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1. INTRODUCTION 

In recent years, there has been a tremendous growth of interest in ap-
plications of optimization in bioinformatics and machine learning. Opti-
mization is frequently used for designing and modeling complex systems, 
which are essential in biomedical and biological research, e. g. in solving 
the maximum betweeness problem [1], in partitioning complex networks 
to k-plex structures [2], in identifying functionally related protein groups 
in weighted PPI networks [3], etc.  

The main purpose of this paper is to address the usage of metaheuristic 
optimization methods in bioinformatics and in machine learning. In order 
to do so, we will concentrate on three problems from these domains (Di-
mensionality Reduction Problem, Maximum Betweeness Problem and 
Maximum Edge k-plex Partitioning Problem) and on two metaheuristic 
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optimization methods (Electromagnetism-like Metaheuristics and Vari-
able Neighborhood Search). 

2. PROBLEMS  

Firstly, let us define the optimization problems. Since minimization and 
maximization optimization problems have basically the same structure, 
the minimization optimization is defined.  

Following elements are known: search space ; solution space , ; 
objective function , , which maps elements of  to real num-
bers. In minimization optimization problems, the goal is to calculate 

, such that . Picture 1 illustrates one ex-
ample of the minimization optimization problem. 

 
Picture 1 — Minimization optimization problem illustration  

There are many important optimization problems in the fields of machine 
learning and bioinformatics, the most relevant are enlisted in [4] and [5]. 

This paper will address three machine learning and bioinformatics com-
binatorial optimization problems: Dimensionality Reduction Problem, 
Maximum Betweeness Problem and Edge-weight k-plex Partition Problem. 

2.1. DIMENSIONALITY REDUCTION PROBLEM 

Data mining is one of the most popular and exciting discipline of ap-
plied informatics. It allows researchers to discover complex and hidden 
patterns in data, which can potentially lead to completely new conclusions 
in different disciplines, where sometimes even experts in the disciplines 

 S  X X ⊆ S
f f :  S ⟶ R S

x* ∈ X f (x*) = min{f (x) |x ∈ X}

cannot do better. Nowadays, there is an extremely rapid growth in the vol-
ume of data stored in biological databases, with increased complexity of 
data and a very high dimensionality. 

Data mining includes classification, which predicts a certain outcome 
based on a given input. An illustrative example of a classification task is 
given in Picture 2.  

 
Picture 2 — Basic concept of classification  

In order to learn how to predict outcome, the algorithm uses a set of 
training records containing a set of attributes and the respective outcome. 
The classification algorithm then, in the so-called training phase, tries to 
discover relationships between the attributes that would make it possible 
to predict an outcome. After this step, the algorithm is given a dataset not 
seen before, called a set of testing records, which contains the same set of 
attributes, except for the prediction attribute that is not yet known. The 
algorithm analyses the input and produces a prediction — this is the test-
ing phase. The prediction accuracy defines the quality of the classification 
algorithm. After the testing phase, classifier is used in real-life conditions. 
The classification process is described by the flowchart in Picture 3. 

 
Picture 3 — Flowchart of the classification process  
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There are two types of benefits for applying dimensionality reduction 
by feature selection for the classification process: firstly, by eliminating un-
necessary features, it is possible to eliminate dataset noise that degrades 
the quality of the classification model; secondly, the problem dimension is 
decreased and the efficiency is increased. 

The criteria for dimensionality reduction can vary, and in terms of classi-
fication problems (which are one focus of this paper) are usually referred to 
the classification accuracy, model efficiency, level of dimension reduction, or 
composition of former criteria. Dimensionality reduction algorithms have 
been utilized as a support for solving various and often real problems. There 
are three general types of dimensionality reduction algorithms [6]:  

1) wrapper methods that use a classification algorithm as a black box for 
the evaluation of feature subsets;  

2) filter methods that form feature subsets in the preprocessing phase, 
and do not depend on the employed classification algorithm;  

3) embedded methods that form a feature subset in the training process 
and are specific to a given classification algorithm. 

