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Abstract

A new general class of distributions (S-class of distributions) for time- 
frequency signal analysis is proposed. This class is derived bj generaliz- 
ing the rescently defined X-distribution. All the known and widely used 
distributions belong to this class (Spectrogram-Short time Fourier trans- 
form, Wigner distribution, Rihaczek distribution, Choi-Wiliams distribu- 
tion, Cohen class of distributions,...). Some particular, new distributions, 
belonging to this class are introduced. It is possible to define the S-coun- 
terpart distribution for each known distribution from the Cohen class, such 
that some of the performances may be improved. This class of distribu- 
tions may be treated as a variant of the author’s L-class of distributions, 
but it may satisfy unbiased energy condition, time marginal, as well as the 
frequency marginal in the case of asymptotic signals. The presented theory 
is illustrated by examples.
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1. INTRODUCTION

Time-frequency analysis has attracted attention of many researchers. 
The main challenge in this area lies in the fact that many fimdamental 
questions are still waiting for viable answers. The whole variety of tools 
for time-frequency analysis, mainly rendered in the form of energy distri- 
butions in the time-frequency plane, has been proposed (for a complete 
list, see the review papers [1,2] and references therein). The oldest method 
for time-frequency signal analysis is based on the Fourier transform (its 
short time variant). It is a linear signal transformation. Мапу perform- 
ances of the signal’s representation шау be improved using quadratic dis- 
tributions. The first quadratic representation was based on the Wigner dis- 
tribution. Afterwards, many other quadratic distributions have been de- 
fined. Cohen has shown that all shiftcovariant quadratic time-frequency 
distributions are just special cases of a general class of distributions, ob- 
tained for a particular choice of an arbitrary function (kemel) [6], Out of 
the Cohen class, the Wigner distribution is the only one (with signal inde- 
pendent kemel) which produces the ideal energy concentration along in- 
stantaneous frequency for the linear frequency modulated signals, [10, 
П, 12]-

In order to improve the concentration of signal’s energy, when the in- 
stantaneous frequency is polynomial function of time, the Polynomial 
Wigner distribution are proposed, [13, 14, 15], A similar idea for improv- 
ing the distribution concentration of the signal whose phase is polynomial 
up to the fourth order, was presented in 18. In order to improve distribu- 
tion concentration for a signal with an arbitraty nonlinear instantaneous 
frequency, the L-Wigner distribution was proposed and studied in [11, 12, 
18, 19]. This distribution is generalized to the L-class of distributions in 
[12, 38]. The Polynomial Wigner distribution, as well as the L-Wigner 
distributions, are closely related to the time-varying higher odder spectra, 
[19, 20, 21, 16], They do not preserve the usual marginal properties, [1,2, 
11], but they do satisfy the gqneralized forms of the marginals. For exam- 
ple, time marginal in the L-Wigner distribution is the generalized power 
|x(t)|2L rather than |x(t)|2. Here, we will present the new S-class of distribu- 
tions which may achieve high concentration at the instantaneous frequency, 
as high as the distributions from the L-class, while at the same time satis- 
fying energy unbiased condition, time marginal and, for asymptotic sig- 
nals, frequency marginal.
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2. DEFINITIONS

The Scaled variant of the L-Wigner Distribution (S-Distribution) of a 
signal x(t) is defined by (for more details see Appendix and [54, 34)]:

00

SDL(t,u) = [ xW(t + ^)х^*(< - ^e-i^dr

— oo

(1)

where х ILI (t) is the modification of х (t) obtaincd by multiplying the 
phase fimction by L, while keeping the amplitude unchanged:

x^(0 = A(t)e>£*<‘> (2)

It is known that, for the ordinary Wigner distribution (eq. (1) with L=l), 
the Ambiguity function may be defined as its two-dimensional Fourier 
transform (FT 2D), [1,2]. Here, wi will introduce the S-Ambiguity function 
and use it to define the S-generalized characteristic function and S-class of 
distributions.

Definition 1: The S-Ambiguity function is a FT,D of the S-distribution:

SAl(9,t) = [ X*l£](u - ^-)xt£1(u + ^-)e >eudu. 
J LLi LLt
U

(3)

Definition 2: Aproduct of SAl(0,t) and an arbitrary function cl(0,t) 
called the kernel, produces the S-generalized characteristic function:

?f)z[41(u + ^e~jtudu- 
LLt LLi

(4)

Definition 3: The S-class of distributions is an inverse FT2D of the S- 
generalized characteristic function:

(5)

SCL(t,u) = H J Jсав' r)z*[I1(u" ž)xW(u+^e~iuTe~is{u~t)dud9dT- 

t u т
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For L=1 this class of distributions reduces to the Cohen class [1,6],
Distribution (5) may be understood as an inverse FT2Dof the product of 

SAl(6,t) and c (0,т) . Thus, it is equal to the two-dimensional convolution 
of fIL(t,co) = FT2d{ cl(0,t)} and SDl(t,oj):

SCL(t,ui) — — у у* П£,(< — u, w — v)SDl(u, v)dudv (6) 

U V

All distributions from the S-class may be treated as smoothed versions 
of the S-distribution.

3. GENERAL PROPERTIES

In this section, we will list some basic properties of the distributions 
belonging to the S-class. Мапу of them may be obtained in a straightfor- 
ward manner, generalizing the ones of the L-class or the Cohen class [1,2, 
38], These properties will be given without proofs, or апу additional ех- 
planation. The attention will be paid only to those for which the S-class 
behaves in a qualitatively different manner than the Cohen class.

10 A distribution from the S-class of distributions is real if its S-general- 
ized autocorrelation function:

SRAL(t, = MGl(9, r)eje,d(). (7)

is Hermitian, SRAJtj) = SRA*L(t,-i). This condition is satisfied for 
cl(0,c) = c*l(-0,-t)

2° The S-class of distributions is time and frequency shift invariant if 
the kemel cl(0,t) is not time (t) and frequency (W) dependent.

3° If a signal is time limited to |t| < T then SCL(t,oi) is limited to the same 
time interval if CL (t,r) = FT0 {cl(0,t)} = 0 for |t/r| > 1/(2L).

