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ON THE THEOREM OF ALTERNATIVE AND
APPLICATIONS

A b s t r a c t

We will present Farkas’ formulation of the theorem of alternative related
to solvability of system of linear inequalities and one review of proofs based
on quite different ideas.

O TEOREMI O ALTERNATIVAMA I PRIMJENAMA

I z v o d

U radu ćemo izložiti Farkasovu formulaciju tepreme o alternativama ko-
ja se odnosi na rješivost sistema lineranih nejedenačina i pregled dokaza
zasnovanih na različitim idejama.

1. INTRODUCTION

The first theorem of alternative related to system of linear equations and
inequalities was published in 1873. by P. Gordon. Later, new theorems of
alternative were proved, and they were wide used in proving of the existence
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of solutions in linear algebra and analysis, and in derivation of the necessary
conditions of optimality. C.G. Broyden [2] writes that ”Theorems of alterna-
tives lie at the heart of the mathematical programming.” Interest for these
theorems again increased, especially after one paper of G. B. Broyden from
1998. [1], in which he exposed one new proof of these theorems.

In this paper, in section 2, we give four different proofs of the theo-
rem of alternative. The proof based on separation theorem has very sim-
ple geometrical interpretation and is probably the most short. However, it
can’t be considered as a ”elementary proof”, because in it some ”topological
arguments” (though simple) are used. In second proof was used Fourier-
Motzkin’s method of elimination [3] which can be considered as a particular
case of the well-known Tarski’s theorem on quantifier elimination. This in-
teresting method principally can be used for construction of theorem provers,
but the volume of computing grows too fast whit dimension of the problem.

The third proof which belongs to C.G. Broyden [1],is algebraic. Name-
ly, he proved one property of orthogonal matrices from which he derived
Farkas’s lemma.

In the main part of this paper, in third section, we give a proof based
on the duality theory. This proof is an adaption of the one exposed in
[4,5]. Finally, we present an application of the theorem on alternative in
construction of numerical method for solving system of linear equations.

2. FARKAS’S LEMMA

We will begin with formulation of one statement known as Farkas’ lem-
ma.

Theorem 1. (Farkas’s lemma) Let A be a matrix of the order m×n and
b vector-column of the dimension n. Then either

∃x ≥ 0 such that Ax = b (I)

∃z such that AT z ≤ 0 and 〈b, z〉 > 0. (II)

G. Farkas was a professor of Theoretical Physics at the University of
Kolozsvar (Hungary). He obtained this result while he had been solving the
problem of mechanical equilibrium posed by J. Fourier in 1798. He pub-
lished this results first time in 1898. in Hungarian, but Farkas’s best-known
exposition of his famous lemma was published only in 1902 in German.
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Farkas’s lemma can be formulated thus:

(AT x ≤ 0 ⇒ 〈b, x〉 ≤ 0) ⇐⇒ (b ∈ ARn
+).

If we denote the vectors-columns of matrix A by a1, a2, . . . , am, we will
obtain new equivalent form of this theorem.

The inequality 〈b, x〉 ≥ 0 is a consequence of the system of inequalities

〈a1, x〉 ≥ 0, 〈a1, x〉 ≥ 0, . . . 〈am, x〉 ≥ 0

if and only if vector b is a linear combination

b = y1a1 + y2a2 + · · · + ymam

with nonnegative coefficients y1, y2, . . . , yn.

Let us remark that as a theorem of alternative we can also consider the
following well-known result related to system of linear equations

∃x such that Ax = b (Ia)

∃z such that AT z = 0 and 〈b, z〉 �= 0. (IIa)

The proofs of Farkas’s lemma.

There is a lot of variants of the theorems of alternative and a lot of their
proofs. The very well review of the theorems of this kind can be found in
[4]. We will present some of the proofs of Farkas’s lemma.

