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Abstract

Wellposdness of a minimization problem means that small pertur-
bations of initial data of a problem do not produce big changes in its
set of solutions. One of the important moments in the examination of
wellposedness of a minimization problem is the behavior of its minimiz-
ing sequences. In this paper we present some necessary and sufficient
conditions for convergence of the minimizing sequence of quadratic mini-
mization problem with linear and quadratic constraints. For one class of
these problems we also present a method of stabilization which produces
convergent minimizing sequences.
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1. Introduction

An optimization problem is said to be wellpossed if its small perturbations
do not produce big changes in its set of solutions. This statement allows
different formalizations. In this paper we will deal with Tikhonov’s concept of
wellposedness which is related to the minimization problem

J(u) = [[Au— f|I* — inf, u € U, (1)

where U C H is a closed convex set in a Hilbert space H, A : H — F is
a linear bounded operator from H to Hilbert space F', and f € F is a fixed
element. In what follows the set U will be defined by linear and quadratic
constraints:

U={ueH:|Bul2 < {cu) < B}, (2)

where B : H — ( is a bounded linear operator form H to Hilbert space G
and c € H.
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The problem of minimization of the functions

Ji(u) =[|2(T,w) = 2l[fn, Ja(u) =lz(t, u) — 2(8)|]1, / lo(t,w) — f(1)]%dt,

where z € R", f € L[0,T], and z = z(t,u) is a solution of the system of
differential equation

Z'(t) = B(t)z(t) + D(t)u(t), t € (0,7),2(0) =0 € R",

with given matrices B(-) = (b;;(+))nxn and D(-) = (dij())nxr, @i5)-),bii(+) €
Loo[0,T], are the examples of this type of problem. These conditions guarantee
the existence of the solution z(t,u) € H![0,T] of the previous system for each
uw € L5[0,T]. In these examples, the sets of minimization are usually defined
by one or two constraints of the type

Ib(tyu(t) 12, = /|b 2t < 12, ||z (t,w)||? = /|xtu ()2dt < 72,

(T, w)||* < 7”2,/0 c(t)a(t) < B, (¢, x(T, u))pn < 5.

Problem (1) is is said to be wellpossed according to Tikhonov if every min-
imizing sequence (uy) of this problem converges to the nonempty set of solu-
tions.

Note that a sequence (uy),{u, : n € N} C U is minimizing for the problem
J(u) — inf, w e U if J(u,) — inf{J(u) : u € U}.

The minimization problem of strongly convex function on a closed convex
subset of a Hilbert space is (Tikhonov’s) well-posed. Function J in (1) is
convex but it is not necessarily strongly convex and both the existence of the
solution and behavior of the minimizing sequences of this problem depend on
the properties of the operator A and set U. Let us note that, in optimal control
problems, the set U is often given by one or two linear or quadratic constraints.

In this paper, we will investigate the minimizing sequences of this problem,
assuming that the set U is given by linear and quadratic constraints. We
will also present some classes of regularization methods for construction of
convergent sequences in case when the set U is a half-space of real Hilbert
space and prove the convergence of the regularized solution. Let us remark
that in optimal control problem the set U is usually given by one or two linear
and quadratic constraints.
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Let us emphasize that all our results related to well-posedness were ob-
tained under the assumption that all the initial data are known exactly; well-
posedness related to inexact initial data will not be considered here.

With the aim that of presenting the complete results in this paper we have
also included the part of the results published in [5] and [6].

2. Preliminaries

Let us introduce the following notation: A : H — F and B: H — G —
bounded linear operators from Hilbert space H to Hilbert spaces F and G;
Cu = (c,u), ¢ € H —the linear functional on H; L£(M) — the linear hull of
the set M C H; I-the identity operator; R(A) — the range of the operator
A; A(U) = {Au : w € U}; Ker A — the null-space of A; M-the closure of
the set M C H; L*— the orthogonal complement of the subspace L; P the

orthogonal projection operator from H to R(A*); Q- the orthogonal projection
operator from H to R(B*); P,— the orthogonal projection operator from F' to
the closed and convex set A(U); B;  the restrictions of the operators B to
the subspace Ker AN KerC' and A;  the restriction of the operator A to
the subspace Ker BN KerC'; A  the restriction of the operator A to the
subspace Ker B and S = {u € H : |Bu|| = r,{c,u) = 3} the intersection
of the boundaries of the elipsoid U; = {u € H : ||Bu| = r} and half-space
Uy={ue H:{(c,u)=p.

The operator A produces the following orthogonal decompositions of the
spaces H and F':

H=R(A*) & Ker A, F = R(A)® Ker A™. (3)

Further, for any two closed subspace L and M of a Hilbert space H, the next
decomposition holds:

(LOM) =L+t + ML, H=L++ Mt (LN M). (4)

Lemma 2.1. For the bounded linear operators A, B from Hilbert space
H to Hilbert spaces F and G, and for ¢ € H, Cu = (c,u) , the following
decompositions are true:

H=R(A*)® L(({ — P)c) @ R(B}) ® (Ker AN Ker BN KerC), (5)

H=R(B*)® L(I—-Q)c)®R(A}) & (Ker AN Ker (), (6)
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Ker B = R(A}) @ (Ker AN Ker B), (7)

Proof. Using the decompositions (4) and (3) we obtain

H = (KerA)t & (KerC)t @ (Ker An KerC)
= R(A*) @& L(c)® (Ker An KerC)
= R(A) @ L((I — P)e)® (Ker AN Ker BN KerC).