5° If distribution SCL(t,®) corresponds to х (t), then SCL(at,co/a) is the 
distribution of |а|'/г x(at) provided that cL(0/đ,ur) = cl(0,t).

6° The integral of SCL(t,co) over co is equal to the signal power |x(t)|2, if 
c,(0,O)=l:

У" SCL(t,u)du = У у zW(t+ ^)г[£1‘(<- ^)e~iuTdTdu ~ H*)!2

<*» Uf т
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7° IfcL(0,0) = l,then

J \x(t)\2 dt = Et 
t

where Ех is the energy of signal x(t).
8° Frequency domain form of SCL (t,co) is

SCL(t,u>) — —- J J J cl(6,t)XI(Lu — -)Xl(Lu + -)e}>te~iT^~u^dud6dr. 

в u т

where XL(co) is the Fourier transform of x[L1 (t).
9° If cL(0,r) = 1, then the integral of SCL(t,co) over time is

J SCL(t,u)dt =-^ J J J cL(0,r) \XL(Lu)\2e-^(u~^dudT= L\Xl(Im)\2 

t * u r

According to the stationary phase method, [36] , we have

Xl(Im) = f x^(t)e~jLu,tdt = 
t

= f A(t)eiL^e-}lMtdt = A(t0)e>^(*(<о)-“‘<>1 j у "Ф k’OJ

The above relation holds for апу signal with continuous A (t) if L -> oo. 
For asymptotic signal [36] (signal with | A'(t)| « | 0'(t)|) for апу L. Note 
that t0 is a function of co defined by ф(10) - co = 0, ^"(t0) 0. It is easy to 
conclude that, for asymptotic signals,

L |Xl(M|2 = |X(w)|2

meaning that the S-class of distributions, in this case, satisfies the fre- 
quency marginal, as well.

4° If an asymptotic signal is band limited to |co| < com, then the S-class of 
distributions is band limited to the same bandwidth if CL(0,co) = FTt{cl(G,t)} 
= 0 for |co/0| > 1/(2L).
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10° For the signal x(t) = A(t) ехр (j ф(0), the mean frequency

f шАС<,(1,ш)(1ш

f SCL(l,^)d^

is invariant with respect to L and it is equal to the instantaneous fre- 
quency, ф'(т) , if CL(0,O) = 1 and ^ђ^|г=0 = 0.

11° Frequency modulated signals representation - The ideal distribu- 
tion, concentrated along instantaneous frequency, is defined by 2лА2б(® 
- ф'())м by A2W(co-^'(t)) if a finite time interval, determined by the win- 
dow <bl(t) = FT’1 {W(co)} is used. For the signal x(t) =Ае'*у, this form may 
be obtained in the Cohen class of distributions, only if the instantaneous 
frequency is a linear function, ф'(1) - at+ b . The distribution which pro- 
duces this concentration is the Wigner distribution (or pseudo Wigner dis- 
tribution). If the instantaneous frequency variations are of a higher order 
than linear, then no distribution (with signal independent kemel) from the 
Cohen class can produce the ideal concentration.

Theorem 1: The S-cIass of distributions for L-> oo is equal to the 
ideal form A2(t)W(co-^’(t)) for апу frequency modulated signal x(t) = 
А(1)еж,) if the derivatives of the phase function ф(0 are finite, A (t) is 
continuous, and lim cl(0,t) = w(t), where w(t) is a finite duration win- 
dow. L—>co

Proof: For a signal of the form x(t) = A(t)e'#l), expanding ф (u ± t/2L) 
into a Taylor series around u, up to the third order term, we get:

00

SCL((u)=^~ Цј cL(6, т)А*'^те> —^r^-^-^dudedr

-CQ

where т^ , т2 are variables 0 < | т(2| < |t/2L| . If ф(3)(т) and ф(п)(т), n > 3 are 
finite and the variable т may assume only finite values, then for a large L,
the value lim ехр (јф<»(и+т,)+ф<3>(и-тг) 
so we get: L-><» J 3!L2

= j, and A(t + t/2L)A(t-t/2L) = А2(т), 
8
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$CL(t,w) S ^-£1 ууу c£(0,T)^*'(u)Te’'9‘->WT->eududWr (9)

—oo

This way the S-class of distributions locally linearizes the instantane- 
ous frequency characteristics. Relation (9) may be written in the form:

OQ

SCL(t,«)SX2(t) nL(t-u,w-^(u))du 0°)
— CQ

where ПЈ/,а>) is the FT,D of cL(0,r) and corresponds to the auto-term func- 
tion in the Cohen class of distributions. If lim cl(0,t) = со(т) , then, for 
large L, n^t,®) = 6(t)W(co) and SCL(t,co) = A2(t)W(co - ^'(t)). This form 
corresponds to the ideal distribution concentration.
Q.E.D’

12° Theorem 2: For the unity amplitude signals, an L - th order dis- 
tribution, belonging to the S-class, may be obtained from its L/2 - th 
order form if cl(0,t) = c1;2(u,t/2)cL/2(0-u, t/2) for апу u.

Proof: It is evident from (2) that:

SAL(9, r) = SAL/2(9, т/2) SAL/2(9, t/2)

where *0 is a convolution in 0. According to the theorem’s assumption, it follows 
l!Ui MGL(9, t) = MGL/2(9, t/2) MGL/2(9, t/2)

Taking the two-dimensional Fourier transform of both sides, we get:

SCL(t,w) = J SC L/2(t,w + X)SCL/2(t,u> — A) —. (Н)

Note: The preposition of Theorem 2 is satisfied by the: Wigner, 
Rihaczek, Page, Levin,... type kemels [1,2]. This theorem will be exten- 
sively used for the realization of the distributions belonging to the S-class.

Q. E. D.
Corollary: For the unity amplitude signals, апу L-th order distribu- 

tion may be expressed in terms of the L/2 - th order S-distribution.
Proof: Relation (11) is valid for the S-distribution. Inserting this rela- 

tion into (6) we get апу distribution expressed in terms of the L/2 - th order 
S-distribution.

Q. E. D.
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4. SPECIFIC DISTRIBUTIONS

Here, wi will define some particular distributions belonging to the S- 
class. Only few interesting properties will be considered for each of them.