We will separately prove that the systems (I) and (II) are not solvable
simultaneously. Assume contrary, that there exist x0 ∈ Rn and z0 ∈ Rm

that are some solutions to (I) and (II) respectively. Then, we have

0 = 〈x0, 0〉 = 〈x0, A
T z0〉 = 〈Ax0, z0〉 = 〈b, z0〉 > 0.

Thus, we arrive at a contradiction, and the first part of Farkas’s lemma is
proved.

Now, we will present some proofs of the second part of Farkas’s lemma.
Proof 1. Let us propose that the system (I) has no solution. Then

b �∈ L := {Ax : x ≥ 0}. The set L is convex and closed, so by the separation
theorem of closed convex sets, there exists hyperplane H := {x : 〈z, x〉 = α}
containing b (α = 〈z, b〉) such that

(∀y ∈ L) 〈z, y〉 < α ⇒ (∀x ∈ Rn
+) 〈AT z, x〉 < α.
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This inequality is possible only for α > 0 and AT z = 0. So, we conclude
that there exists z ∈ Rm, satisfying (II). �

Let us remark that in this very short and elegant geometric proof was
omitted the proof that the set L := {Ax : x ≥ 0} is closed. In addition,
separation theorem is intuitive acceptable, but his proof is not so easy. These
two facts are the most sensitive part of the geometrical proof of the theorem
of alternative.

Note also that the separation theorem can be formulated as a theorem
of alternative: either b is in L or there exists a separating hyperplane.

Proof 2. In this proof (see [3]) will be used so called Fourier-Motzkin
method for variables elimination in linear inequalities. This method can be
consider as a particular case of Tarski’s quantifier elimination theorem. It
can be used for building of a theorem provers for this case. But, even in the
case of a system of linear inequalities with only existential quantifiers, the
method has very fast grows of the number of computational operation.

Denote by a1, a2, . . . , am and a1, a2, . . . , an the rows and the columns of
the matrix A = (aij)m×n. Then, system (II) can be written in the form

〈a1, z〉 ≤ 0, 〈a2, z〉 ≤ 0, . . . , 〈an, z〉 ≤ 0, 〈an+1, z〉 ≤ −β < 0,

where by an+1 is denoted vector −b.

For example, suppose we wish to eliminate the variable z1 from the above
system. Let us denote I+ = {i : a1i > 0}, I− = {i : a1i < 0}, I0 = {i : a1i =
0}. The new system of inequalities will be constructed using the following
rules.

For each pair (k, l) ∈ I+ × I− let us multiply the inequalities 〈ak, z〉 ≤ 0
and 〈al, z〉 ≤ 0 by −a1l > 0 and a1k > 0 respectively. Adding these two
inequalities, we obtain one new that is not contain the variable zl. All
inequalities obtained on this way will be add to those already in I0. If I+

(or I−) is empty, we simply delete inequalities with indices in I− (or in
I+). The inequality with indices in I0 give new system of linear inequalities
Bz′ ≤ d, z′ = (z2, . . . , zn). The procedure of elimination of variable z1 is
described.

Let us remark that if z′ = (z′2, . . . , z
′
n) is a solution of the system Bz′ ≤ d,

and

max
l∈I−

a−1
l1 (−

n∑

j=2

alj + bl) ≤ z1 ≤ min
k∈I+

a−1
k1 (

n∑

j=2

akj − bk)

then z = (z1, z
′) = (z1, z2, . . . , zn) is a solution of the system (II).
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Suppose that the system (II): AT z ≤ 0, 〈−b, z〉 ≤ −β < 0 has no solu-
tion. Applying Fourier-Motzkin method for the elimination of the variables
z1, z2, . . . , zn, one obtains system of inequalities without variables, that is
contradictory. This procedure converts the system (II) in inconsistent sys-
tem (

R q
) (

AT

−bT

)
z ≤ (

R q
) (

0
−β

)
,

whit β > 0 and nonnegative elements of the matrix (R q). It means that
RAT − qbT = 0, where at least one qi �= 0. Consequently, there is x ≥ 0 such
that Ax − b = 0. �.