Various optimization techniques are used for dimensionality reduction 
by feature selection: genetic programming, fractional 0–1 programming, 
neural-genetic algorithms, particle swarm optimization, etc. In-depth 
study of Dimensionality Reduction Problem is given in [6], where the 
wrapper method is considered for dimensionality reduction, where the 1-
nearest-neighbor classifier (1-NN) and support vector machine (SVM) 
are used as underlying classification mechanisms. Here, specific Electro-
magnetism-like Metaheuristics is proposed, various computational exper-
iments are executed and obtained results are compared to results reported 
from other state-of-the-art methods for the considered problem.  

2.2. MAXIMUM BETWEENESS PROBLEM  

The betweeness problem is a well-known optimization problem. For a 
given finite set  of  objects  and a given set  of triples 

, the betweeness problem is a problem of determi-
nation of the total ordering of the elements from , such that triples from 

 satisfy the „betweeness constraint“, i. e. the element  is between the 
elements  and . The problem presented in the paper [1], called the 
Maximum Betweeness Problem (MBP), deals with finding the total order-
ing that maximizes the number of satisfied constraints. 

The MBP, as well as other betweeness problems, belongs to a class of 
discrete optimization problems. Those problems have important ap-

S n S = {x1, x2, …, xn} C
(xi, xj, xk) ∈ S × S × S

S
C xj

xi xk

plications in various fields, including bioinformatics. For example, the 
MBP is used for solving some physical mapping problems in molecular 
biology. During the radiation hybrid experiments, X-rays are used to 
fragment chromosomes. If the markers on chromosomes are more distant, 
the probability that the given dose of an X-ray will break a chromosome is 
greater. In this way, markers are placed on two separate chromosomal 
fragments. By estimating the frequency of the breaking points, and thus 
the distances between markers, it is possible to determine their order with-
in a chromosome in a manner analogous to meiotic mapping. In this con-
text, improvement of the radiation experiment can be achieved by finding 
the total ordering of the markers that maximizes the number of satisfied 
constraints.  

2.3. PROBLEM OF PARTITIONING OF COMPLEX BIOLOGICAL 
NETWORKS (K-PLEX PARTITION PROBLEM)  

Partitioning networks into high density subnetworks, especially cliques, 
has already been proven as a useful technique for obtaining new informa-
tion in understanding complicated relations between biological elements. 
For example, partitioning in protein threading analysis can be reduced on 
maximum edge weight clique problem, the protein side chain packing 
problem is transformed into a problem of finding a maximum weight 
clique.  

Finding cliques is also one of the methods for identification of the clus-
ters that are later divided into protein complexes and dynamic functional 
modules. By analyzing the multibody structure of the network of protein–
protein interactions (PPI), molecular modules that are densely connected 
within themselves, but sparsely connected with the rest of the network, are 
discovered. Cliques have a similar use in modular decomposition of PPI 
networks. This decomposition allows to combine proteins into the actual 
functional complexes by identifying groups of proteins acting as a single 
unit. 

On the other hand, a number of biological networks classes contain 
only sparse networks. Dealing with such networks, partitioning into 
cliques can be too restrictive method, so many potentially useful informa-
tion about the interference of biological objects can be neglected. There-
fore, clique relaxation approaches could be even more useful.  

In the approach presented here, partitioning is followed by the princi-
ple that the objects in each partition are still highly connected in a partic-
ular way, but not so restrictively to form a clique. By relaxing cliques to 
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sparse graphs, biological objects become connected in semantically or 
functionally logical groups which we call k-plexes, having in mind that the 
total sum of weights in all partitions should be as large as possible. 

Here, we deal with the partitioning of the edge-weighted networks into 
k-plex components, where a subset of some vertices in a network is a k-plex 
if the degree of each vertex in the subnetwork induced by this subset is at 
least . The aim of the Maximum Edge-weight k-plex Partitioning Prob-
lem is to find the k-plex partitioning with the maximal total weight of edges. 

More formal definition of this problem is given in [2]: Let a network be 
denoted as , where  is the set of nodes and 

 is the set of edges. With  we simply denote the edge 
. With real numbers we denote the weight of the edge 

connecting nodes  and . We call  and  the end-vertices of the edge .  
Let be an integer. A set of nodes  is called k-plex if the degree of 

each node in the subnetwork induced by S is at least . The weight of a 
k-plex is the sum of all its edge weights. 