4.1 S-distribution

We have already given the definition of the S-distribution, eq. (1), which is 
the most important member of this class. Since it is taken as a basis for the 
generalization, obviously its kemel is cL(0,t) = 1 or for its pseudo form 
cl(0,t)=ci)l(t) . The properties and applications of the S-distribution are stud- 
ied in details in [52,34], The realization will be described in the next sections.

4.2 S-Rihaczek distribution

The S-class counterpart of the Rihaczek distribution, in the pseudo form, 
is defined as:

SRD[,(t,u) = У j44l(t + ■^■);r*ILl(t)w£,(7-)e~-7u'T dr. (12)

This distribution is obtained from the general one with cL(0,t) = e'0T/ 
2Lg>l(t)

For a frequency modulated signal x(t) = A ехр(/ф(1)), with ф(0 = a +bt 
+ct2/2 after expansion of ф(1+т/Е) into a Taylor series, we get:

LRDL(t,w) = A2i(w -<p'(t)) FT{wL(r)e>"a/(2i)
— 27tA2W(w-<p'(t)) L—tx>

This could be expected, since the kemel cl(0,t) = e'01/2L<nL(T) ->со(т) as 
L—>oo i. e., its limit satisfies the condition of Theorem 1. But, the conver- 
gence in this case is of order 1/L, what is worse than in the S-distribution.

4.3 S-Spectrogram andS-Short time Fourier transform

The S-Spectrogram is defined as the squared modulus of the S-Short 
time Fourier transform (S-STFT):

SSPECL(t,w) = wL(r)x^(t + y)e_JWTdr L (13)

Мапу specific properties of the S-STFT and S-Spectrogram may be 
easily derived form the widely known properties of the STFT. Here, we
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will focus the attention only to the one which treats the dependence of 
frequency and time resolution on the window function. First, assume that 
the signal х (t) is short, concentrated at t=0 into an interval At —> 0. If the 
window coL(f) is time limited to |t| < T/2 (where T » At), then the S-STFT 
is time limited to |t| < T/(2L) i. e., its duration is d = T/L. If we now assume 
a sinusoidal signal x(t) = exp(/co0t) and the same window, we get 
SSTFTl(co,t) = WL(co - со0)е/£и"". For example, let the window be rectangu- 
lar. The width of its Fourier transform WL(co) (the width of its main lobe) is 
D = 4n/L. The product of the durations d and D (the form of uncerainty 
principle in this case) is dD = 4n/L This relation states that the S-STFT, 
with a given L, can not be localized in time-frequency plane with arbitrary 
small d and D simultaneously (representing the resolutions in time and 
frequency directions). But, the previous relation permits an important con- 
clusion: Ву increasing L, the product dD can be made arbitrary small, 
meaning arbitrary high resolutions in both directions, simultaneously.

4.4 S-Reduced interference distributions

Although the Wigner distribution satisfies most of the desired proper- 
ties, it is rarely used in its original form. The main reason lies in the very 
emphatic cross-term effects. These effects may be even more emphasized 
in the L-class distribution for L > 1, since the L-z7/ power of signal шау 
increase the number of cross-terms. Unfortunately, these terms behaves as 
the regular auto-terms. Thus, the straightforward generalization of the RID 
distributions (Choi-Williams, Zao-Atlas-Marks, Bom-Jordan, Sinc,... [1,2]) 
would reduce only a limited number of cross terms resulting from the 
product of xL(t+r/2L) and x’L(t - x/2L). Originally, the S-class of distribu- 
tions may be understand as the L-class of the signal xM(t) = xi/L(t). Thus, 
even if the amplitude of the original signal x(t) is fast-varying (signal is 
multicomponent), after the modification x(t) -> xl/L(t) we get slow-varying 
amplitude, i. e., a monocomponent signal. Consequently, the recursive 
method (based on Theorem 2), although very efficient in the realization of 
the L-class of distributions, will produce qualitatively the same result as 
the direct realization of the S-class. But, still it is possible to use the S- 
method in the realization of the cross-term free S-distibutions. The only 
problem that has to be resolved is how not to increase the order of ampli- 
tude during the recursions. Such recursions may be achieved using a 
slightly modified S-method, for the kemels satisfying the conditions of 
Theorem 2.

SDM4(f,w) = I P(X)SDL/2(t,w + X)SD^,(t,w - A)~. (14) 
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where subscript<n> denotes a normalized version of distribution SDl.(t,C£)) 
i. e. , the distribution SDl/2(t,co) if all signal components had unity ampli- 
tude. Details on the normalization will be provided in the next Section. 
Thus, starting from the distribution that is cross terms free, we may control 
(reduce or remove) the cross terms in the subsequent interations using the 
function P(X) which is of low-pass filter type, while keeping the order of 
the signal amplitude unchanged. The numerical aspects of the realization 
of distributions, that may be written in form (14), are also described in [11, 
49],

5. ON THE REALIZATION

In our previous work we have described two methods for the L-Wigner 
distribution realization. They can be directly applied to апу distribution 
from the S-class.

5.1 Direct method

Direct method is based on the modifying signal x(t) into x[L1(t) accord- 
ing to definition, its oversampling L times and keeping unchanged the 
number of samples used for calculation. Regarding the las assumption, 
this method is not computationally much more demanding than the reali- 
zation of апу ordinary (L=l) distribution. In the case of multicomponent 
signals, this method will produce signal power concentrated at the result- 
ing instantaneous frequency, according to Theorem 1.

5.2 Recursive method

Recursive method is based on Theorem 2. This method provided si- 
gnificant advantages in the realization of the L-class distributions: the cross 
terms are reduced (eliminated); the oversampling is not necessary; 
computationally, it may be more efficient than the direct method. Particu- 
lar numerical examples, realized by these methods, along with the details 
on the methods, may be found in [11, 12, 19, 20, 49, 50], But, if we want 
to use this method in the realization of a distribution from S-class wi should 
modify signal as follows x(t) - xM(t) = x1/L(t) - xM[L,(t). Note that in the 
initial stage, taking the 1/L - th power of the signal (for large L) we trans- 
formed the signal into monocomponent one, what can not be recovered in 
further steps. Thus, in the case of S-distributions, the recursive method 
produces qualitatively the same result as the direct method. The only ad- 
vantage shich remains is that this realization is less noise sensitive than the 
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direct realization. For this reason we propose the scaled recursive method 
for the realization of a distribution from the S-class.