The third proof appeared in G. Broyden’s paper [1]. It is based on one
property of orthogonal matrices that is referred as a Broyden’s theorem.

Broyden’s theorem.If Q = (qij)n×n is an orthogonal matrix, then there
exist a vector x > 0 and a unique diagonal matrix S = diag(s1, s2, . . . , sn)
such that si = ±1 and SQx = x.

The Broyden’s proof of this theorem is by induction. For m = 1 the
theorem is trivially true (Q and S are both equal to either +1 or −1.)
Assume the theorem is true for all orthogonal matrices of order m×m. Let
Q = (qij)(m+1)×(m+1) be an orthogonal matrices and let

Q =
(

P r
qt α

)
,

where P = (pij)m×m. If α = 1 or α = −1, then r = q = 0 and the step
induction becomes trivial. So, in further we can assume that |α| < 1. Since
Q is orthogonal matrix,

P T P + qT q = I, P T r + αq = 0, rT r + α2 = 1.

From these equations it follows that the matrices

Q1 = P − rqT

α − 1
, Q1 = P − rqT

α + 1
are orthogonal and that

QT
2 Q1 = I − q

2
1 − α2

qT .

Using induction assumption we conclude that there are x1 > 0 and x2 > 0
and diagonal sign matrices S1 and S2 such that S1Q1x1 = x1, S2Q2x2 = x2.
From this we obtain

〈S1x1, S2x2〉 = 〈Q1x1, Q2x2〉 = 〈QT
2 Q1x1, x2〉 = 〈x1, x2〉− 2

1 − α2
〈x1, q〉〈x2, q〉.
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From this moment we have to consider two cases.
Case 1. If S1 �= S2, then 〈S1x1, S2x2〉 < 〈x1, x2〉. So, 〈q, x1〉 �= 0 and

〈q, x2〉 �= 0 and both scalar products have the some signs. For

η1 =
−〈q, x1〉
α − 1

, η2 =
−〈q, x2〉
α + 1

, z1 =
(

x1

η1

)
, z2 =

(
x2

−η2

)
,

S1 =
(

S1 0
0 1

)
, S2 =

(
S2 0
0 −1

)
,

we have
Qz1 = S1z1, Qz2 = S2z2.

Now, since |α| < 1, and both scalar products 〈q, xi〉 have the some signs, one
of ηi is positive and one of the vectors z1 and z2 is the required vector. In
case 1 the proof is completed.

Case 2. If S1 = S2, then 〈S1x1, S2x2〉 = 〈x1, x2〉 and at least one of
〈q, x1〉 and 〈q, x2〉 is zero. We will assume that 〈q, x1〉 �= 0 and 〈q, x2〉 = 0.
So Px1 = S1x1 = Q1x1 and Qz1 = S1z1, where

z1 =
(

x1

0

)
, S1 =

(
S1 0
0 σ

)
, σ = ±1 may be chosen arbitrarily.

Now, if we rewrite Q in the form

Q =
(

α1 qT
1

r1 P1

)

where P1 is a matrix of the type m×m, and repeat the previous argument,
we will obtain that there exist a positive vector x2 and diagonal matrix S2

with ±1 on diagonal, such that

Qz2 = S2z2, z2 =
(

0
x2

)
, S2 =

(
0 σ′

S1 0

)
,

where σ′ = ±1, σ = ±1 may be chosen arbitrarily.
Combining the equation Qz1 = S1z1 and Qz2 = S2z2, we obtain

Q(z1 + z2) = S1z1 + S2z2,

with strictly positive coordinate z1j and z2j for j ≥ 2. If for some j ∈
{2, . . . ,m} the corresponding diagonal elements of S1 and S2 are different,
then ‖S1z1 + S2z2‖ < ‖z1 + z2‖ = ‖Q(z1 + z2)‖, but it is a contradiction
with the previous equality. We can choose the elements σ and σ′ so that
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S1 = S2. So, we have Q(z1 + z2) = S1(z1 + z2), and since z1 + z2 is strictly
positive and S1 is a diagonal matrix with ±1 on diagonal, this establish the
induction in case S1 = S2.