Similarly, applying (3) to By : Ker AN Ker C — G we obtain

Ker AN KerC = R(B})® (Ker AN Ker BN Ker C).

Hence, we have proved the equality (5); (6) can be proved in a similar way.

The next lemma is related to normally solvable operators.

Let us remark that an operator A : H — Fis said to be normally solvable
it R(A) = R(A). This is equivalent to R(A*) = R(A*). (s. [10], pp. 153.)

Lemma 2.2. ([10], pp. 153) A bounded linear operator A : H — F' is
normally solvable if and only if

po=inf{||Aul| : v L Ker A, |ju| =1} > 0.

The immediate consequence of this Lemma is the following.

Lemma 2.3. ([10], pp. 153) If linear operator A : H — F' is not nor-
mally solvable, then there erists a sequence (p,) such that p, € R(A*), ||pa] =
1 and Ap, — 0 as n — oc.

The restriction of a normally solvable operator A : H — F' to the subspace
R(A*) is invertible, so there exists M > 0 such that

(Vo € R(A")) [lz] < M|[Ax]. (8)
If A(V) is closed for a closed set V' C H, then the inverse image
AW AV)=Ker A+V

is closed set. If A is a normally solvable operator, then the converse statement

is also true: if Ker A+ V is aclosed set, then the set A(V') is also closed.
Now, it is easy to prove that for a normally solvable operator A and for

a closed subspace M C H of a finite codimension, we have A(M) = A(M).
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Indeed, codim M < +oo, implies that dim M+ < +o00. If we denote the oper-
ator of orthogonal projection from H onto subspace MT by T, then it is easy
to prove the equality M + Ker A = M + T(Ker A). From T(Ker A) C M*,
it follows that dim(T(Ker A) < 4+o00. So, we get that the set M + Ker A is
closed. Normal solvability of the operator A implies that A(M) = A(M). O

Lemma 2.4. Let L and M be closed subspaces of a Hilbert space H. If

dim L < +o0, then A(M) = A(M) if and only if A(LNM)=A(LNM).

Proof. From codim L < +o0 it follows that there exist hy,..., h, in H,
such that Lt = L(hy,...,h,), i.e.

H=L(hy,... hy)& L.

As earlier, let us denote the operator of orthogonal projection onto M=+ by T
Note that

M@ L(hy,... hy) = MY L(I—T)hy,...,(I —T)hy,).
Applying (4) we obtain

H= (M*®L(hy,....,h)dMNL=
M@ L((I —T)hy,...,(I =T)h,)® MN L.

This equality and decomposition H = M @ M+ imply that
M=L((I-T)hy,....,(I =T)h,)®(MNL). (9)

If AMNL)=A(MnNL) then, using (9), we obtain A(M) = A(M). Now, let
us assume that A(M) = A(M). It means that the restriction of the operator A
to the subspace M is a normally solvable operator. From (9), we can conclude
that M N L is a closed subspace of a finite codimension in the subspace M.

Hence, A(L N M) is a closed subspace of the space H.
Lemma 2.5. If IntU =0, U ={u € H : ||Bu|| <r,{c,u) <3}, then

(i) U=S:={ueH:|Bul|=r/cu) =05}
(ii) Ker B C KerC, where Cu = (c,u);
(iii) (VueU)U =u+ Ker B.

Proof. (i) If ||Bv| < r and v € U, then there exists an open set V(v)
containing v, such that ||Bx|| < r for every x € V(v). In this case, having in
mind that IntU = (), we can conclude that (c,v) = (. Then there exists a



180 M. Ja¢imovié, 1. Krni¢, O. Obradovié

point zg € V(v) such that (¢, z¢) < . This contradicts Int U = (). So, we have
||Bv|| = r for every v € U. Similarly, we can prove that (c,v) = 3 for every
v € U. Hence, U = S.

(ii) We shall prove that (I —Q)c = 0, where @ is the orthogonal projection
onto R(B*). Let us assume the converse. Then a point v = u+ (I —Q)c,u €
U =85,y <0, satisfies the conditions ||Bv|| = r and (c,v) < (. Since U = 5,
we have a contradiction. Hence, (I — Q)c = 0, i.e. ¢ € R(B*) L Ker B. It
immediately implies the inclusion Ker B C Ker C.

(iii) Let 2 and u be arbitrary points from U = S. Then (c,z —u) =
(¢, z)—{c,u) = 0. Hence, x—u € Ker C. Since, U = S is a convex set, it follows
that | B(cu+(1—azx)|| = r for any « € [0,1]. This implies that (Bz, Bu) = r?.
Thus we have ||B(z —u)|| = r* — 2r +r* = 0, i.e.  —u € Ker B. Therefore,
we proved the inclusion U C u + Ker BN Ker C. The converse inclusion is
trivial. Now, (iii) follows from U = u + Ker BN Ker C' and (ii).

Lemma 2.6. If there exists uw € S such that B*Bu € L(c) and 3 < 0, then
IntU = 0.

Proof. Suppose that B*Bu = ac,a # 0. Multiplying this equality by wu,
we obtain r? = || Bu||? = a{c,u) = a. Since < 0, it follows that a < 0.

