
ity, have been well documented in the literature. Quasi-variational
inequalities can be used to formulate the generalized Nash game in
which each player strategy set depend on the other players strate-
gies, not only his payoff function. The quasi-variational inequalities
have recently attracted growing attention in relation to game theory.
Methods for solving quasi-variational inequalities have been studied by
Nesterov in [4]. In this paper, we present one of continuous gradient-
type method for solving quasi-variational inequalities, which iterative
method is presented in [4]. Note that similar method is presented in
[5], but the conditions of convergence are different.

Let we denote by H a Hilbert space. By m¢(x) we denote the
Euclidian projection of point x onto the set C.

Let C : H — 2" be a set-valued mapping with nonempty closed
and convex values. Consider a continuous operator F(x) : C — H,
which is strongly monotone

(F(a) = F(y),x —y) > pllz —yl*, Va,yeC, (1.1)
and Lipschitz continuous on C
[1F(z) = Fy)| < Lllx —yll, Vz,yel. (1.2)

The constant p > 0 is called the parameter of strong monotonicity of
operator F. If y = 0, then F' is a monotone operator. In what follows,
we always assume p > 0. The constant L is called Lipschitz constant.

The problem of our interest is the following quasi-variational in-
equality (QVI):

Find z, € C(x,) such that (F(x.),y —z.) > 0, Vy € C(z,). (1.3)

In what follows, we will propose one continuous method for solving
this problem and we establish some sufficient condition of the conver-
gence of the proposed method. Since this method relies on the iterative
gradient-type method, described in [4], we explore it here.
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2. CONTINUOUS GRADIENT METHOD

The following theorem (see [4]) provides the necessary and suffi-
cient conditions for the existence of solutions of problem (1.3).

Theorem 1. Suppose that the following assumptations hold:

(a) Operator F is Lipschitz continuous and strongly monotone on H
whit constants L and p > 0 respectively.

(b) There exists a < such that

112
L(L++/L2—p2)
Imo@) (2) = e () S allz—y|, Vo,y,zeH  (21)

Then the problem (1.3) has a unique solution.

Under these assumptations, a problem (1.3) can be solved by a
standard gradient method:

Tyl = WC(xk)(xk — )\F($k)), k>0 (2.2)
The following theorem has been proved in [4]:

Theorem 2. If operator F' is strongly monotone and Lipschitz contin-
uous with constants L and 1, and multifunction C(z) satisfies condi-
tion (2.1) with o < L(L+\/L27 then the gradient method (2.2) with

optimal stepsize A = L2 converges to the unique solution of problem
(1.8) with the following rate

1
T — || <expl —k —« To — Tl 2.3
s — .| < p{ (ymm) )}n o—zl. (23)

Note, we have seen that quasi-variational inequality (1.3) is solv-

able by gradient scheme (2.2) only if the variation rate of the feasible
set C'(z) is very small.

For solving problem (1.3), one can use continuous gradient-type
method:

2(t) + 2(t) = To@alet) = AOF (z(t))], t>0, 2(0) =z, (24)
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where xg is a given initial point.We will prove convergence of this
method and convergance rate.

Theorem 3. If operator F' is strongly monotone and Lipschitz contin-

uous with constants L and p, and multifunction C(x) satisfies condi-
2
tion (2.1) with a < Lﬂi then the continuous gradient method

(L/L2—p2)’
(2.4) with parameter "=V “LLL;(M_OCQ) < A1) < BN MQ_LL;(ZQ_DR)

converges to the unique solution of problem (1.3) with the following

rate
() — 2> < exp {—ao(t — to) Hlzo — 2.,

where

a(t) = 1~ (a+ /I 230+ A2(t)L2)2 > 4y > 0.
Proof. We will use Lyapunov function
V() = 5he®) — 2, Vi) = llzo — 2P = o,
and then it is enough to prove following statement
V(t) - 0ast— oo.
Consider derivative of Lyapunov function:
VI(t) = (x(t) — @, 2'(1)).
Since s = T (p,) [T+ — A(t) F(24)], we have
V() = (2(t) = me@lme = MO F (@] Ty [#(t) — MO F((t)] — x(t))
= %Hﬂc(aﬁ(t))[x(t) = AOF (2(1)] = T = MO F ()]
~ et () = AOF ()] - 2(0)?