Assume that there exist two positive vectors x and y and two diagonal
matrices S and R with ±1 on diagonal, such that Qx = Sx = Ry, and
S �= R. Then

〈x, y〉 = 〈Qx,Qy〉 = 〈Sx,Ry〉 < 〈x, y〉,
giving contradiction. Therefore, R = S. This completes the proof of Broy-
den’s theorem. �

The next result that is known as Tucker’s theorem is a simple conse-
quence of Broyden’s theorem.

Tucker’s theorem.Let A be an skew-symmetric matrix. Then there
exist y ≥ 0 such that Ay ≥ 0 and y + Ay > 0.

Proof of Tucker’s theorem. Since A is skew-symmetric then (I+A)−1(I−
A) is orthogonal, so that there exist a positive vector x and unique matrix
S such that

(I − A)−1(I + A)x = Sx ⇔ x + Ax = Sx − ASx.

If we denote y = x+Sx, z = Ay = Ax+ASx = x−Sx, then every coordinate
yj of the vector y is equal either 2xj or zero, so y ≥ 0. Similarly, z ≥ 0. But
y + z = y + Ay = 2x > 0. �

Proof 3. Broyden’s proof of Farkas’s lema Apply Tucker’s theorem to
skew-symmetric matrix

B =




O O A −b
O O −A b

−AT AT O 0
bT −bT OT 0




By Tucker’s theorem, there exists a positive vector y = (z1, z2, x, t)T such
that y + By > 0. Consider the two cases: t > 0 and t = 0 with z = z1 − z2.
If t > 0 the vector y may be normalized so that t = 1, from which we obtain
Ax = b. If If t = 0 then AT z ≤ 0 and 〈b, z〉 > 0.

In his paper Broyden discussed the question of the relation between Tuck-
er’s theorem, Farkas’s lemma and Broyden’s theorem. He derived Tucker’s
theorem and Farkas’s lemma as a simple consequence of Broyden’s theorem.
In [8] Ross and Terlaky shown that the Broyden theorem is also a simple con-
sequence of Tucker’s theorem and Farkas’s lemma. It means that Farkas’s
lemma, Tucker’s theorem and Broyden’s theorem are equivalent results.
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In [8] was made the observation that for given orthogonal matrix Q the
existence of an unique diagonal matrix S with diagonal elements sii = ±1
and positive vectors x, such that Qx = Sx is equivalent to existence of a
positive vector x such that

|Qx| = x, x > 0 ⇔ −x ≤ Qx ≤ x, x > 0,

where |y| denotes the vector of the absolute values of the entries of vector
y. So, if one finds a vector x satisfying the previous conditions, then sii = 1
if xi > 0 and sii = −1 if xi < 0.

This Roos’s and Terlaky’s comment was an very perspicuous answer on
Broyden’s remark [1] that ”However it may yet be possible to construct such
(for determining of sign matrix) algorithm and the author suspects that if
this is the case then any successful example would have more than a passing
resemblance to the interior point algorithms, but only the passage of time
will resolve this conjecture”.

