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Abstract

This article is a survey on some classical and recent results and re-
lations between several mathematical theories. Results from Malliavin
stochastic calculus of variations are used to examine known facts from
sub-Riemmanian geometry and Geometric control theory from the differ-
ent point of view. Recent papers establish the bridges between theories

that have been considered as far from each other.
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1. Sub-Riemannian geometry

Let M be a smooth n-dimensional manifold and A = } .. a;;(7)0;,0,; semi-
elliptic second order operator on Mwith the principal symbol semi-positive
smooth quadratic form a(zx,¢). Sub-Riemannian structure is Legendre trans-
form of the quadratic form a(x,&) on cotangent bundle T3 M :

1
ig(xav) - sup 75) (1)
EET; M (v,6)—3a(x

Therefore, g =a* and a = g * .

Indeed, denote by g, the restriction of g to T, M and introduce the linear
map a, : M — T,M associated with the quadratic form a(x). Then g, is
a positive definite quadratic form on F, = Ima, = (Ker a,)* (and equal to
+o00 outside F;.) (See, for instance, [4].)

If operator A can be written as: A = > V7 then a(z,§) =
S (Vi(x),€)? and g(z,v), obtained from a(z,§) by Legendre transform is
the sub-Riemannian metrics attached to vector fields Vi, ..., V,,.
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"Sums of squares" hypothesis. For the operator A with the principal
symbol a the "sums of squares” hypothesis asserts that A can be written as:

A= Z V2 +W7eqno(2)

i=1
with smooth Vi, ...,V W.

In coordinate terms, denoting by a(x) = (a;j(x)) the matrix of the
quadratic form a(z,§) the hypothesis is equivalent to the existence of a n x m
matrix V(z) = (V;;(z)),i = [,m, j = 1,n, depending smoothly on z, such that:

a(z) = V(x)"V(2). (3)

Such matrix V(z) does not always exist [11|. However, if the rank a(x) is
constant, decomposition (3) exists at least locally.

As we can see, sub-Riemannian structures are Legendre transforms of those
semi-elliptic operators that can be written as sum of squares.

Recall, that the vector fields Vi(z),...,V;,(x), generating the sub-
Riemannian structure satisfy the following so-called Chow condition (or
bracket generating condition):

At each point x € M wvector fields Vi, ..., V,, together with all possible Lie
brackets of any order [Vi, Vi], Vi, [V}, Vill, ... span the whole space T} M.

Denote by D distribution (or, in general case, differential system), gener-
ated by vector fields Vi,...,V,, i.e.

D, = Lin{Vi(a)...., Via(a), [V, Vi) (), [V, [V, Vel (@), ..

Absolutely continuous curve z(t) is admissible, if it horizontal to distribution
D, i.e. @(t) € Sy). Famous Chow-Rashevski theorem [5], [13] states that under
Chow condition any two points belonging to Mcan be joined by admissible
curve. Therefore, under Chow condition, sub-Riemannian structure can be
introduced by defining the distance between two points x,y € M as an infimum
length among all admissible curves joining = and .

Note that in case that Vi,...,V,, are enough to span T*M we have the
Riemannian structure and this is exactly case when operator A is uniformly
elliptic.

We can see that in sub-Riemannian case there exists analogue of Hopf-
Rinow theorem and it is called Chow-Rashevski theorem. Still, there are es-
sential differences between the two geometries and one of them is existence
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of singularities in the space of admissible paths joining two fixed points. In
other words, shortest geodesies with respect to sub-Riemannian metrics may
not be projections of any solution of canonical system of Hamilton equations.
Geodesics, that not obey Hamilton equations in differential geometry are called
abnormal. Existence of abnormal sub-Riemannian geodesics has been ques-
tioned in many papers and only in [10], [12| examples of abnormal geodesics
have been demonstrated.

2. Control systems

One of possible means to study sub-Riemannian structure are controlled
systems. Namely, we can examine the following system:

&= Zuivi(xL 2(0) = a,z(1) = b. (4)

Consider admissible pair (2°, u°) of the system (4). Assume that control v is
piecewise smooth at [0,1]. We also may assume that u° = 0, and obtain the
new controlled system:

& =Vo(t,x) + Y uVi(z), 2(0) = a,z(1) = b. (5)

i=1

Here, the Vy(t,x) is piecewise smooth vector field, belonging to differential
system D and being tangent to trajectory x°(¢). In this fashion the problem
of sub-Riemannian geometry can be viewed as the problem of minimization of

integral:
/ o(x,u)d

at the trajectories of the system (5).
Introduce the hamiltonian of the system (5):

H(t, 20,9, \°) = Ao(x, u) + (&, Vo(t,x) + Y wiVi(x))

i=1
First order necessary optimality conditions state that if admissible process is
optimal the following condition holds:

0H

5 (200,60, (), \) = 0,94, (6)
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for some A\° € {0,1} and n—dimensional vector function v(t), being the solu-
tion to adjoint equation:

OH

h(t) = =25 B2 (0,171, 0(0),X°) = 0, (0) = y1,0(1) = =y (7)

Denote by ® the fundamental matrix of first variation system for (5), i.e.
solution of homogenous system:

d_ _(OV(t,2(t) o~ 0Vi(2°(1)) _

where [ is identity matrix. Introduce the controllability matrix:
1
Z = <I>(1)T/ )TV @)V (@) e (t)dtd (1),
0

The condition dim Ker Z = 0 is equivalent to controllability of first varia-
tion system for (5) and normality of extremal process (z°, u°).
In control theory the following theorem is known (see [5]):

Theorem 1. Assume that abnormal extremal (2°,u®) of the system (5) is

optimal. Then:

0 doH =~ 0 0y —
o i g (120,000, X) =0 Q)

where ¥(t) is again the solution of (7).