—%llw(t) — Mo lee = A F ()] (2.5)

Now, we are going to estimate some of the terms in (2.5):

1T ey le(t) = MO F(2()] = mo@.)lee = A F ()]
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IN

17 e(a(e () = MO F(@(8)] = Toee.)l2(t) = A F(z(@))]]
Hlmo@)le(t) = A F(z(t)] = mo@.) e = A F ()]
allz(t) =zl + [mo@.)lz(t) = A F(x(t))]

—TC(w )[SC*—A() (@)l (2.6)

IN

Since F' is strongly monotone and Lipschitz continuous, we have

17T [2(t) = MO F (2(t))] = 7o) lee — A F(z)]]”

< [z () = AOF ()] = [z — A& F (2]
= |lz(t) = 2l = 2X(O)u(F (2 (1)) — F(2s), 2(t - z.))
N O|F (2(t) = F ()]
lo(t) = @® = 22O plla(t) — 2u]|* + N (E) L2 [lo(t) — .])®

[ IA

(L=2X(E)p+ N2 () L?) [z () — 2] (2.7)
Combining (2.6) and (2.7), we have
I17o[2(t) = MOF (@(t)] = Tz — A F ()]

2
< (oz+\/1—2)\u+/\2L2> 2(t) — .|

If we combine this with condition z. = T (p,)[2+ — A1) F(74)], we get

V() < % [(a NN )\Q(t)L2>2 _ 1] |2 (t) — 2.2,

le.
2
V'(t) < [(a + /1 =2\t + )\Q(t)L2) — 1] V(t).
By condition 0 < a < w for £V #LLL;@OHQQ) < At) <

L(LA+/L?—p2)
ut/p2—L2(2a—a?) . .
73 , the following estimate has a place

a4+ 1 =2\t + N2(t)L2 < 1.
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2
where a(t) =1 — (a +/1T=2X\t)p + )\Q(t)L2) > ap > 0.
Hence,
V(t) < Voexp{—ao(t —to)},

so V(t) — 0 ast — oo, i.e. x(t) converges exponentially towards to
x4 with rate ag. Thus, we have proved the theorem.

4. METHOD FOR SET C(x)=c(x)+C

Now we mention that assumption (2.1) is a kind of strengthening
of the contraction property for multifunction C'(x). An example (see
[4]) of such mapping is

C(x):=c(z)+ C, (4.1)

where function ¢(x) is Lipschitz continuous with Lipschitz constant
[ = « from condition (2.1) and C is a closed convex set.

In this case, the corresponding iterative gradient method for solv-
ing quasi-variational inequalities (1.3) has the form

Tp1 = c(zg) + malvg — c(z) — AF(2g)], k>0

and continuous gradient method for solving quasi-variational inequal-
ities has the form

o' (t)+x(t) = c(z(t))+malet)—c(z(t) —AE) F(z(t))], t > 0, 2(0) = .

(4.2)

Let us remark that the relation (4.2) is equivalent to the following
variational inequality

(@' (A F(z(t)), 2 (t)+a(t) —c(z(t)—z) > 0, Vz € C,t > 0. (4.3)

Setting z = 24 — c(x) € C in (4.3), y = c(zy) + 2/ (t) + x(t) —
c(z(t)) € C(zx) in (1.3) and multiplying (1.3) by A(t) > 0, in the sum
of the obtained inequalities we will get

<x'(t), 2’ (t) + 2(t) + c(zy) — c(x(t)) — m*>
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< AO(F(2(t) = F(aa), m — 2'(t) — 2(t) + c(2(t) — c(z4)))
(@'(t), 2’ (1)) + (2'(t), 2(t) — wx) + (2'(1), c(zs) — c(x(1)))

< MNO(F(2(t) — F(xy), —2'(t)) + XO)(F(2(t)) — F(24), 7« — x(t))
FAO(F(2(t) — F(24), c(2(t) — c(24))). (4.4)

Now, we are going to estimate some of the terms in (4.4). We will use

the following equation

"), 2(t) — zs) = = —||2(t) — x| 4.5
(@(8), () = 2a) = 5 [l2(8) — 2] (4.5)
Since ¢ is Lipschitz continuous, we have