3. DUALITY THEORY AND THEOREMS OF THE ALTERNATIVE

In this part, we follows the ideas presented in [4] and [5].
Let us consider the system

Ax = b, x ≥ 0. (I)

Denote the set of solution of this system by X:

X = {x ∈ Rn : Ax = b, x ≥ 0}.
Note that it can be viewed as a feasible set in linear programming problem of
minimization of 〈c, x〉 with c = 0. Then the dual problem is the maximization
of 〈b, z〉 on the set Z defined by

Z = {z ∈ Rm : AT z ≤ 0} (I ′)

We will say that it is adjoint system to system Ax = b, x ≥ 0.
Consider also the system

AT u ≤ 0, 〈b, u〉 = ρ, (II)

where ρ > 0 is arbitrary fixed positive number; the set of solutions of (II)
will be denoted by U :

U = {u : AT u ≤ 0, 〈b, u〉 = ρ}.
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It is easy to see that U ⊆ Z.
The adjoint system to (II) is

Aw − tb = 0, w ≥ 0, t ∈ R, (II ′).

The sets

Z = {z ∈ Rm : AT z ≤ 0} and W = {(w, t) ∈ Rn xR : Aw − tb = 0, w ≥ 0}

of the solutions to the system (I’) and (II’) are nonempty, because they
contain trivial solutions. The set W can be written as

W = ∪t∈R(Wt, t), where Wt = {w ∈ Rn
+ : Aw = tb}.

It is easy to see that if the system (II) is solvable for a certain ρ = ρ0 > 0,
then it is solvable for all ρ > 0.

Let us defined the penalties

pen(x,X) =
1
2
‖b − Ax‖2, x ≥ 0, pen(u,U) =

1
2
‖(AT u)+‖2 +

1
2
(ρ − 〈b, u〉)2,

for the violation of the conditions x ∈ X and u ∈ U. Here, v+ is a vec-
tor whose i − th coordinate is equal to that of the vector v if the later is
nonnegative and is zero otherwise. Consider the problems

min{pen(x,X) : x ∈ Rn} = min{1
2
‖b − Ax‖2 : x ≥ 0} (∗)

min{pen(u,U) : u ∈ Rm} = min{1
2
‖(AT u)+‖2 +

1
2
(ρ − 〈b, u〉)2 : u ∈ Rm}

(∗∗)
The problems (I) and (II) may be inconsistent. It means that the sets X

and U can be empty. But, the following problems

max{〈b, z〉 − 1
2
‖z‖2 : z ∈ Z} = max{1

2
‖b‖2 − 1

2
‖z − b‖2 : z ∈ Z}, (∗′)

max{ρt−1
2
‖w‖2−1

2
t2 : (t, w) ∈ W} = max{1

2
ρ2−1

2
|ρ−t|2−1

2
‖w‖2 : (t, w) ∈ W} (∗∗′)

always have unique solutions. Let us remark that these problems are con-
nected with the projection on the sets Z and W : problem (*’) is a projecting
of the point b on the set Z, while (**’) is a projecting of the point (0, ρ) on
the set W .

We will prove that pairs (*), (*’), and (**), (**’) can be considered as a
pairs of primal-dual problems.
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It is easy to see that the dual problem of (*’) is (*). We shall show that
(*) can be viewed as a dual of (*’). Let us introduce a vector y = b − Ax.
Then (1) can be written in the form

min{1
2
‖y‖2 : Ax + y = b, y ∈ Rm, x ≥ 0}. (∗1)

Lagrange’s function for this problem is given by

L(x, y, z) =
1
2
‖y‖2 + 〈z, b − Ax − y〉 =

1
2
‖y‖2 + 〈z, b − y〉 − 〈AT z, x〉, x ≥ 0.

Then the dual problem is a problem of maximization of the function

F (z) = min{L(x, y, z) : y ∈ Rn, x ≥ 0}.

The optimality conditions for this problem are:

AT z ≤ 0, y = −z, D(x)AT Z = 0.

So, we obtain that for z ∈ Z

F (z) =
1
2
‖z‖2 + 〈b, z〉 − ‖z‖2 =〉 − 1

2
‖z‖2,

and the dual of (*) is (*’).
Now we can prove the following set of equalities.
Lemma 1. Any solution x∗ to problem (*) determines a unique solution

z∗ to problem (*’) as z∗ = b − Ax∗, and it holds that

‖z∗‖2 = 〈b, z〉, 〈z∗, Ax∗〉 = 0,

‖z∗‖ = dist(x∗, X), ‖b − z∗‖ = dist(b, Z), ‖z∗‖2 + ‖b − z∗‖2 = ‖b‖2.