The weight of the whole partition is the sum of the weights of all its k-
plex components. The Maximum Edge-weight k-plex Partitioning Prob-
lem is then defined as finding such a partition of which is of the maxi-
mum total weight and each component is a k-plex. If , the k-plex is a 
clique and the maximum edge-weight k-plex partitioning problem is 
brought down to the Maximum Edge-weight Clique Partitioning Prob-
lem. 

3. METAHEURISTIC OPTIMIZATION METHODS 

Metaheuristic methods are generalized computational intelligence 
methods that can be successfully adopted to various problem domains. 
They are trying to obtain the optimal solution, or the solution that is close 
to optimal one. Metaheuristic algorithms are characterized with approxi-
mation and non-determinism. 

Basic metaheuristics concepts are abstractly represented. They should 
be adapted to problem domain, otherwise they should won’t obtain 
enough good solution. 

As the contrast to exact methods, which produces the exact solution 
(but have issues with time resources, with memory resources and some-
times solution cannot be obtained at all), metaheuristics methods produce 
approximate solution, which optimality is not guaranteed (but it works 
with limited computational resources, solution is always produced, and it 
usually has good quality). 

n

 n − k

G = (V, E ) V = {1,2, …, n}
E ⊆ V × V uv
{u , v} ∈ E wuv > 0 

u v u v uv
k ≥ 1 S

n − k

V 
k = 1

Metaheuristic methods can be population-based (like Evolutionary al-
gorithms, Particle Swarm Optimization, Electromagnetism-based Meta-
heuristics, etc.) or single-solution (like Taboo Search, Simulated Anneal-
ing, Variable Neighborhood Search etc.).  

In the following subsections we will focus on two methods, one popula-
tion based and one single-solution, namely to Electromagnetism-like 
Metaheuristic (EM) and Variable Neighborhood Search (VNS). 

3.1. ELECTROMAGNETISM-LIKE METAHEURISTICS (EM)  

Electromagnetism-like Metaheuristic (EM), proposed in [7], represents 
a population-based optimization technique inspired by mechanisms of 
interaction among electrically charged particles (called EM points). The 
method employs a proficient search process governed by EM points, where 
each of them represents single candidate solution of the underlying prob-
lem. EM points that represent better solutions are awarded with higher 
charge. This is crucial for leading the search process towards promising 
solution regions, because EM points with higher charge attract other 
points more strongly. The exact attraction-repulsion relationship is given 
in formula analogues to Coulomb’s Law.  

Electromagnetism-like algorithms turn out to be successful in solving 
many problems with practical and theoretical background: in [8] EM 
technique is adopted to solve feature selection problem, EM method for 
uncapacitated multiple allocation hub location problem is proposed in 
[9], EM method for the SVM parameter tuning [10], etc.  

Overall structure of the EM algorithm is described in the flowchart in 
Picture 4.  

 
Picture 4 — Outline of the EM method 
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EM requires only two control parameters: is the number of the main 
loop iterations and represents the number of EM points. The points are 
first assigned with initial solutions and after that, the algorithm enters into 
the main loop. The main loop iterates  times and within iteration every 
EM point is subjected to the objective value calculation, i. e. 
measuring the quality of solution represented by that point.  

The next step is the calculation of the EM point’s charges. The charge of 
a fixed EM point will depend on its solution quality, according to formula:  

 

In previous formula, is dimensionality on EM point space, is an 
objective function and denotes EM point with the highest objective 
value. Illustrative example with EM points and its calculated charges is 
shown in Picture 5 (A). 

 
Picture 5 — EM — (A) calculation of the charges, (B) calculation of the forces, 

(C) movements of the EM points 

After all charges are calculated, the total impact on each point is calcu-
lated by superpositioning particle pairwise interaction forces, which are 
calculated by following formula: 

.  

It should be noticed that forces are calculated similar to the Coulomb’s 
Law, in a sense that the force between every two particles is proportional 

Nit
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to the product of their charges and inversely proportional to their dis-
tances. Picture 5 (B) shows calculated force vectors for every EM point 
given in previous illustrative example. 

Upon calculation of all the forces  the 
movement procedure is applied. Movement of each EM point 

is guided by direction and magnitude of correspond-
ing force vector . The following formula determines movements of EM 
points: 

   

Illustrative example that describes movements of EM points whose 
charges and forces are calculated is shown in Picture 5 (C). 