5.3 Scaled recursive method

Here, we will derive an efficient method for the realization of the S- 
distribution in the case of a multicomponent signal

p 

*(0 = 52 (t) 
1= l

such that, theoretically its S-dist'ribution is equal to the sum of the S-distri- 
butions of each component separately, i. e. :

p
SDLtX(t,u) = 5?.S'D£.r,(t,u>)

i=i

The marginal properties in this case are:
1 f p r p
- = and /S'D£,I(t,w)dt = £|Ai(w)|2 (15)

u i=l Jt i=l

Let us start from the Short time Fourier transform of х (t)

STFT(t,u) = у w(t)x(1 + т)е~Р“гdr = w(r)A(t + т)^^+т)е~)шт4г (\6)
T т

As it is known this transform does not have cross-terms between, in 
time-frequency plane, separated signal components. In order to produce 
higher order S-distributions we will need an amplitude normalized STFT 
(t,a>) which will be denoted by STFT(n) (t,co) and defined as:

STFT^(t,w) = I w(T)e^^Th-^TdT 

т

If amplitude A (t) is slow-varying, we may easily get STFTn)(t, a>) from 
STFTn)(t,a)as: <------

STFT<nXt,u) = STFT(t,u)Jj~ (17)
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where E (t) = J |STFT(t,co)|2 da>. In the derivation of the above equation 
the Parseval’s theorem is used (f|STFT(t,co)|2 da> - J |®(т)А(1+т)|2 dr)1

If the signal is multicomponent, with slow-varying amplitudes of each 
component, separated along the frequency axis for апу t (i. e. , signal 
components lie, along <n., inside regions Qi which do not overlap), then:

STFT^(l,u) = (18)
1=1 V

where E , (t) = J\STF(t, a>)\2 da> and Пп(а>) is equal to unity for inside 
and zero outside (for illustration see Fig. 2). Knowing STFT (t, a>) and STFTn) 
(t, a>), we may easily realize the distribution:

$i(t,w) = [ ^2{^)А^ + ^)еј^+^е-Ј^-^е-^тНт 
J Л L
т

according to the S-method, as:

Si(t,w) = j P(9)STFT(t,w + 0).5TFT*(n)(<,w - 9)d9 (19)

»
where Р(И) is a trequency aomain winaow tunction, wnicn nas to ое wide 
enough to ensure the integration over auto-terms and narrow enough to 
avoid cross-terms. Recently, we proposed a very simple signal dependent 
and self adaptive technique, which gives all auto-terms without cross-terms, 
[35], After we get cross-terms free S^t,®), then we may get the S-distribu- 
tion for L=2, as:

SD2(t,w) = j w\~)A(t + J)4(t - T-)Fu,,TTM‘TT’“rdr 

т

convolving two S^hco), as

SD2 (t, w P(0)’^i(Lw + 0)S\(t,w — 9)d9 (20)

1 Slow-varying amplitude A(t) means that (fl(t)A(t+r) « (o(t)A(t). This condition 
may be written in a less restrictive form. Assume, for example a Hanning window со(т) 
and A(t+r) = A(t) + A'(t) т+ A" (t)r2/2. The scaling factor in (16) remains the same if 
A2 (t)»[A (t) + A (t) A" (t)] / 6.17 + A"2 (t) /120 i.e. if A (t), A'(t), A"(t) are of the same 
order.
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where again P(0), eliminates (reduces) cross-terms, while the auto-terms 
are the same as in the original S-distibution of order 2. This procedure 
may be continued up to апу order of the S-distibution. Namely, convolving 
SD, (t, a>) and its normalized version SDfn> (t, a>) we get SD4 (t.) and so on. 
Efficiency of the proposed realization (as well as some other details on the 
realization itself) will be demonstrated, in the next Section, on a very com- 
plex numerical example, including a high amount of noise, [40, 41],

6. EXAMPLES

Example 1: Consider Gaussian chirp monocomponent signal of the 
form:

x(t) = Ae~at3'2e)bt2'2^et
(21)

a) The Wigner distribution of x(t) may be obtained in a closed form 
as:

W£)(t,w) = f z(t + y)x*(t - %)e~iurdr = 
— oo

= A2e~at2 f e-ar2l^^tT+^re.-iurdr = A2e~at2 J^-e 
-oo * a

This distribution produces the complete concentration at the instanta- 
neous frequency only for a -> 0, when the Gaussian chirp signal becomes 
the purely linear frequency modulated signal, [10, 11, 12]. For апу other 
a, the distribution is spread around the instantaneous frequency.

b) The S-distribution of the Gaussian chirp signal is:

SD(t, w) = J + x.)x«W(t - i-)e->“rdr =
— OO

= LA2e~nt2 f _ дзр-ае

For a / L2 -> 0 follows:

SD(t,ш) = A2e-at22n6(u - bl - c). (22)
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Figure 1: Time-frequency representation of a Gaussian chirp signal: a) Wigner 
distribution, b) the S-distribution with L=8.

Figure 2: Illustration of the reference level and regions of support: a) Noisy 
signal, b) Non-noisy signal, c) Regions of support

This is, indeed, just the ideal time-frequency concentration at the in- 
stantaneous frequency for апу a. The convergence toward the complete 
concentrated distribution (the distribution of 0 uncertainty) is of order L2.

The Wigner distribution and the S-distribution of signal (21) are pre- 
sented in Figs.la,b, respectively, for A= 1, a =1, b = 1, c = 0.5 and L = 8.