Assume that IntU # (). Then there exists v € U such that ||Bv| < r and
(c,v) < (. Now it follows that (Bu, Bv) < ||Bul|-||Bv|| < r?. We obtained the
contradiction that proves Lemma.

3. Convergence of minimizing sequences and existence of
solutions

It is clear that the problem (1) has a solution if and only if the projection
P.(f) of f on A(U) belongs to A(U). Having in mind that P.(F) = A(U), we
can conclude that the problem (1) has a solution for every f € F' if and only
it A(U) = A(U).

Note that convexity and continuity of the function J imply its lower weakly
semi-continuous. The set U is weakly closed, because it is convex and closed.
Now, it is easy to prove that if for any f € F there exists at least one mini-
mizing sequence (u,), then, for such an f, problem (1) has a solution.

Indeed, then there exist a subsequence (uy, ) of (u,) and a point u, € H,
so that (uy,, ) weakly converges to u,. Since the set U is weakly closed, u, € U.
Both this and lower semi-continuous of J imply

J(u,) < liminf J(uy,,) = J,.
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Hence, J(u.) = J,, i.e. u, € U,.
Note that if U, # (), then for every u, € U,,

U.= (u. + Ker A)nU.

From J(u) = J(v)+(J'(v),u—v)+||A(u—v)||* and from optimality criterion of
the element u, € U, (s. [11], p. 161, Theorem 3) (Yu € U)(J'(u.),u — u.) > 0,
we have ||Au — Au,|* < J(u) — J(u.).
This implies that Au, — Au, as n — oo, for every minimizing sequence
If operator A is normally solvable, then, from (3) and (8) (for operator P
of orthogonal projection from H to R(A*)) we have

| P(u, — u)|| < m||AP(uy, — us)|| = || Auy, — Auy|| — 0 as n — oo

i.e. Pu, — Pu, as n — o0.

Theorem 3.1. Suppose the following conditions hold:
(i) A is a normally solvable operator;

(i) B(Ker A) is a closed subspace of G..
Then the set U, of the solutions of the problem (1), (2) is nonempty and
every minimizing sequence converges to U.

Proof. First, let us prove that for each f € F there exists a bounded
minimizing sequence of this problem.

Condition (ii) and Lemma 2.4 imply that the operator By is also normally
solvable. Therefore, the equality (5) can be written as

H=R(A")& L((I - P)c)® R(By) ® (Ker AN Ker BN Ker C)

where C(u) = (c,u). The elements of a minimizing sequence (u,) can be
decomposed in the following way

Up = Puy + v, (I — P)c+b;, + by,
Y € R, bE € R(BY),b, € Ker AN Ker BN Ker C.

Observe the minimizing sequence
wy, = Pup, +v,(I — P)c+ b},
and note that (i) implies

Pu, — Pu, as n — oo.
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Let us consider two cases.

(I) If the sequence (7,) is bounded or (I — P)c = 0, then we can assume that
Yo — Y« € R as n — oo. It is obvious that in this case the sequences (Pu,,)
and (b)) are bounded. Hence, the minimizing sequence (w;,) is also bounded.
Consequently, the set U, of the solutions of the given problem is nonempty.
Since b} 4+ b, L ¢ we have

(Puy, + (I — P)c,c) = lim (Pu, +v,(I — P)c,c) = lim (wy,c) <

n—0o0 n—oo

The sequence v, = Pu.+7.(I —P)c+b +b, satisfies the inequality (v,,c) < .
Then, we have to consider two possibilities: (a) ||Bv,|| < r, and (b)
| Bv,,|| > 7 (otherwise, we can consider a subsequence of (v,,).)
If || Bv,|| < 7, then v, € U,. Therefore

d(tn, Us) < [lun = on]| < [[Pun = Pus+ (0 = 7:)(I = P)ef| = 0, n — oc.
In case of || Bv,|| > 0, we have that

r < |[Bual < [[B(on — wn)|| + [| Bwn||
< | B(Pup = Pus + (Yo —7)(I = P))|| + 7,

what implies that
lim ||Bu,|| =7 and lim ||Bw,| <. (10)
Since the sequence (bf), b € R(By) is bounded, we can assume that (b))

converges weakly to by € R(Bj) as n — oo. Then, the minimizing sequence
(wy,) converges weakly to w, = Pu, + v.(I — P)c+ b} € U,.

Within the scope of this case, we will again consider two possibilities:
If || Bw. || = 7, then

|B(b;, — b)II? = |1 B(wy — ws + Puy, — Puy + (4 — %) (I — P)e|?, (1)

implies that ||B(bf — bf)|| — 0 as n — oco. From here on, having in mind that
By is normal solvable, we can conclude that (b)) converges (strongly) to b as
n — oo. Then w, — w, as n — 0o, and

d(tun, Uy) < ||tun — (wie +b,)]] = [Jwn — wy|| as n — 0.
If || Bw,|| < r, then

lim ||B(b; — b3)||* = r* — || Bw.||* > 0.
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For each n € N, there exists a,, > 0 such that ||B(w, + a, (b — b3))||* = 2.
Now, using the last two relations, it is easy to prove lim,, .., o, = 1. Sequence

Ty = Wy + an(b), — bg) + by + b5 = Pus + 7. (I — P)e+ anby, + (1 — ap)bg + by,
satisfies the following conditions

Ay = Aw., ||Benll =7, (¢, 20) = (¢, w.) <5,
and so x,, € U, for every n € N. Then

= [[Pun = Pus + (90 = ) (I = P)e + (1 — an) (b, = b5)[| = 0

as n — 00. Therefore, in case of (I), every minimizing sequence of the problem
(1), (2) converges to the set of its solutions.