If x∗ is a solution to (*), and z∗ = b − Ax∗, then ‖z∗‖ = ‖b − Ax∗‖ =
dist(b,X) and ‖ − z∗‖ = dist(b, Z). In addition, the optimality conditions
for (*) at the point x∗ are

−AT (b − Ax∗) ≥ 0, x∗ ≥ 0, D(x∗)AT (b − Ax∗) = 0.

and they can be written as

AT z∗ ≤ 0, D(x∗)AT z∗ = 0, x∗ ≥ 0.
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It follows that z∗ ∈ Z and

〈z∗, Ax∗〉 = 〈AT z∗, x∗〉 = 0 and 〈b, z∗〉 = 〈z∗+Ax∗, z∗〉 = ‖z∗‖2+〈x∗, AT z∗〉 = ‖z∗‖2.

〈z∗, Ax∗〉 = 〈AT z∗, x∗〉 = 0,

‖z∗‖2 = 〈z∗, b − Ax∗〉 = 〈b, z∗〉 − 〈AT z∗, x∗〉 = 〈b, z∗〉,
〈z∗, b − z∗〉 = 0.

As a consequence of the equality 〈b, z∗〉 = ‖z∗‖2, we have

‖z∗‖ = ‖b − Ax∗‖ = dist(x∗, X), ‖b − z∗‖ = dist(b, Z)

and

‖z∗‖2 + ‖b − z∗‖2 = 〈b, z∗〉 + ‖b‖2 + 〈b, z∗〉 − 2〈b, z∗〉 = ‖b‖2.

�
The vector z∗ is called the minimal residual vector while the vector x∗ is

a pseudosolution to system Ax = 0, x ≥ 0.
The relation between (**) and (**’) are similar as the relation between

(*) and (*’), but somewhat different.
Lemma 2. Any solution u∗ to problem (**) determines a unique solution

(w∗, t∗) to problem (**’) and it holds

w∗ = (AT u∗)+, t∗ = ρ − 〈b, u∗〉,−〈w∗, AT u∗〉 + t∗〈b, u∗〉 = 0,

‖(AT u∗)+‖2 + (ρ − 〈b, u〉)2 + dist2((0, ρ), W ) = ρ2.

Proof. The problem (**’) is the problem of projection of the vec-
tor (0, ρ) onto the set W = {(w, t) : Aw − tb = 0, w ≥ 0} �= ∅ and
(w∗, t∗) = Pr((0, ρ),W ). For this problem, which has a unique solution,
Lagrange function is as follows

L(w, t, u) = ρt − 1
2
(‖w‖2 + t2) − 〈u, tb − Aw〉, w ≥ 0.

The optimality conditions (Kuhn-Tucker conditions) at saddle point (w∗, u∗)
are

−w∗ + AT u∗ ≤ 0, w∗ ≥ 0, D(w∗)(−w∗ + AT u∗) = 0,

ρ − t∗ − 〈b, u∗〉 = 0, Aw∗ − t∗b = 0.
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a pseudosolution to system Ax = 0, x ≥ 0.
The relation between (**) and (**’) are similar as the relation between

(*) and (*’), but somewhat different.
Lemma 2. Any solution u∗ to problem (**) determines a unique solution

(w∗, t∗) to problem (**’) and it holds

w∗ = (AT u∗)+, t∗ = ρ − 〈b, u∗〉,−〈w∗, AT u∗〉 + t∗〈b, u∗〉 = 0,

‖(AT u∗)+‖2 + (ρ − 〈b, u〉)2 + dist2((0, ρ), W ) = ρ2.