Overall structure of the EM within any problem domain is like previ-
ously described. However, EMs aimed at solving different problems differs 
in EM point representation, in calculating objective function for EM 
points, and in values of the parameters used during the execution of the 
method.  

3.2. VARIABLE NEIGHBORHOOD SEARCH (VNS)  

Variable Neighborhood Search (VNS) method is a robust metaheuris-
tic introduced by Mladenović and Hansen [11]. The main searching prin-
ciple of a VNS is based on the empirical evidences: (a) multiple local op-
tima are correlated in some sense (usually close to each other) and (b) a 
local optimum found in one neighborhood structure is not necessarily a 
local optimum for some other neighborhood structure. 

The overall structure of the VNS algorithm [1] is shown on the Picture 6. 
The input of the VNS algorithm, consists of:  
•  and  — minimal and maximal VNS neighborhood structure 

size;  
• , ,  — maximal number of total iterations, maximal 

number of iterations without improvement, and maximal execution time 
in seconds, respectively;  

•  — probability to move to the other solution of the same quality;  
• - size of the neighborhood (integer value);  
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EM requires only two control parameters: is the number of the main 
loop iterations and represents the number of EM points. The points are 
first assigned with initial solutions and after that, the algorithm enters into 
the main loop. The main loop iterates  times and within iteration every 
EM point is subjected to the objective value calculation, i. e. 
measuring the quality of solution represented by that point.  

The next step is the calculation of the EM point’s charges. The charge of 
a fixed EM point will depend on its solution quality, according to formula:  

 

In previous formula, is dimensionality on EM point space, is an 
objective function and denotes EM point with the highest objective 
value. Illustrative example with EM points and its calculated charges is 
shown in Picture 5 (A). 

 
Picture 5 — EM — (A) calculation of the charges, (B) calculation of the forces, 

(C) movements of the EM points 

After all charges are calculated, the total impact on each point is calcu-
lated by superpositioning particle pairwise interaction forces, which are 
calculated by following formula: 

.  

It should be noticed that forces are calculated similar to the Coulomb’s 
Law, in a sense that the force between every two particles is proportional 

Nit
M 

Nit
pi,  i = 1,…M 

qi = e
−N

obj(pbest) − obj(pi)
∑M

k=1 obj(pbest) − obj(pk)

N  obj 
pbest 

 Fi =
∑M

j=1, j≠i (pj − pi) qj × qi

pj − pi
2 , pobj

j < pobj
i

∑M
j=1, j≠i ( pi − pj)

qj × qi

pj − pi
2 , pobj

j ≥ pobj
i

to the product of their charges and inversely proportional to their dis-
tances. Picture 5 (B) shows calculated force vectors for every EM point 
given in previous illustrative example. 

Upon calculation of all the forces  the 
movement procedure is applied. Movement of each EM point 

is guided by direction and magnitude of correspond-
ing force vector . The following formula determines movements of EM 
points: 

   

Illustrative example that describes movements of EM points whose 
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Picture 6 — Outline of the VNS method 

The main loop VNS algorithm usually imposes three main procedures: 
shaking, local search (LS) and neighborhood change.  

o Shaking — in order to escape local suboptimal solutions, a new solu-
tion within a parametrized neighborhood of the current best solution is 
generated. 

o Local search — starting from the new solution obtained in the previ-
ous step, other possible solutions within local neighborhood are systemat-
ically examined with the aim of finding the local optimum. 

o Neighborhood change — depending on the success of the previous
two procedures, the current neighborhood size is adjusted. More precisely, 
when the current best solution is changed, neighborhood size is reduced 
to minimal, otherwise it is cyclically increased by 1 (cycle ends at maximal 
neighborhood size). 

In the algorithm presented on Picture 6, previously described proce-
dures are iteratively called, until no further improvements of the best solu-
tion can be made inside the current neighborhood. When that situation 
appears, the algorithm steps into the next neighborhood. When the last 
neighborhood  is explored, the search restarts at the first neighbor-
hood . 

The execution of the VNS is stopped when either of the following con-
ditions becomes satisfied: a maximum number of iterations is reached, a 

nmax
 nmin

maximum number of iterations without any improvement of the current 
best solution is reached, or a maximum allowed execution time is reached. 