(IT) Now, assume the sequence () is unbounded and (I — P)c # 0. Then
for B(I — P)c € G there exist py € R(B7) and gy € Ker B}, such that

BT~ Pe=Bpo+ a0
Since B(vnpo +b}) L qo, we have

|B(yn(I = P)e+0,) 1P = | B(yapo + b)) + 1ol
= || B(yapo + b2)|1* + ¥l qo]|*-

The last equality implies that go = 0. Then B((I — P)c — pg) = 0, and conse-
quently, there is zg € Ker B, such that

(I = P)c=po+ 2.

It is easy to prove that 2z € Ker A and (¢, z) = ||(I — P)c|* # 0.
Now, using the equality

we conclude that v,po + b; € R(B7y). Consequently, (v,po + b)) is a bounded
sequence. Observe the sequence

B — (P, + Ynpo + b5, )
<Cv ZO) .

vy, = Pu, + YnDo + b:; + ’Y:LZ()? where ’Y:L =
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It is obvious that
A?Jn = Awm an = Bw’m <C>v”> = ﬂ’

which makes (v,) a bounded minimizing sequence of the given problem. There-
fore, U, # 0.
Let us observe an arbitrary minimizing sequence (u,,). It can be written in
the form
Uy, = Puy, + b, + Do + by + 1n20.

Let us observe the sequences
Wy = Pun+b;+’ynp0+7nzo and Yn = Pu* +ﬁ+bn+5nzm

where —
5 = (Un, €) — (Pu, + b5, ¢) _ (Pu,, — Pu,,c) o
<207 C> <Z07 C>

Note that lim, (v, — 0,) = 0. The numbers 6,, have been chosen in such
way that (y,,c) < 8. It | By,|| < r, then y, € U, and therefore

d(tn, Uy) < ||tn = Ynll = [|Pun — Pus + (70 — 9n)20]| — 1 as n — 0.
If || By,|| > 7, then following the previous procedure, we obtain
Jim [ Byn|| =, lim [|Buw,|| =7,
and o o
bi = by + Ypo — b5 € R(B})as n — oo.
It follows that
Pu,, + b5 — W, = by + Pu, as n — oo, and ||Bw;]|| < 7.

Again we need to consider two possibilities: ||Bw,|| = r and || Bw,| < r.

If ||Bwy|| = r, then, just like in the previous part of the proof, we can
prove the strong convergence of the sequence E to b_g as n — 00. Observe the
sequence z, = Wy + b, + 0 zp where

Up, C) — (W, C)

<ZO) C>

5*:<

n

Then (z,,c) < [ and
(Pu,, — Pu, + b, — b}, ¢)

Op = T = (20.0) — 0 as n — oo.
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Besides, Az, = Awy, ||Bz,|| = ||Bws|| = r, such that z, € U,. Now we have
d(tn, U,) < |t — 20|l = || Pty — Pus + b2 — b + (9 — d) 20|l — 0 as n — oc.
Finally, we have to consider the case of || Bwy| < r. Then
T | B~ B = — | Bw? > 0.
If a,,m =1,2,... are numbers chosen such that

| B(@; + an(br —b)|* = r? with lim a, =1,

n—oo

and (s,,) is the sequence defined by

Sp = Wy + (b, — b5) + by + 720 = Py + bt + (1 — )05 + by, + 120,

where o o
_ (Un, €) = (Puy + anbyy + (1 — o) b5, )
77n <Z(], C> 9

then (s,,c) < 3 and

D — = (Puy,, — Pu, + (1 — ay,)(bx — b)), ) 085 1 — oo,
<ZO7C>

Besides, As,, = Awy, ||Bs,|| = ||Bwx| =, so that s, € U,. Therefore

d(una U*) < Hun - Sn” = HPun — Pu, + (1 - an)(b* - bS) + (771 - nn)ZOH — 0

n

as n — 00. This completes the proof.

Example. Take H = F' = G = l; and consider two closed subspaces of [5 :

L={zx€ly: x=1(0,29,0,24,0,26,0,...)},

i) T4 T
M = : = — —_ —_— ... .
{l’ S lQ X (0,3327 5 y Ly, A » L6, G’ )}

Define A as the orthoprojector of I, onto L+ and B as the orthoprojector of
ly onto M+, ¢ =0¢€ H,f=0. Then A = A*, B = B* = B*B, KerA =
L, Ker B = M, operators A and B are normally solvable but both relations
(i) and (ii) from Theorem 3.1 are violated:

zo = (1,0,0,...) € R(A")N R(B*B) = L n M=+ # {0},
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KerA+KerB=L+M#L+M =Ker A+ Ker B = {x,}*.

It means that in this case the problem (1),(2) can not have a solution for every
fel.

The next theorem shows that if the first condition of the previous theorem
is violated, then the problem (1), (2) will not be well-posed anymore.

Theorem 3.2. Suppose that

(i) R(A) # R(A);

(ii) U, N Int{u € H : ||Bul| < r} #0.

Then there exists a minimizing sequence of the problem (1), (2) that does
not converge to the set U, of its solutions.