Proof. The problem (**’) is the problem of projection of the vec-
tor (0, ρ) onto the set W = {(w, t) : Aw − tb = 0, w ≥ 0} �= ∅ and
(w∗, t∗) = Pr((0, ρ),W ). For this problem, which has a unique solution,
Lagrange function is as follows

L(w, t, u) = ρt − 1
2
(‖w‖2 + t2) − 〈u, tb − Aw〉, w ≥ 0.

The optimality conditions (Kuhn-Tucker conditions) at saddle point (w∗, u∗)
are

−w∗ + AT u∗ ≤ 0, w∗ ≥ 0, D(w∗)(−w∗ + AT u∗) = 0,

ρ − t∗ − 〈b, u∗〉 = 0, Aw∗ − t∗b = 0.
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It follows from here that (w∗, t∗) ∈ W and (w∗, t∗) can be written in terms
of u∗ by

w∗ = (AT u∗)+, t∗ = ρ − 〈b, u∗〉.
Using these equalities we obtain

A(AT u∗)+ − (ρ − 〈b, u∗〉)b = 0.

This is the optimality condition for problem (*) at the point u∗. So, we can
conclude that the vectors (w∗, t∗) and u∗ solve the problems (**’) and (**),
respectively.

Further, using the equality of the values of the primal and dual prob-
lems (**) and (**’), and w∗ = (AT u∗)+, t∗ = ρ − 〈b, u∗〉, one obtains
‖w∗‖2+(t∗)2 = ρt∗. Now, the equality −〈w∗, AT u∗〉+t∗〈b, u∗〉 = 0 is a direc-
t consequence of the optimality conditions w∗ ≥ 0, D(w∗)(−w∗ + AT u∗) =
0, ρ − t∗ − 〈b, u∗〉 = 0, Aw∗ − t∗b = 0. Finally, we have

‖(AT u∗)+‖2 + (ρ − 〈b, u∗〉)2 = 2ρt∗ − ‖w∗‖2 − (t∗)2.

Taking into account

‖w∗‖+(t∗)2 = ‖(AT u∗)+‖2+(ρ−〈b, u∗〉)2, ‖w∗‖2+(t∗−ρ)2 = dist2((0, ρ),W )

we obtain

‖(AT u∗)+‖2 + (ρ − 〈b, u〉)2 + dist2((0, ρ), W ) = ρ2.

�
Let us remark that as a consequence of ‖w∗‖2+(t∗)2+dist2(0, ρ),W ) = ρ2

we obtain the estimation ‖w∗‖2 + (t∗)2 ≤ ρ2 and 0 ≤ t∗ ≤ ρ. The equality
(t∗)2 + ‖w‖2 = ρt∗ can be written as the quadratic equation (t∗)2 − ρt∗ +
‖w‖2 = 0, that in case w �= 0, has real positive solution. This means that
the discriminant D = ρ2 − 4‖w∗‖2 ≥ 0, and ‖w∗‖2 ≤ ρ2

4 .
Farkas’s lemma is contained in the following theorem.
Theorem 2. Let x∗ and u∗ be arbitrary solutions to problems (*) and

(**), respectively, and let the minimum residual vectors z∗ and w∗ be defined
by z∗ = b−Ax∗ and w∗ = (AT u∗)+. Then the following assertions are valid:

(i) Only one of of the system (I) and (II) is solvable.
(ii) If system (I) is inconsistent, then the normal solution ũ∗ to system

(II) and the minimum residual vector z∗ of system (I) are collinear and

ũ∗ =
ρz∗

‖z∗‖2
, z∗ =

ρũ∗

‖ũ∗‖2
;
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(iii) If system (II) is inconsistent, then the normal solution x̃∗ to system
(I) is collinear to w∗ and

x̃∗ =
w∗

t∗
.

Proof. Let us recall that the systems (I) and (II) cannot be consistent
simultaneously. Let us show that one of them must be consistent. Consider
two possibilities separately.