Design of the VNS for optimizing specific problem requires that solu-
tion representation, shaking procedure and LS procedure should be de-
fined in the way that is the most efficient for that specific problem. Of 
course, parameters that governs VNS search process differs from problem 
to problem. However, overall structure of the VNS method is the one de-
scribed above.  

4. SOLUTIONS AND OBTAINED RESULTS  

4.1. EM FOR DIMENSIONALITY REDUCTION PROBLEM

In order to achieve desired results, proposed EM metaheuristic method 
have the custom representation, custom shaking and custom LS. Detailed 
elaboration of the proposed method, computational experiments that are 
designed and executed, and the analysis of the obtained results (which in-
dicate that proposed method outperforms other method on the well-
known problem-instance set) is given in [6]. The same data are publicly 
available in the author’s GitHub repository [12] in the supplemental data 
section. 

4.2. EM FOR MAXIMUM BETWEENESS PROBLEM 

EM metaheuristic designed to solve Maximum Betweeness Problem 
have specific the EM representation and LS designed specifically for that 
problem. Detailed elaboration of the designed method, executed compu-
tational experiments and obtained results is given in [1]. Obtained results 
that indicate superiority of the designed method to other state-of-the art 
counterparts are publicly available as supplemental data in GitHub reposi-
tory of the author [12]. 

4.3. VNS FOR MAXIMUM EDGE-WEIGHT K-PLEX PARTITION 
PROBLEM

Detailed elaboration of the proposed method specification, executed 
computational experiments and obtained results is given in [2]. Results 
from [2] clearly indicate that proposing of the newly designed method to 
this problem is justified.  

Moreover, the relaxation of the clustering requirements lead to more 
useful information from biological point of view. Among many metabolic 
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processes that appeared in various k-plexes obtained by the proposed VNS 
algorithm, in paper [2], the following processes are discussed: amino acid 
degradation process, fatty acids synthesis, vitamin B6 synthesis, oxidation 
of the succinate to the fumarate and formaldehyde oxidation. In this sec-
tion, we will set focus to amino acid degradation process — which is one 
of the most important processes in metabolism.  

In order to confirm the reliability of the obtained results, particular in-
formation of the biochemical pathways of considered organism Saccha-

Picture 7 — Largest clusters obtained for k=1 and k=2  

romyces cerevisiae are checked and confirmed with the data presented in 
Yeast Pathways Database. 

Ammonia presented in the organism is used as a resource of nitrogen 
for amino-acid synthesis and if it released in larger quantity, it must be 
removed because of its toxicity. In the considered organism Saccharomyces 
cerevisiae, ammonia can be incorporated into the amino group of gluta-
mate, by two pathways: the reductive amination of 2-ketoglutarate, cat-
alyzed by glutamate dehydrogenase where NADPH serves as the source of 
electrons, or by the ATP-dependent synthesis of glutamine from gluta-
mate and ammonia catalyzed by glutamine synthetase. Picture 7 visualize 
the results obtained by proposed method, for .  

The first cluster in the left side of Picture 7 is a clique with 8 vertices 
and contains the main intermediates which figure in ammonia synthesis 
from glutamic and aspartic acids. On the right side of Picture 7 is shown 
the largest cluster obtained for . A wider set of intermediates is now 
shown, also including additional reactions.  

More detailed graphical interpretation is shown in Picture 8, obtained 
by the proposed method for . 

 
Picture 8 — Largest clusters obtained for k=3  

Since the condition for forming clusters is now more relaxed, more in-
termediates figures in the cluster. In addition to the previous ones, in the 
cluster shown in Picture 8 we see the process of the oxidative deamination. 

k ∈ {1,2}

k = 2

k = 3
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By this process, two toxic products are synthesized: hydrogen peroxide 
and ammonia. In Picture 8 we see that the method grouped all these in-
termediates in one cluster, which was not the case with the more strict 
conditions (cases  and ). 

Last, but not the least, data and results are the publicly available in the 
author’s GitHub repository [12], in the supplemental data section. 

5. TOPOLOGY SENSITIVE METAHEURISTIC 
OPTIMIZATION METHODS 

The main motivation for integrating topology and metaheuristics 
comes from the notion that metaheuristics might use the topological regu-
larities inside the solution space to better maneuver through it. This can 
become especially useful when the solution space becomes extremely large. 
In such situation, classical metaheuristics might use too much resources in 
order to search the solution space. Although this sounds like it could lead 
to premature convergence to local optima, we stress that our conceptual 
design essentially generalizes and encompasses the classical metaheuristic 
algorithms. 