Proof. The condition (i), according to Lemma 2.3, implies the existence
of a sequence (p,) such that

Since U, N Int Uy # 0, we can infer that there is an element u, € U, such that
| Bu|| < r. Choose an gy > 0 such that ||B(u. & eop,)|| < r. Consider the
sequence (v, ):

Uy + €0Pn,» if <pna C> S 0
vy, = . )
Us — EPny 1 (Pn,c) >0

Hence, v,, € U and sequence (v,,) is minimizing. Since U, = {u, + Ker A)NU,
it follows that for every v, € U, there exists x(v.) € Ker A such that v, =
us + x(vy). From

12 = Jlu. & eopn — s — 2(0.)[° = &8 + 2 (v) > > €5

v — v.
it follows that the sequence (d(uy, U,)) does not converge to 0 as n — oo. This
completes the proof of the Theorem.

Theorem 3.3. Suppose that the next conditions are satisfied:

(i) B: H— G is normal solvable bounded linear operator;

(ii) A(Ker B) = A(Ker B).

Then the set U, of the solutions of the problem (1), (2) is nonempty.

If, in addition, U, C {u € H : |Bul|* = r% {c,u) = B}, then every mini-
mizing sequence of the problem (1), (2), converges to the set of its solutions.

Proof. We will prove only the convergence of minimizing sequences (second
part of Theorem).
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Lemma 2.4 and condition (ii) imply that the operator A; is normally solv-
able. Taking into account the condition (i) the equality (6) can be written
as

H=R(B*)® L((I—-Q)c)®R(A}) & (Ker AN Ker BN KerC),
The elements of the minimizing sequence (u,,) can be written in the form
Up = Ty + V(I — Q)+ a) + ay,
where
xn € R(B*), 7, € R,a) € R(A}), a, € Ker AN Ker BN Ker C.

From condition (i), relations ||Bu,| = ||Bz,| < r, by applying (8) to the
operator B, we can conclude that the sequence (z,) is bounded. We can
assume that this sequence weakly converges to some zy € R(B*) as n — o0.
(I) Suppose that the sequence (7,) is bounded or that (I —Q)c = 0. In both
cases we can assume that v, — 7. € R as n — 00. Since (u,) is a minimizing

sequence, it follows that

(Vu, € U,)Au, = nh_{go Au, = nll_{glo Alzp + (I — Q)c+ay). (12)
Since the sequence (z,,+7v,(I —Q)c) is bounded and the operator A; is normally
solvable, by applying the relation (8) to A;, we obtain that the sequence (a})
is bounded. We can assume that (a) weakly converges to aj as n — oo. The
sequence (vy,),vp, = T, + Y (I — Q)c + a is also minimizing and (v,) weakly
converges to v, = xg + V(I — Q)c+ af as n — oo. It is clear that v, € U,.
Then, using (iii), we have r = ||Bv,|| = ||Bxo||. Having in mind the fact that
| Bzo|| = r and that the sequence (z,) weakly converges to zo € R(B*) as
n — o0, similar to the proof of (as;) of Theorem 3.1, we can prove that (x,,)
converges to xo. Further, using (12), we have that lim Aa’ = Aag. Since

n—oo

al —af € R(AY), applying the relation (8) to the operator A;, we obtain that
the sequence (a}) converges to af as n — oo.

Now, let us observe the sequence (w,,), w, = x¢+ V(I — Q)c+ aj. We can
note that w,, € U, for every n € N. Then

d(un, U.) < lun = wn| = llzn = 20 + (1 = %) = Q)¢ + a5, — agl| — 0

as n — oo. Hence, in the case (a) the problem is wellposed.
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(IT) Now, suppose the sequence (,) be unbounded and (I — P)c # 0. In
the similar way as in the proof of (11), it is possible to prove that

(I = P)c=po+ 2, (20,¢) #0, po € R(A}), 20 € Ker AN Ker B.

We can write the elements of the minimizing sequence (u,) in the following
form
Up = Tn +a_;+an+7n207

where af = v,po+a’ € R(A}). We have already proved that the sequence (z,)
weakly converges to xy € R(B*) as n — oo. Then from

lim A(z, + af) = Au,, u, € U,,

n—oo

Taking into account that the operator A; is normally solvable, and applying

(8) to A, we obtain that the sequence (a?) is bounded. We can assume that
the whole sequence (ai) weakly converges to aj € R(A}). Hence, the sequence
(wy,), w, = x,+a;, weakly converges to w, = wo+ag. Since, Aw,, = Au,, — Au,
as n — oo, it follows that Aw, = Au,. In addition, ||Bw,| = ||Bu,| < r

implies || Bw,|| < r. Defining a real sequence (r,) by

Up, €) — (W, C T, — T+ ak —ag,c
(i) = (o) loa =m0+ T~ )
<ZO7C> <Z07C>

Tn = +'7n7

it follows that

_ <umc> — <w*ac> _ <xn_$0 —1—@—@_3,@

A v (20,€)

+ 9, — 0 asn — oo.

Then the sequence (z,), z, = Wy + 120 + @, satisfies the conditions:
(zn,c) = (c,un) < B, Bz, = Bw,, Az, = Aw, = Au,.