Example 2: Consider a multicomnonent real signal:

®(0 = e—'O- «)’ cos[10 c.os(2?rt) + 30?rt] + 0.5e~H’- s>’cos(l 10rt)+

+0.707e-3°(,-° <)3 cos(24?rtJ + 60xt) + n(t)

where n(t) is a Gaussian white noise. Signal is sampled within the inter- 
val te [0,1] at 1/N, with N=128. Hanning window of the unity width, as 
well as a rectangular window P0 with signal dependent width, are used. 
The realization is done according to the procedure described in Subsec- 
tion 5.3. Here, we will provide some additional details:

1. First, we have to determine regions Q. in order to obtain scaling 
factors in (18). For this purpose we assume the reference level Rlev (t) for 
a given instant t, as 7?fev (t) = m.xJ\STFT(t,a>)\2} /Q2. The regions Q. are 
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defined by the compact regions where | STFT(t,w)\2 (Rlev(t), Fig. 2 a, b, c. 
Factor Q defines reference level. For non-noisy signals this value may be 
very high. But, in the noisy cases, in order to avoid false auto-term detec- 
tion, this factor should not be too large. We found a very appropriate value 
for non-noisy, as well as for noisy, signals Q2=25. Also, in order to avoid 
the break of region Q. in the cases, as well as in the amplitude of a single 
auto-term changes sign, we assumed that Q. ends not if a single value of 
\STFT(t, a>)\2 is bellow R|ev(t), but if two subsequent values of \STFT(t, a>)\2 
(at кДа> and (k+ 1)Да>) are less than the reference level.

2. After we fmd regions Q. then the scaling factors for each region, 
according to (18), are determined.

3. Convolution of STFT (t,a>) and its normalized version STFVn>(t,a)) 
is calculated, according to (19). Here, we used signal dependent rectangu- 
lar window P(0) width. For a given со inside Q. integration over 0 (deter- 
mined by the width of P(0) is performed until апу (0+0 or co-0 goes outside 
Q. This way we completely avoid possibility ofcross-terms between non- 
overlapping auto-terms. Also, the accumulation of the noise is kept at the 
lowest possible level, avoiding all summations outside an auto-term.

4. Finally, convolving two SJt,®) according to (20), we get cross-term 
free S-distribution of order 2. Since a high auto-term concentration is 
achieved in Sft.at) then a very narrow window P(0) in (20) may be used. 
Even with P(0) = лб(0) we get very good results for all considered signals.

5. If one wants to get the S-distribution of a higher order that L=2 (cor- 
responding to the fourthorder distributions) then the steps from 1. to 4. 
have to be repeated starting from SD, (t,a>) instead of STFT (t,a>), and so 
on.

On Fig. За) Spectrogram is shown. Figs. 3b and Зс presents Wigner 
distribution, as well as the S-method (auto-terms as in the Wigner distribu- 
tion, but without cross-terms). Cross-terms free S-distribution, with L=2, 
is shown in Fig 3d. here, we also presented the marginals obtained from 
the S-distribution (thick line), as well as the theoretical ones, according to 
(15), (thin lines). Note that w(t) does not influence the time-marginal, while 
the frequency marginal is smoothed by the Fourier transform of the result- 
ing window in the S-distribution.

Case with a high amount of noise (SNR = 4[c/B] with respect to the total 
signal energy or [3B], -3[dB]and [dB] with respect to the first, second and 
the third signal components, separately, is shown in Fig. Зе and 3f, (S- 
method and S-distribution of the second order, realized according to the 
described procedure).
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7. CONCLUSION

The S-class of distribution, as a generalization of the S-distribution, is 
proposed. Method for the efficient realization of the S-class of distribu- 
tions is presented. Theory is illustrated on the numerical examples. The 
proposed distributions may achieve arbitrary high concentration at the 
instantaneous frequency, satisfying the marginal properties. Out of the 
known distributions, this was only possible in a very special case of the 
linear frequency modulated signals by the Wigner distribution.

Appendix A
A SHORT REVIEW OF THE W1GNER
REPRESENTATION IN THE QUANTUM
MECHANICS AND PSEUDO QUANTUM
SIGNAL REPRESENTATION

The quantum mechanics form of the Wigner distribution2, for station- 
агу problems, is given by [3, 4]:

oo
Wfy,p)=-L [ +

л/Г J Z Z
-oo

(23)

where у is a wave function. The wave function in the previous equation 
satisfies the Schroedinger equation +№ = V(z}<i> if W(z,p.i) satisfies 
the Wigner quantum equation:

i)W p 9W 1 Г jh (9 jh д '
“V +---- т—=-гг V(x + — — } - v (х - — -5-)<Н ni ()i: jh 2 <)р 2 ()р (24)W

2 Wigner, for his theory, received the Nobel prize in 1963.
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Figure 3: Time-frequency representation of a multicomponent signal: a) Spec- 
trogram, b) Wigner distribution, c) S-method, d) S-distribution with L=2, 

including marginal properties. e) S-method of noisy signal, f) S-distribution of 
noisy signal



202 Ljubiša Stanković

where h is a constant, h - /г/(2р) and h = 6,6 х 10’34 [J s] is the 
Planck’s constant. It may be shown that the Wigner representation and the 
Schroedinger’s one are equivalent, i. e. they uniquely follow from each 
other [3, 4]. Expression:
may be understood as a quantum correction of the classical Liouville’s form, [3,4]:

q=4 1
2 Op Z Op__)j и> - и н(25)

describing the particle motion with: dx/dt = p/m and dp/dt = -VV(x) = - 
V'(x) where х is the position, m is the mass, p=mv is the momentum of the 
particle, and V(x) is a potential at the position х. This is a significant prop-

dt m дх др (26)

erty of the Wignei representation, since it may be used to transform the 
solutions from the classical to the quantum forms [4, 22] or to deal with 
problems with mixed (quantum and classical - semi classical) variables.

Апу function

V>(z) = 4(z)e>W = 4,/n!(*) (27)

with y0(x) = A^e'^’being A-independent, is the solution of the Schroe- 
dinger’s equation if A(x) = A and ф(х) = ах +b or if:

Л"(х) 
Л(х)

*"<1) + ’'(1,7^ + ’(1’7м + л «|^'(х-)|2 (28)

when:
[^'(r)]2 = 2тУ(ж). (29)

In the light of (28), we mention again that h is of order 10’34. Thus, for апу 
function (27), satisfying (28), the Wigner distribution may be written in 
form: ~

И^(х, P)=±J 4,/П1(х + ^)^(1/Л1(х - (30)
— OO

The wave function defined by (27), along with (28), (29) and with A (х)=A, 
is the form of solution for the Schroedinger’s equation, proposed by Wentzel
[27] , It is efficiently used in the quantum mechanics problems, especially for 
the transmission coefficients calculations. Formally, the same form as (27), with 
A (х) = A, is used as a wave function in the Feynman’s theory of path integrals
[28] :
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V'[*(*)] = -4eJ

fwhere S[x(t)] = J L(x,x,f)dt is h-independent and L = mx2/2 - V(x,f) is the 
Lagrange’s operator.