This means that the proposed metaheuristics, during its execution, 
gradually converge to its classical variants. Also, by imposing adequate pa-
rameters, these topologically sensitive metaheuristics can be used as a clas-
sical through its whole execution. 

Execution of proposed topologically sensitive metaheuristics will re-
semble execution of any other metaheuristic: each execution creates a path 
in fitness landscape in order to reach global optima and avoids local opti-
ma. Therefore, fitness landscape analysis, which includes analysis of local 
optima positions, is very important for design of such metaheuristics. In 
other words, if some topological regularity in fitness landscape is detected, 
that regularity can be exploited and used for designing metaheuristic that 
will perform better than the alternatives. Topology-based models and 
techniques already achieved good results in revealing hidden structures 
and detecting new regularities [13], so it can be expected that it will be 
helpful in this domain. 

In-depth discussion of the concepts described in this section are given 
in the paper [14].  

The most important topology (more precisely, algebraic topology) con-
cepts in this domain are simplicial complexes, homology groups and per-
sistent homologies. 

k = 1 k = 2
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and detecting new regularities [13], so it can be expected that it will be 
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The most important topology (more precisely, algebraic topology) con-
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sistent homologies. 

k = 1 k = 2

Simplicial complexes are combinatorial objects (abstract schemes) used 
from the early days of algebraic (combinatorial) topology as a bookkeep-
ing device for triangulations of geometric objects. Conversely, they are 
used in the opposite direction for geometric presentation (visualization, 
geometric analysis and quantification) of the information (databases, 
point clouds) of any kind (not necessarily of geometric origin). The im-
portance and versatility of simplicial complexes is illustrated by the fact 
that they appear under different names and in disguise in different areas of 
science, in and outside of mathematics. In cooperative game theory they 
are known as „simple games“ (after John von Neumann and Oskar Mor-
genstern). A similar use is in social choice theory (reliability theory). We 
meet them as threshold complexes (of „short sets“), both in weighted vot-
ing games and in the geometry of configuration spaces of polygonal link-
ages (protein chains). Closely related concepts are monotone hypergraphs, 
monotone Boolean functions, finite partially ordered sets, etc. 

For illustration, the hemi-icosahedron on Picture 9, triangulates the real 
projective plane and can be used for a combinatorial analysis of this object 
(homology calculation, non-embeddability in the 3-space, etc.). On the 
other hand, it provides an important example of a cooperative voting 
scheme (simple game) for six persons (parties), with 10 winning and 10 
losing, 3-element coalitions, which is not realizable as a weighted voting 
scheme. 

 
Picture 9 — hemi-icosahedron 

Simplicial complexes provide historically the first foundation for the 
theory of homology groups, which capture the idea of higher (dis)connec-
tivity (voids, holes) in geometric object. For example, the edge path 1–6–
4–1 surrounds an essential 1-hole in the hemi-icosahedron, while if we 
traverse this edge-path twice, and perturb it to the edge-path 1–6-4–2-5–
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1 (in the same homology class), we obtain a trivial 1-cycle (illustrating the 
torsion phenomenon in homology groups). 

The so called persistent homology (initiated by A. Zamorodian, H. 
Edelsbrunner, G. Carlsson, and others) opened a new chapter of ap-
plications of homological methods and created a large part of what is to-
day known as applied and computational algebraic topology. The impor-
tance of persistent homology is in its applicability to dynamical simplicial 
complexes (complexes depending on a parameter) which arise in the 
analysis of large databases (large finite metric spaces, point clouds, sparse 
matrices). Information collected from biological systems is typically less 
structured, and can be organized, via a concept of clustering into a dynam-
ical (filtered) simplicial complex. 

In order to show that topological enhancement can be done in general 
case (in top-down manner), two complementary techniques are selected: 
the first (VNS) is single-solution based and discrete coded metaheuristic, 
while the second (EM) is population-based and real coded metaheuristic. 
In paper [14], the conceptual design of the two topologically sensitive 
metaheuristics is presented: Topologically Sensitive Electromagnetism 
metaheuristics (TEM) and Topologically Sensitive Variable Neighbor-
hood Search (TVNS).  