Hence, z, € U, for every n € N. Now, using the condition (iii), as in the proof
of the first part of the Theorem, we can prove that

. - ey Tx
lim z, = xo, lim a} = af.
n—oo n—oo

Finally, we have

d<un>U*) < Hun - Zn” = |lzn — 20 —G_Z—G_SJF (Vn — 7"n)ZO —a, — GSH — 0

as n — oo. This completes the proof of Theorem. [
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If condition (i) in Theorem 3.3 is not satisfied, then the problem (1),(2)
will not be wellposed.

Theorem 3.4. Suppose that the following conditions are satisfied:

(i) A(Ker B) # A(Ker B);

(11) U, C S.

Then there exists a minimizing sequence of the problem (1), (2) that does
not converge to the set U, of its solutions.

Proof. First, let us note that the condition (ii) implies the equality (34).
Further, Lemma 2.4 and the condition (i) imply that R(A}) # R(A}). Applying
Lemma 2.3 to the operator A;, we conclude that there exists a sequence (p,,),
such that

D € R( 9 lpall = 1, hm Ap,, = 0.

Observe the sequence u,, = u, + p,. Since p, € R(A}) C Ker AN Ker B,
we obtain Bu,, = Bu, and (¢, u,) = (c,u,) = (. The elements u,, satisfies the
condition lim,, ., Au, = Au,+lim, .., Ap, = Au,. Hence, (u,) is a minimizing
sequence. Then for every

Vs = Uy + x(vy) € Uy = uy + Ker AN Ker BN Ker C,

we have
0l = [Ipn — 2(W)]I? = [Ipall® + [Jz(0.)|? > 1.

Hence, the sequence d(u,,U,)) does not converge to 0. This completes the
proof of the theorem.

ln =

The next theorem gives necessary and sufficient conditions for convergence
of minimizing sequences of one class of minimization of quadratic function.

Theorem 3.5. If Int U = () then every minimizing sequence of the problem
(1), (2) converges to the set U, of its solutions if and only if A(Ker B) =
A(Ker B).

Proof. Suppose that A(Ker B) is a closed subspace of space F. Then the
operator Ag is normally solvable and the equality (7) can be written as

Ker B= R(A}) ® (Ker AN Ker B)
This equality and Lemma 2.5 imply that

(Vu, € U,) U = u, + R(AR) & (Ker AN Ker B).
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The elements of minimizing sequence (u,,) can be written in the form
Uy, = Uy + @, + by,

where
ar € R(A%), b, € Ker AN Ker B.

Then Aw, — Au, as n — oo, implies that Aa; — 0 as n — oo. Since a,
belongs to R(A%), applying (8) to the operator Ag, we obtain that af — 0 as
n— o00.

Further, by applying Lemma 2.5, it is easy to prove that

(Vu, € U,) Uy = uy + (Ker AN Ker B).
Observe the sequence (v,,) defined by v, = u, + b, € U,. Then
d(tun, Us) = ||tun — vp|| = |Jas]] — 0 as n — oo.

Now, assuming that every minimizing sequence of the problem (1), (2) con-
verges to the set U, we shall prove that A(Ker B) = A(Ker B). Otherwise, we
would have R(A}) # R(A%). Lemma 2.3 implies that there exists a sequence
(pn) such that

pu € ROAR), pall = 1, Tim Ap, =0.

Then (v,),v, = u. + p, is a minimizing sequence. Moreover, every element
vy € Uy = uy + (Ker AN Ker B) can be written as v, = u, + x(v,), where
z(v.) € Ker AN Ker B. Now, we have

lvn = vill = llpn — 2(va)ll = llpall® + ll2(va)I* = 1.

It means that the sequence (d(uy,U.)) does not converge to 0. However this is
in opposition to our assumption that every minimizing sequence of the problem
(1), (2) converges to U,.. Thus, A(Ker B) = A(Ker B). O

Let us note that for C' = 0,5 > 0, we will obtain the corresponding the-
orems related to problem of minimization of quadratic function on the set
{u € H : ||Bul|*> < r?}, and as for B = 0, we will obtain the theorems re-
lated to the problem of minimization of quadratic function on a half-space
{ueU:{c,u) <}
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4. Stabilization of minimizing sequences

Let us consider problem of minimization of quadratic function J(u) =
|Au — f]|* on the set U = {u € H : {c,u) < (3}.

In practice, instead of the exact operator A and the elements f, ¢, we deal
with their approximations A, € L(H, F), fs € F, and ¢, € H, such that

A=Al <, [If = fsll €0, lle—cof <o,

where p, § and o are small positive real numbers.

Generally speaking, this problem is unstable with respect to the pertur-
bations of the initial data A, f,c and it requires application of regularization
method [6],[8], 9], [10], [12].

In further text, we will suppose that the sets of solutions of the given
problems and of the corresponding approximate problems are not empty. Let
us denote the solution of the source problem with minimal norm by ..

According to the optimality conditions, we have that u., satisfies the op-
erator equality,

A Au, = A*f, (13)

as for the element u* there exists A* > 0 such that
AT Au, — A" f+ XN'c=0 (14)
N ({c,u.) = ) =0 (15)

In according with Tikhonov’s idea of regularization of unstable problem, we
can take the (unique) solution of the problem

Qa(u) = Ay — fs]| + allul* — inf, we H (16)

for small positive real number « = «(d, 1), 0, i, as an approximation of a
solution of our problem . Let us note that the solution of the problem (16)
can be represented by
Uo = Ga (AL AW ALLs,

where go(t) = (a+1t)~'. We can say that the method (16) is generated by the
system of functions {g,}.