Here, we will also indicate that the uncertainty principle in the Wigner 
representation, in quantum mechanics, 4 states that the product of durations 
in the directions of х and p axis in the (x,p) plane can not be arbitrary 
small, i. e. , the wave function can not be concentrated simultaneously in 
(Дх,Лр) in an arbitrary small interval. This product is greater or equal to h2/4

In the signal analysis, the variables: frequency ® and time t are used, 
instead of p and х. The Wigner distribution with these coordinates is de- 
rived as:

WD(t,w) = у .,(/+ I).s-(/_ I)e-^.rfr (3!)

The equivalence between the quantum mechanics definition (23) and 
signal analysis definition (31) is obvious with: y(x) - s(t) To be precise, the 
analogy exists between the spaces (co,f) and (k, х), rather than between 
(<n,f) and (p, х). Equation (31) follows from (23) with k= p/n a> and х —> t 
(the presence of factor 1/2л is due to the different forms of the Fourier 
transforms commonly used in the quantum mechanics and signal analysis 
and we intentionally did not want to modify апу of them), [6, 29, 30, 31, 
32, 33]. Of course, in the signal analysis a signal need not to satisfy the 
Schroedinger’s equation (like the wave function in (23) does), but it is 
rather obtained as a result of some physical process or theoretical analy- 
sis.

For the signal s(t) = A exp(/^(7)) the Wigner distribution (31) assumes 
the form:

WD(l,u) = A2f =
— oo

= A2 f еЈ[^,+‘)“'*(‘-г)]-)'*'(‘)ге-'*'(‘)’ге->'*'т</Т.
—oo

f 00Note that the factor A2 J e'^c'^di: produces the ideal distribution 
concentration 2 ^A25(co-^'(7))^while the term with the phase, which is for- 
mally similar to (25).

Q = j + J) - 4(t - 1)1 - јф'(t)r = jl^3)(t)r3 + ... (32)
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produces the spread of distribution around the instantaneous frequency.
Factor Q is equal to zero if the instantaneous frequency </>'(t) is linear 

function of time,i. e. , if ^(t) = 0, for n > 3. In the quantum mechanics, 
the quantum correction term Q was equal to zero for the potential function 
such that the terms with An‘‘, V(n)(x), n > Заге negligible. This is in a com- 
plete agreement with (29), where the linear fimction ф\{) corresponds to 
the quadratic function V(x).

We now pose the question: Is it possible to use a form of the Wigner 
distribution in the signal analysis other than (31)? In particular, we look 
after a form which would keep a constant corresponding to in (25) and
(23). This would be of great help in the analysis of the non-linear fre- 
quency modulated signals, especially since in this analysis one is not re- 
stricted to the physical (real world) value of this constant. Thus, we would 
have an opportunity to choose its most sutiable value. Now, we will present 
a reflection which icd to that form of the Wigner distribution.

Let us for the sake of argument, transcend the real world and enter the 
realm of a thought experiment. Assume that there are fictitiou ,,worlds“ in 
which may assume some other constant values, not just the conventional 
one. This fictitious constants will be denoted by Forms associated with 
this new constant will be, in the sequel, referred to as “pseudo quantum 
forms".

Having in mind this freedom, we may reinterpret the above signal 
processing definitions in the following way: On the basis of the signal, 
given in the signal analysis, we generate the „pseudo wave function“ with 
the corresponding „pseudo particle" having the ,,pseudo-momentum“ 
^ft^zuThe transformation of a signal into the „pseudo wave function“ is 
done according to (27). Thus, the signal analysis form of the Wigner dis- 
tribution (31) may be treated as a special case of the „pseudo quantum“ 
form of (23) with hf = 1 (in the ,,world“ where q> s co). Now, we may posc 
the question: Why to be restricted to hf = 1? or: Is it possible to obtain апу 
improvement in the signal analysis using some other values for hf ?

It is obvious from the quantum mechanics forms that the uncertainty 
may be decreased by using smaller values of hr This means, if we are 
able, for a given signal, to form a „pseudo wave function“ having differ- 
ent „pseudo momentums“ in different fictitious ,,worlds“ (with different 
constants Af), then we could always go to a ,,world“ with a small uncer- 
tainty and analyze the signal in that ,,world“ (in its (<p,t) plane). For exam- 
ple, if the signal is linear frequency modulated, then the Wigner distribu- 
tion in the ,,world“ hf = Iproduces the ideal concentration of the signal 
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energy at its instantaneous frequency, eq. (32). So, in this case there is no 
need to go to апу ,,world“ with smaller hr But, if the signal is not linear 
frequency modulated, we should go to smaller in order to improve con- 
centration. How far to go with decreasing depends on how significantly 
the non-linearities are exhibited in the signal (i. e. , how large is the influ- 
ence of the higher order terms).

In this way, by varying he value of we are in position to influence 
the uncertainty of the „pseudo quantum“ (time - „pseudo momentum“) 
signal presentation, while, as it is shown in the paper, keeping the most 
important properties of the time-frequency representation invariant. 
Abstracting the physical sense of the quantum mechanics representa- 
tion we defined the „pseudo quantum“ signal representation. Its basic 
form, according to the above consideration, with:A.= 1/L, j -> х, 'х -> t, 
p -> co, is the S-distribution: 

хтУ iuTdr
Z jL

(33)

with the spread factor:

Q - jL L(t + 77) - ФЏ - ^-)] - јф'Џ)т = ј-^—ф^Џјт3 +

APPENDIX B

S-WAVELET DISTRIBUTIONS

Expressions (5) and (6), as wcll as the complete theory presented in the 
paper, may be easily extended to the time-scale energy distributions [17]:

a) = У У Пх_(—, w0 - av)SD^(u, v)dudv (35)

U V

where a is a scale factor a = co0/a). The properties and special cases of 
this class of distributions may be derived starting from the previous ones 
and the ones described in 11, 17.