5.1. TOPOLOGICALLY SENSITIVE ELECTROMAGNETISM-LIKE 
METAHEURISTICS  

TEM is designed as a generalization of EM that builds on -simplex 
data, where for special case  that algorithm becomes a classical VNS. 
The main difference in TEM, in comparison to classical EM, is in the 
movement step. For each solution point, within TEM, we try to find new 
solution position inside the solution space that will form a -simplex with 
other  solution points from the current population (two variants: with or 
without that solution considered as a candidate). This should be done in 
such a way that average or maximal distance among -simplices is mini-
mized.  

More precisely, process starts with the most restrictive m-simplex, i. e. 
. As mentioned in the description of the EM algorithm, the 

movement is controlled partially by forces that affect the solution point 
and partially by the randomness. In TEM, the movement is also con-
trolled by forces, but now the randomness is restricted with respect to pa-
rameter . This means that for , the set of possible positions from 
which the new position is randomly chosen now becomes smaller, i. e. it 
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becomes the subset of the set of possible positions where  (classical 
EM).  

If, for a given solution point and current simplex size , the movement 
is not possible, the simplex size is reduced by . Finally, if m reaches , that 
basically means that algorithm fell back to its classical version where every 
movement within distance threshold is allowed.  

Note that this process of reducing the simplex size is done for each solu-
tion point separately. Also, note that the distance function threshold for 
deciding whether two -simplices are connected can be implicitly set by an 
algorithm to a sufficiently large value which will always allow a movement 
in the classical fallback EM.  

The overall effect that we expect TEM will have on the search process 
in comparison to EM is increased preservation of the same or similar 
topological regularity through time (if this regularity exists). We also be-
lieve that the expansion of already existing simplices, especially large ones, 
is well motivated. This is because the existence of regular formation of lo-
cal optima itself is an indicator that more new local optima may be found 
around that formation. Another important observation is that since TEM 
falls back to classical EM, we can expect that TEM will be generally ap-
plicable, i. e. if the topological regularity is low and cannot be exploited, 
TEM should work at least as good as classical EM (though performance 
might get deteriorated). Similar observation can be made for TVNS algo-
rithm as well. 

5.2. TOPOLOGICALLY SENSITIVE VARIABLE  
NEIGHBORHOOD SEARCH  

TVNS is essentially conceived as a generalization of VNS that builds on 
-simplex data (with special case  being a classical VNS). We will 

also sometimes refer to -simplex neighborhood which corre-
sponds to collection of all valid simplices that can be formed by adding 
-simplex to observed -simplex. Therefore, -simplex neighborhood cor-
respond to classical VNS, while -simplex neighborhoods where  
refer to its topological generalizations. 

The main loop of TVNS should be made in such a way that the se-
quence of neighborhood structures, that are now parametrized by  and , 
starts with the most restrictive neighborhood and after that proceeds with 
the sequence of more relaxed ones. Therefore, the neighborhoods will start 
with smallest neighborhood size  and the most restrictive simplex 
structure , and further proceed with reduction of  by . When 
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 reaches , it basically means that classical VNS algorithm is to be per-
formed. After that, the  is increased by  and  is reset to . The full 
cycle through neighborhoods is done when  reaches  and  reaches . 
If, at some moment, current solution is improved, both  and  are reset to 
its initial values. 

6. CONCLUSION 

Two metaheuristic optimization methods aimed at solving specific 
problems in bioinformatics and machine learning are described and the 
obtained results are analyzed. Topological enhancement for those meth-
ods are proposed.  

Further research will be focused on theoretical characteristics of the 
proposed enchantments, on design and execution of computational exper-
iments. 
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 reaches , it basically means that classical VNS algorithm is to be per-
formed. After that, the  is increased by  and  is reset to . The full 
cycle through neighborhoods is done when  reaches  and  reaches . 
If, at some moment, current solution is improved, both  and  are reset to 
its initial values. 

6. CONCLUSION 

Two metaheuristic optimization methods aimed at solving specific 
problems in bioinformatics and machine learning are described and the 
obtained results are analyzed. Topological enhancement for those meth-
ods are proposed.  

Further research will be focused on theoretical characteristics of the 
proposed enchantments, on design and execution of computational exper-
iments. 
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