(@' (1), c(@) = c(x(t)) = =2’ (O] - le(x.) — e(z(t)]| =

Sl @I = Sle(z) — @) = IO — 32a(t) — x|

2 2

Note that Lipschitz continuous and strongly monotone mapping

(with Lipschitz constant L and parameter of strongly monotonicity u)
satisfies the following inequality (see |6], p.180)

1F(u) = F(0)|* < (L + p)(F(u) = F(v),u —v) = Lyllu —v[[% (4.6)

If we combine this property of F' with inequality 2ab < a® + b%, we

get
NOFG() ~ F(z.), ~(0)
< X)) - P2+ S 0
N2(t) 2
< X0 (@ P ) - e, 2(0) ) ~ L)~ 2.]?)
sl @7

Since F' and c¢ are Lipschitz continuous with Lipschitz constants L

and [, respectively, next inequality holds

(F((t) = F(z.), (@) = c(2(?)))) < Lillz(t) — 2.
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Now, inequality (4.4), multiplying by 2 becomes

2|2’ (O)]1* + IIx( ) = @l = [l @ = Pllat) — 2.
< )\2 ( L + ,u ( )) ( *) x(t) - 1‘*> - LMH.’L‘(t) - x*HQ)

Hla (01 = 2AE)(F (2 (1) = F(z), 2(t) — 22)
L)l (t) — 2.,

i.e.
Dlln(r) — P < (2 N0 L+ 2ALND) (t) — ] +
M) (2 = MO + ) (F(a(t) — Fa.), 2. — ().
Let us suppose that
2~ Mt)(L + p) >0,
then bacause of (1.1), it follows
Dlle(t) — wall? < (1 N0 Lo+ ALND) r(t) . P
—pA(E) (2= MO + p)) [l2(t) — .2

hence
L la(t) — .l < ~A@)la(t) ~ w1
where
A(t) = (=1 = 2LLA(t) — pN2(t) + 2uA(t)) > Ag > 0.
Finally, we have inequality
v(t) < —AgV ().

This yields that

lo(t) — @u]|* < [lwo — @.]|* exp{—Ao(t — to)}.



On a continuous gradient-type methods for solving... 23

5. SECOND-ORDER GRADIENT-TYPE METHOD

In previous sections we discussed first-order methods for solving
quasi-variational inequalities. Here, we will describe a continuous
second-order method for solving QVI.

The method is based on the differential equation

B(t)z" + 2’ + x = (z — A F(x)), B(t) >0,A(t)>0. (5.1)

where x = z(t). Instead of §(t) and A(t) we will write § and A, re-
spectively. If the sets C'(z) are given as in (4.1), this method has the
form

Bx" + 2’ +x =c(x) + Ua(x — A\F(x) — c(x)), B>0,\>0.
This relation is equivalent to the following variational inequality
(Ba" + 2’ + N\F(2),z — 2" — 2’ —x +¢(x)) >0,Vz€ C. (5.2)

Setting 2 = 2, —c(x,) € C'in (5.2), y = B+’ +x+c(xs) —c(z) €
c(z4) + C in (1.3) and multiplying (1.3) by A > 0, in the sum of the
obtained inequalities we will obtain

(Ba" + ', Ba" + &' + & — zy + c(zs) — c(z)) <
MF(x) — F(xy), 10 — B2 — 2’ — 2 — c(xs) + c()).

Using ab < a?/2 + b?/2, we can write
182" +a'|* + (Ba” + ',z — 2:) + (Ba" + ', e(w) — el@y)) <

< LB 4P S F (@)~ Bl + ME ()~ Pla.), . )
+ MF(x) — F(zy),c(x) — c(z4)). (5.3)

From here, multiplying by 2, because of the strong convexity, Lip-
schitz continuity and conditions (4.6) we get the estimate

182" +2'|* + 2(82" + 2’ & — 2.) — U Ba” + 2| — Ul — 2. |* <
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A2 = (L + WAUF (2) = Fa.), 2 — ) — LpA® ||z — .
+AL|z — x> <0, t >0

Suppose the condition for choice of the parameter A
2 —(L+p)A>0,
and having in mind strong monotonicity of F, it follows