The generalizations of the previous method regarding the problem (1), (2)
with B = 0, were observed in [10]. These generalized methods were generated
with the system of continuous functions g, : [0,a] — R, a > 0, such that

(vt € [0,a])(Fa > 0)1 — tga(t) > 0 (17)
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sup{t*(1 —tga(t)) : t € [0,a]} < v,0”, (0 <p < po, po > 0,7, = const) (18)
Real number py is called the qualification of the system {g,}. The functions
Ja(t) = (o +t)7! satisfy the conditions (17)-(18) with py = 1. However, the
method (16) generated with the functions g, is not suitable for describing
some algorithms for choosing the parameter o and for studying some iterative
methods of regularization. In order to study these problems we should consider
the system of functions {g,}, which satisfy the conditions (17)-(18) with the
qualification py > 1.

Notice that the regularization methods based on the functions {g,} for the
minimization problem without constraints were properly observed in [8] and
[9]. We show that the similar class of the functions can be also used for the
regularization of the problem (1).

4.1. Algorithms of stabilization.

It turns out that for studying the extremal problems with constraints, be-
side (17), (18), we need an additional condition

(38 > 0)(Vt € [0,a])(Va > 0) (t+Ba)™" < ga(t) < (Ba)™  (19)

The examples of the functions that satisfy (9) can be found in [10].
Since
Ballu —v|* < <g;1(AZA#)(u —v),u —v),u,v € H,

it follows that the extremal problem
To(u) =|| ga*(A;Au)u — g3 (A;AL) Ay f5 ||*— inf,u € H

has the unique solution w,. Then T/ (w,) = 0 i.e. w, = ga(A;A#)Aﬂfg. We
shall prove that the following estimate is true

| Au(wa — uso) 1< k(o + p)[wa — usc|l, k> 0. (20)
Using the conditions J'(us) = 0 and 77 (w,) = 0, we have that
9o (Ar A we — A fs — A*Aug, + A* f = 0.

Multiplying the previous equality by w, — us and using the properties of the
function g,, we obtain the inequality

I Au(wa = too) [P (A} Au = 9o (A},A1))thoe, Wa — o) +
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(A"A = AL A ) Uoo, Wa — teo) + (A} f5 — A" fwa — )

that implies the estimation (20).
In [10], Theorem 2.4, p. 100, it is proved that if parameter o = «/(9, )

satisfies
A+ 62

— =0, (,p—0
o 0 Gn= 0

ad, ) — 0,

then
Wa(s,u) = Uoos (57 n— 0)

Lemma 4.1. Suppose that the parameter « = a(u) is such that
alp) = 0,~= =0, (14— 0)
a(p)

Then, for all x € H, we have
(i) (I — A5 Auga(ALAL)) P — 0, as pup— 0,
(i) Baga (AL AL )z — (I — P)z, as p— 0.
Proof. (i) The proof of this part of Lemma can be found in [10], Lemma

2.2, p. 99.
(ii) The family of operators {Baga(A},A,)} is uniformly bounded, because

| Baga(A;AL) [|< sup{Baga(t) : t € [0,a]} < 1.
The elements u = A*Aw,w € H, generate a dense subspace in R(A*A) and
|Bga (A7 A4,) A" Aw|] <|| Baga(ALA)(AA = A A w | +

15ega(ALAL) AL AW < k(i + ) =0

when p, 6,0 — 0.
By virtue of Banach-Steinhaus theorem, we have

Baga(A,A) Pr — 0, (p, 0,0 — 0).
Since, 0 < 1 — faga(t) < ﬁ%, it follows that

| A A= Py ||

ba

(I = Baga(A,A)) (I = Pla |[<

| (A;A, — A"A)(I = P)
Ba

x||§kg—>0(,u—>0)
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Finally, we obtain

Baga(A;,Au)r = Baga(A},A,) Pr + Baga(A,A) (I — P)z — (I — P)x,
as u— 0.

Lemma 4.2. If the parameter o = o, o) is chosen such that

w+o

oli:0) = 0. o)

— 0 (u,0 —0)

then
() Baga(ALAu)ce — (I = P)e (p,0 —0)
(i) If c = A*Ah,h € R(A*A), then go(A}Au)ce — h (p,0 — 0).
Proof. We have that

9o AL AL Co = 9ol AL AL (co — ) + ga( AL A, )c.
This equality, the estimate

\ u
Il 9a (A A)(co =) I< b,

and Lemma 1 imply (i).
We may also write

9o AL AL)Co — h = go(ALAL)(Co — ) + ga(A}Ay)c — h =
9o(ALAL) (Co — ) + ga(A} AL (A"A = AL ALK — (I — AT Auga(AL AR
Therefore, we obtain the inequality
19a(A}Ap)ce — hl| <
19a(ALAD - lleo — cll + lga(ARAL) | - |A"A = AL AL - [|A][+
w+o

MLAmMummw§4 = A A, ga(AA WQ

This inequality, Lemma 4.1 (i) and the properties of the functions g¢,, imply
(ii).