206 Ljubiša Stanković

REFERENCES

[1] L. COHEN: ,,Time-frequency distribution - a review“ Proc.'IEEE 
vol. 77 pp. 941-981, July 1989.

[2 F], HLAWATSCH AND G. F. BOUDREAUX-BARTELS: „Linear 
and quadratic time-frequency signal representations“ IEEE Signal Process- 
ing Magazine, April 1992, pp. 21-67.

[3] E. P. WIGNER: „Оп the quantum correction for thermodynamic 
equilibrium“, Phys. Rev. , vol - 40, 1932, pp. 749-759.

[4] V. I. TATARSKI: ,,Wigner’s representation in quantum mechanics“, 
Uspehi Fiziceskih Nauk (Advances in the Physics), Soviet Acad. Sci. Press, 
Moscow, vol-139, no. 4, April 1983, pp. 587-619, in Russian.

[5] J. VILLE: „Theorie et applications de la notion de signal analytique“, 
Cables et Transmission, vol-2, no. 1, 1946, pp. 61-74.

[6] L. COHEN: „Generalized phase-space distribution functions“, J. 
Math. Phys. , vol-7, 1966, pp. 781-786.

[7] W. RIHACZEK: „Signal energy distribution in time and frequency“, 
IEEE Trans, Inform. Theory, vol-14, 1968, pp. 69-274.

[8] C. H. PAGE: „Instantaneous power spectra“, J. Appl. Phys. , vol- 
23, 1952, pp. 103-106.

[9] H. I. SHOIAND W. J. WILLIAMS: „Improved time-frequency rep- 
resentation of multicomponent signals using exponential kemels“, IEEE 
Trans. on ASSP, vol-37, 1989.

[10] L. COHEN: „Distributions concentrated along the instantaneous 
frequency“ SPIE, vol-1348, Advanced Signal Proc. Alg. , Architect., and 
Implementations, 1990, pp. 149-157.

[ 11 ] LJ. STANKOVIĆ: „Ап analysis of some time-frequency and time- 
scale distributions“ Annales des telecommunications, vol-49, no. 9/10, 
Sep. /Oct. 1994, pp. 505-517.

[12] LJ. STANKOVIĆ: „ A method for improved distribution concen- 
tration in the time-frequency signal analysis using the L-Wigner distribu- 
tion“ IEEE Trans. on Signal Processing, vol-43, no. 5, Мау 1995.

[13] B. BOASHASH AND B. RISTIĆ: ,,Polynomial WVDx and time- 
varying polyspectra“, in Higher order statistical processing, B. Boashas et 
all. , eds. , Longman Cheshire, 1993.

[14] B. BOASHASH AND P. O’SHEA: ,,Polynomial Wigner-Ville dis- 
tributions and their relationship to time-varying higher order spectra“, IEEE 
Trans. on Signal Processing, vol-42, no. 1, Jan. 1994, pp. 216-220.



New S-class of time-frequency distributions 207

[15] B. BOASHASH, B. RISTIĆ: ,,Analysis of FM signals affected by 
Gaussian AM using reduced WV trispectrum“, in Proc. ICASSP 93, vol. 4, 
pp. 408-411

[16] J. R. FONOLOSA AND C. L. NIKIAS: ,,Analysis of transient sig- 
nals using higher order time-frequency distributions“ in Proc. ICASSP 92, 
pp. V-197-200.

[17] O. RIOUL, P. FLANDRIN: „time-scale energy distributions: agen- 
eral class extending wavelet transforms“ IEEE Trans. on SP. no 7, July 
1992, pp. 1746-1757.

[18] LJ. STANKOVIĆ, S. STANKOVIĆ: „Ап analysis of the instanta- 
neous frequency representation by some time-frequency distributions - 
Generalized wigner distribution“ IEEE Trans. on Signal Processing (sub- 
mitted Nov. 1991), vol-43, no. 2, Feb. 1995.

[19] LJ. STANKOVIĆ: „ A multitime definition of the Wigner higher 
order distribution: L-Wigner distribution“ IEEE Signal Processing Letters, 
vol. 1, no. 7, July 1994, pp. 106-109.

[20] LJ. STANKOVIĆ: „ an analysis of the Wigner higher order spectra 
of multicomponent signals“ annales des telecommunications, vol-49, no. 
3-4, March/apr. 1994, pp. 132-136.

[21] J. R. FONOLOSA AND C. L. NIKIAS: ,,Wigner higher ordermo- 
ment spectra: Definitions, properties, computation and application to the 
transient signal analysis“, IEEE Trans. on Signal processing, vol-41, no. „. 
Jan. 1993, pp. 245-266.

[22] YU. M. SHIROKOV: „Perturbation theory with respect to the Planck 
constant“ Theoreticeskaya i Matemariceskaya Fizika, soviet Acad. Sci. 
Press, Moscow, vol-31, no. 3, June 1977, pp. 327-333, in Russian.

[23] R. F. HARRINGTON: „Time-harmonic electromagnetic field“, 
McGraw Hill, 1961.

[24] LJ. STANKOVIĆ AND S. JOVIĆEVIĆ: „Modified least squares 
method with application to diffraction and eigenvalue problems“ IEE Proc. 
Part H, vol-135, no.5, Oct. 1988, pp. 339-343.

[25] LJ. STANKOVIĆ AND S. JOVIĆEVIĆ: „ Boundary condition ех- 
pansion of basis functions method implemented by fast fourier transform 
algorithms“, IEEE Trans. on Microwave Тћеогу, Tech. , vol-38, no. 3, 
March 1990, pp. 296-301.



208 Ljubiša Stanković

[26] S. JOVIĆEVIĆ AND LJ. STANKOVIĆ: „The least squares bound- 
агу residual method in elecrtostatic and eddy current problems“ IEEE Trans. 
on Magnetics, vol-26, no. 2, March 1990, pp. 1117-1122.

[27] G. WENTZEL: „Einfuhrung in die quantentheorie der wellen- 
felder“, Zs. f. Phys. , 38, 518, 1926.

[28] R. P. FEYNMAN AND A. R. HIBBS: ,,Quantum mechanics and 
path integrals“, New York, 1965.