(1=D||pz" + 2| + 2(B" + o',z — x,) <
(L + ML — pA[2 — pN]) |2 — 2.2 (5.4)

Now we use equalities (4.5) and

2
(& (1), (1) — 22 = 3 llalt) —ml? — @I, (5)

and inequality (5.4) can be written as
d
(=0 "+ [1 = 1= 28]’ |I* + (1 = DB (Ia']*) +
d?

d
2 2 2
o (o= wal?) + 5 (Il = 2?) + A2 - 2] < 0,(5.6)

where
A(t) = AMt)pu(2 = A(t)u) — 1 — LLA(t) > 0,

forl<min{%, i—’; (L—F,LL—JM)}.
Let be h(t) = exp {fg b(s)ds}, where b(s) = % (1 — \/W)

If we inequality (5.6) multiply by h(¢) and integrating on segment [0, ¢],
for 0 = const we get

(1 - l)ﬂ2/0 h(s)|2"(s)|*ds + (1 — DB ||’ (1)
+ ﬁh(t)jt (l2(8) = 2.]1?) + h(t) (1 = Bb(D)) ||z (t) — 2.

+ /0 h(s) (1 —1— 26 — Bb(s)) || (s)] *ds
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t

X

Co,

where Co = (1 —1)Bh(0) ][/ (0)[|* + (0) (1 — Bb(0)) [|=(0) — @[>, All

the integrals on the left side of the inequality are nonnegative, so we

IN -+

(s) (B(B*(s) + /() = b(s) + A(5)) ||(s) — | *ds
t>0, (5.7)

have
(1= 1)BA(L)|l' (t)]|* + Bh(t )Z (l=(t) = z.?)
+ (1 —=p5b(t)) h(t)||z(t) — :1c>,ﬂ||2 < Cp, t>0. (5.8)

Note that the first term on the left side of inequality (5.8) is nonnega-
tive and 1 —b(t) > 0, for ¢ > 0. Whence, multiplying inequality (5.8)
by (Bh(t))~! finally we get linear differential inequality

jt (le(®) = 2lI) + 871 (1 = Bb() [l — ]| < Co (BR(E) ™, t = 0.

If we multiply this inequality by

1) -eo] [ t s f where (5) = 571 (1= 30(5)

it will have the following form

d

(o) = wPH(®) < CoH () (Bh(1) ™", t = 0.

From this inequality, integrating on segment [0, t], we get
t
l2(t) = @ |PH(t) < [|2(0) — z.]* + Co/ H(s)(Bh(s))""ds, t > 0.
0
Whence
l2(t) = 24|1* < [[2(0) — & |2H™H(t) + Cop(t)h ™ (2), t > 0,

where p(t) = fo s)) " tds.

Nedié¢ (See [4]) has con81dered and studied similar method and
proved that lim, o h(t) = lim,, o H(t) = +oo and lim, . p(t) =
const. Hence, we have proved the following theorem.
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Theorem 4. Let operator F' be strongly monotone and Lipschitz con-
tinuous with constants L and p. Let multifunction C(x) be given as
C(x) = c(x) + C, where function c(x) is Lipschitz continuous with

constant | such that | < min {%, % (L +pu— /(2L + u))} and C

is a closed conver set. If parameters of method \(t) € C1[0,4+o00) and
B satisfies conditions

alt) >0, >0, a(t) <0, t>0; a0)<2(L+p) ",
lim a(t) = a0 >0, /1-44(0)8 > 46 -1,
1 —4dpase5(2 — pass) — 418(1 + Las) > 0,

then, the second-order gradient type method (5.1) converges to the
unique solution of problem (1.3) with the following rate

o)~ < 1)~ lexn - [ tf(S)dS}

+ Cop(t) exp{—/ot b(s)ds},

where

70 = 5 (14 VI—4AMB) = 411~ Ab(1) > 0,

~ 23
Co = (1~ 1)BA(0) 2/ (0) 2 + h(0) (1 — Bb(0)) [(0) — .|,
p(t) = h() (1) / H(s) (Bh(s)) " ds,
0
b(t) = % (1- VI=1240)5),

A() = AB)u(2 — Nt)p) — 1 — LLA(E) > 0.
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