Taking into account the optimality conditions (13)-(15) and Lemma 4.2,
it is easy to prove the following relationship between normal solutions u, and
Uso-
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Lemma 4.3. (i) If c € R(A*A), i.e. ¢ = A*Ah for some h € R(A*A),
then u, = Use — ALh, where

A* 07 <u0070> S ﬁ
— oo —ﬁ
W’ <uo<>70> > 0
(ii) If ¢ € R(A*A), then u, = us — v+(I — P)c, where
_)0 (o) < B or (I — P)e =0
P e () > B and (1 P)e £0

As an approximation of the solution of the problem (1), one can take the
element

U = ga(A;Au)(A;Aufé - )\aca)
where

(wa,co)—0
(A Aer ey (WasCo) > 3

- { 0, (Wq, Co) < B

and w, = ga(A}AL) AL f5, is the solution of the extremal problem T, (u) —
inf,u € H. The element u,, satisfies the equalities

T:(ta) + AaCo =0
Aa({Coyun) — ) = 0.

Therefore, by virtue of Kuhn-Tucker theorem, we deduce that u, is the solution
of the following extremal problem

To(u) —infu e U, ={ue H: (c;,u) <[}
4.2. Convergence and rate of convergence.

Theorem 4.1. Let c,,c € H, f, fs € F,A, A, € L(H, F), are such that
A= Al < i, AR < 0, 1f = fill €8, lle—coll <o

Assume that the system of the functions {ga} satisfies the conditions (17)-(19).
If the parameter o = a(p, 6, 0) is chosen such that

p+do*+o

— 0,0 —
O[(/L, 5’ O_) O (/J/’ 70 0)

a(u,d,0) — 0,
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then
U (p,8,0) = Usx (/Lv 67 o — 0) (21)

If, in addition, the elements us and Pc can be represented in the form
U = (A*A)Pv, Pc= (A*A)"™w, v,we H,0<p,q<po (22)
then for
a=dp+d+ J)min{ﬁrl’#l’%}, d = const > 0 (23)

the following inequality is valid

s — ol < dy(pt + 6 + o) GET T (24)

Proof. Suppose that (I — P)c = 0 and ¢ ¢ R(A*A). Then (uw,c) < 3,
i.e. uy = Us. Let us denote by v, the solution of the extremal problem
To(u) — inf,u € U. Let us estimate the value || v, — uq || . The element v, is
determined by

Vo = ga(ALAL) (AL f5s — Sac)

where

Hence
25

9o (AL AL )ve — A fs + Sac =0 (25)
Sa((Vay¢) = B) =0 (26)
9o (AL A e — Al fs + Moo =0 (27)
Aa((tig, co (=) =0 (28)

Using the equalities (16)-(19) and taking into account the properties of the
functions g, we obtain the following inequality

28

o
| Vo — ua < k=
«

Multiplying the equalities

*
Vg — Us = Wo — Upg — saga(AuAﬂ)c
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by ga(A%A,) " (va — u.) and using again the properties of the functions G,
we have

Ba || va — us HQSH Ap(wa — tog) H2 +Ba || wa — ueo ||2 .
Combining these inequalities we obtain

| e = s || <] tha = v || + [} V0 — e [|<

1 o
m | Ap(wa — too) [| + || wa — ueo || "HCE‘
It follows from (20) and (21) that wq(us. tend to u. when p,0,0 — 0.
Let us consider the case ¢ € R(A*A). Then the convergence (22) follows
from the equality

<uoovc>_ﬂh_ <wa’ca)_6
| Ah |2 (9a (A5 AL)Co, Co)

Uy — Uso = Wy — Uso + goc(AZAu)Coa
Lemma 3.2. (ii) and (21).

Finally, let (I — P)c # 0. Then the convergence (12) may be derived as the
consequence of the equality

_ <u007c> _ﬁ
ua—uoo—wa—uoo—i—m(I—P)c—
(W, o) — 3

afga(ATA,)c,,
(o800 ey o) 0o i)
Lemma 3.2. (i) and the relation (21).

It remains to prove the inequality (25), under the additional assumptions
(23) and (24). Firstly, we note that in [10] (Theorem 2.4, p. 100), under
the condition that u., = (A*A)Pv, the following estimate was proved for ||
Wo — Uso ||

[Wa — Uool| < dp(@p +

) (29)

If (Uoo,c) < [, then (21) implies that (w,,c,) < § for small enough p,d
and o. Thus, we have that u, = w,. Hence, the inequality (30) is holds in this
case as well.

Let us consider the case (ux,c) > (. In the same way as in [10] (Theorem
2.4., p. 100), for c € R(A*A) we get

p+0
«

~ +
| tte = e 1< (1] wa = e || +(1 4+ I g 02 4 a4+ E22) - (30)
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and

Hua—mHg%wmfﬂMH+&+ﬁgﬁ)%MI—P%#O. (31)

Then, the condition (14) and the inequalities (30)-(32) imply the estimate (25).
This completes the proof of the Theorem. [

Theorem 4.2. If R(A) is a closed subspace of space H, and if

then

a=d(u+6+0)7,d= const >0,

|t = v [|< B+ 0+ 0)2.

At the end, note that Theorem 4.1 gives the potential possibilities of the
method. In practice, we do not have the information of type (13) for the
properties of the solution u,, and the element c. In this case, the choice of
the parameter « is not easy at all. In [10], for the operator equations, authors
considered so called aposterior choice of the parameter of regularization a.. This
choice does not include any information about the properties of the solution

Upo-

Let us remark that the aposterior choice of the parameter « for the

problem (1) is also possible.
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