[29] B. ESCUDIE AND J. GREA: „Sur une formulation generale de la 
representation en temps et frequence dans l’nalyse de signeaux d’energie 
fmie“, C. R. Acad. Sci. Paris, vol-A283, 1976, pp. 1049-1051, in French.

[30] P. FLANDRIN AND B. ESCUDIE: „time and frequency represen- 
tation of finite nergy signals: a physical property as a result of a Hilbertian 
condition“, Signal Processing, vol-2, 1980, pp. 93-100.

[31] T. A. C. M. CLAASEN AND W. F. G. MECKLENBRAUKER: 
„The Wigner distribution-Atool for time-frequency signal analysis; Part “, 
Philips J. Res. , vol-35, 1980, pp. 217-250.

[32] T. A. C. M. CLAASEN AND W. F. G. MECKLENBRAUKER: ,,the 
Wigner distribution-A tool for time-frequency signal analysis; Part “, Philips 
J. Res. , vol-35, 1980, pp. 276-300.

[33] T. A. C. M. CLAASEN AND W. F. G. MECKLENBRAUKER: 
„The Wigner distribution-A tool for time-frequency signal analysis ; Part “, 
Philips J. Res. , vol-35, 1980, pp. 372-389.

[34] LJ. STANKOVIĆ: ,,Highly concentrated time-frequency distribu- 
tions“,ETF Joumal of Electrical Engineering, vol-5, no.l, pp. 19-35,1995.

[35] S. STANKOVIĆ, LJ. STANKOVIĆ: „Ап architecture for the reali- 
zation of a system for time-frequency signal analysis“, IEEE Transactions 
on Circuits and Systems.

[36] A. PAPOULIS: „Signal analysis“, McGraw-Hill, 1977.
[37] B. BOASHASH: „Estimating and interpreting the instantaneous 

frequency of a signal-Part 1: Fundamentals“, Proc. of the IEEE, vol-80, 
no. 4, April 1992, pp. 519-538.

[38] LJ. STANKOVIĆ: ,,L-class of time-frequency distributions“, IEEE 
Signal Processing Letters, vol-3, no. 1, Jan. 1996.

[39] LJ. STANKOVIĆ, Z. USKOKOVIĆ, S. STANKOVIĆ, Z. 
PETROVIĆ, D. PETRANOVI; „Robust time-frequency signal analysis using 
the L-Wigner distribution“ in the Proc. of ASILOMAR ’94 Conf. on Sig- 
nals, Systems and computers, Pacific Goreve, CA, Oct. 1994.



New S-class of time-frequency distributions 209

[40] LJ. STANKOVIĆ AND S. STANKOVIĆ: ,,Wigner distribution of 
noisy signals“ IEEE Trans. on Signal Processing, vol-41, no. 2, Feb. 1993, 
pp. 956-960.

[41 ] LJ. STANKOVIĆ AND S. STANKOVIĆ: „Оп the Wigner distribu- 
tion of discrete-time noisy signals with application to the study of 
quantization effects“ IEEE Trans. on Signal Processing, vol-43, no. 7, July. 
1994, pp. 1863-1867.

[42] LJ. STANKOVIĆ: ,,Wigner higher order spectra of multicomponent 
signals: A method for higher order time-frequency analysis“, Proceedings 
of ICDSP, Nicosia, Cyprus 1993, pp. 100-105.

[43] LJ. STANKOVIĆ: „Adistribution for time-frequency signal analy- 
sis“, Proc. of ICDSP, Nicosia 1995

[44] S. STANKOVIĆ, LJ. STANKOVIĆ, Z. USKOKOVIĆ: „ a method 
for multidimensional time-frequency analysis“, IEEE Procedings of the 
Eight Workshop on IMDSP , Cannes, France 1993, pp. 154-155.

[45] LJ. STANKOVIĆ, Z. USKOKOVIĆ, S. STANKOVIĆ, D. 
PETRANOVIĆ, Z. PETROVIĆ: „ The L-Wigner distribution as a tool for 
robust time-frequency signal analysis“, Proc. of the Asilomar conf. on 
signals, Systems and computers, Pacific Grove, Califomia, Oct. 1994.

[46] LJ. STANKOVIĆ, V. IVANOVIĆ, Z. PETROVIĆ: „Unified ap- 
proach to the noise analysis in the Wigner distribution and Spectrogram 
using the S-method“, submitted to the IEEE Transactions on Signal Process- 
ing.

[47] S. STANKOVIĆ, LJ. STANKOVIĆ, Z. USKOKOVIĆ: „Amethod 
for Wigner higher order spectra“, IEEE Symp. on Time-frequency and 
time-scale signal analysis, Philadelphia, PA, pp. 56-59, Oct. 1994.

[48] L. COHEN AND C. LEE: „Instantaneous bandwidth“, in Time- 
frequency signal analysis, B. Boashash ed. , Longman Cheshire, 1992.

[49] P. FLANDRIN: „Some features of time-frequency representation 
of multicomponent signals“ in Proc. IEEE ICASSP 84, pp. 41 B. 4. 1 - 4. 
4, 1984.

[50] LJ. STANKOVIĆ: „А method for time-frequency analysis“ IEEE 
Trans. on Signal Processing, vol. 42, no. 1, Jan. 1994, pp. 225-229.

[51] LJ. STANKOVIĆ, Z. USKOKOVIĆ, S. STANKOVIĆ, Z. 
PETROVIĆ: „Vremensko-frekvencijska analiza signala", Tehnika, 
Elektrotehnika, vol-44, no. 1, Jan. 1995, pp. E1-E8.



210 Lj ubiša Stanković

[52] S. STANKOVIĆ, LJ. STANKOVIĆ AND Z. USKOKOVIĆ: „Оп 
the local frequency, group shift and cross terms in some multidimensional 
time-frequency distributins; a method for multidimensional time-frequency 
signal analysis“ IEEE Trans. on Signal Processing, vol-43, no. 7, July 1995.

[53] LJ. STANKOVIĆ. S. STANKOVIĆ, Z. USKOKOVIĆ: „Time-fre- 
quency signal analysis“, monograph, Epsilon - Montenegropublic, 1994.

[54] LJ. STANKOVIČ: „ A time-frequency distribution concentrated 
along instantaneous frequency“, IEEE Signal Processing Letters, vol-3, 
no. 2, Feb. 1996.