If X = ∅, then pen(x∗, X) > 0, and ‖z∗‖ �= 0. Let us consider vector
ũ∗ = ρz∗

‖z∗‖2 . Multiplying both sides of this equation by b, and taking into
account ‖z∗‖2 = 〈b, z∗〉, we obtain 〈b, ũ∗〉 = ρ. In addition, AT ũ∗ ≤ 0; hence
U �= ∅. We have to prove that ũ∗ is the normal solution to (II),i.e. that ũ∗
is a solution to the problem

min
{ ‖u‖2

2 : u ∈ U

}
, U = {u ∈ Rm : AT u ≤ 0, 〈b, u〉 = ρ}, ρ > 0.

The Lagrange’s function for this problem can be written as

L(u, x̂) =
‖u‖2

2
+ 〈x̂, AT u〉 + λ(ρ − 〈b, u〉), x̃ ∈ Rn

+, λ ∈ R,

and the dual problem is

max{ρλ − ‖bλ − Ax̂‖2 : x ≥ 0, λ ∈ R}.

Let (u∗, x̂∗, λ∗) be a saddle point of this Lagrange’s function. Then u∗ is a
solution to the primal and (x∗, λ∗) is a solution to the dual problem. So, the
Khun-Tucker conditions at saddle point (u∗, x̂∗, λ∗), are

u∗ = −Ax̂∗ + λ∗b, AT u∗ ≤ 0, x̂∗ ≥ 0, D(x̂∗), AT u∗〉 = 0, ρ − 〈b, u∗〉 = 0.

The optimal values of the primal and dual problems (1
2‖u∗‖2 and ρλ∗ −

1
2‖u∗‖2) are equal, so ‖u∗‖2 = ρλ∗. Since U �= ∅, u∗ ∈ U and 〈b, u∗〉 = ρ > 0,
it holds u∗ �= 0 and λ∗ > 0. As a consequence of the previous equalities, we
obtain

u∗ = λ∗z∗, x̂∗ = λ∗x∗, z∗ = b − Ax∗

and it is easy to see that the pair (z∗, x∗) satisfies Khun-Tucker conditions
for (*’). As a consequence of this relations we obtain

u∗ = λ∗z∗ =
ρz∗

‖z∗‖2
= ũ∗,

ρ

λ∗ − 〈b, z∗〉 =
ρ

λ∗ − ‖z∗‖2.
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Hence, for λ∗ = ρ
‖z∗‖2 , vector u∗ = λ∗z∗ = ũ∗ is normal solution to (II)

Now, it is easy to prove that ρ = ‖ũ∗‖‖z∗‖ and z∗ = ρũ∗
‖ũ∗‖2 .

Let us consider the case U = ∅. Then pen(u∗, U) �= 0 and w∗ = (AT u∗)+ �=
0. It follows that x∗ = w∗

t∗ is a solution to (I). Let x̃∗ be the normal solution
to (I),i.e. a solution to the problem

min
{‖x‖2

2
: x ∈ X

}

The Lagrange’s function for this problem is

L(x, µ) =
1
2
‖x‖2 + 〈µ, b − Ax〉,

and the Khun-Tucker conditions at the saddle point (x̃∗, µ∗) are

x̃∗ − A∗µ∗ ≥ 0, x̃∗ ≥ 0, D(x̃∗)(x̃∗ − AT µ∗) = 0, b − Ax̃∗ = 0.

But, from here, with x∗ = w∗
t∗ , µ∗ = u∗

t∗ we obtain the Khun-Tucker opti-
mality conditions for problem (**’). Hence, x̃∗ = w∗

t∗ is the normal solution
to system (I). �

Thus, this Theorem reduces problem of solvability of systems (I) (system
(II)) to minimizing of the residual of system (II) (system (I)). If minimal
residual vector of one system is nonzero, then this system is inconsistent
and the residual can be used in simple formulas to find the normal solution
to the corresponding consistent system.
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