Reformulated in Lie brackets terms, the equation (9), together with the
first order necessary optimality conditions, implies that vector fields V;(z);i =
1,m together with their first order Lie brackets (i.e. brackets of the form
Vi, Vi, 1 <4,5 < m) do not form rank n system at any point . Therefore,
the Goh condition (together with the first order optimality conditions) turns
out to be reformulation of the known in Differential Geometry statement 7],
[10] that abnormal geodesics lay entirely in the set of points x where the
distribution D fails to be strong bracket generating.

The distribution D is said to be strong bracket generating at x if for any ¢ =1
dots,m the space Lin{Vi(z),...,Vin(x),[Vi;Vil(z),...[Vm,V;](z)} is the whole tangent
space at z. In order words, the distribution is strong bracket generating, if vector fields
together with their first order Lie brackets alone are enough to span the whole tangent
space. In particular, the distribution, corresponding to contact structure [1] is strong bracket
generating .
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3. Stochastic flows

Consider the vector stochastic differential equation in Stratonovich form:
i m t
XF0 = g0 + / Vo(X)ds + Z/ Vi(X5) o dW,, t €[0,1],  (10)

where oy € R™, W, is a m—dimensional Brownian motion, V' (z) = [V;;(z)] is

a n X m matrix and Vy(z) is vector in R" with components V{¥(z). We assume

that forall2 =1,...,n, 7 =0,...,m the functions Vj; are sufficiently smooth.
Consider the infinitesimal generator of (10):

A“:;% (Zlaij(x)g_;> —Zla(vg—g)w, (11)
where ag;(2) = § 1L, V(@)1 ().

Definition 1. A differential operator A defined on an open set O C R" is
called hypoelliptic if, whenever u is a distribution on O, u is a smooth function
on any open set O C O on which Au is smooth.

In PDE theory the Chow condition is known as Hoormander condition.
Namely:

Definition 2. We will say that differential system Vi, ..., V,, satisfies the
Hodrmander condition, if for every x € R"™ vectors

Vi(z) .., Vin(@), Vi, Vil(2)o<ij<m, Vi, [Vi, Vill (@)o<ijkzms - -

span the space R™.

Theorem 2. (Hoormander [8]) Assume that the system Vi ..., V,, satisfies
Hodrmander condition. Then the operator A =Y"", V2 is hypoelliptic.

Note that this is also necessary condition if V;’s are with analytic coeffi-
cients. Still, as shown in [11] it is possible to obtain hypoellipticity also for
second order differential operators that can not be written as sums of squares.

The Hoormander theorem has been proven in [Malliavin| by using prob-
abilistic tools. In order to reprove the Hoormander theorem Malliavin intro-
duced covariance matrix:

1
P [ RO (12)
0
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where (Jo_t):>0 is the first variation process defined by:
Jo—t = 0X 0,

and V denotes the n x m matrix (V1,...,V,,).

In [9] it is shown that under HOrmander condition the covariance matrix
' is invertible almost surely, which guarantees existence of smooth transition
densities for the random variable X7 and hypoellipticity of operator A.

The special case of Hormander theorem, when V;, ..., V,, are alone enough
to span R™ has been obtained by Hermann Weyl. This is exactly the case
when A is elliptic, which leads to Riemannian geometry.

4. Conclusion

From [11] we can see that sub-Riemannian geometry is not exactly asso-
ciated with all hypoelliptic operators. Instead, the sub-Riemannian geometry
is naturally associated with Ito diffusions described by stochastic differential
equations od the type (10). The infinitesimal generators of Tto diffusions are
exactly hypoelliptic that can be written as sums of squares. Sub-Riemannian
structures arise as Legendre transforms of these operators. For more details
see [3]. The gap between Hormander condition and hypoellipticity is precisely
described in probabilistic terms in [2].

Abnormal paths are investigated in sub-Riemannian geometry and Geo-
metric control theory since the system can examine various interesting phe-
nomena in their neighborhood. In [10] it is shown that such abnormal path
can be "rigid" in the sense it is isolated point in the space of all admissible
paths in C1 metrics. However, as proven in [9] under Hormander condition the
covariance matrix is invertible almost surely, which implies that rigid paths in
sub-Riemannian geometry are almost impossible (in the sense of probability).

While abnormal paths may appear in sub-Riemannian geometry, they do
not exist in at least two cases: elliptic case (when the vector fields alone are
enough to span the whole space - Riemannian geometry) and the strong bracket
generating case (when vector fields together with their first order Lie brackets
only are enough to span the whole space - contact geometry).
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