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Abstract 

 
Nonparametric and parametric estimators for nonstationary frequency modulated 

(FM) signals are reviewed. Focus in the area of the nonparametric estimation is on 
the Viterbi algorithm (VA) for instantaneous frequency (IF). It is also applicable to 
estimation of other parameters of nonstationary FM signals. The quasi maximum 
likelihood (QML) is presented as the best existing parametric estimator. The QML 
can be applied also on nonparametric estimation. 
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Abstract

In this paper we study generalized gradient-type methods

for solving quasi-variational inequities. We establish sufficient

conditions for the convergence of the proposed methods and

estimate the rates of convergence.
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1. INTRODUCTION

In this paper, the object of our investigation is the following quasi-

variational inequality:

find x∗ ∈ C(x∗) such that

�F (x∗), y − x∗� ≥ 0, ∀y ∈ C(x∗). (1.1)

Here F : H → H is a continuous mapping and C : H → 2H is a set-

valued mapping such that C(x) is a nonempty closed convex subset

of Hilbert space H for each x ∈ H. Let us note that �·, ·� denotes the

inner product in H and � · � − corresponding norm.

A particularly well known and studied case occurs when C(x) is

independent of x, so that, C(x) ≡ C, for all x, where X is nonempty

closed convex set. In this case quasi-variational inequality (1.1) be-

comes classical variational inequality of Stampacchia type (see [14])

which consists of finding x∗ ∈ C such that

�F (x∗), y − x∗� ≥ 0, ∀y ∈ C. (1.2)

The theory and methods for solving variational inequalities are

thoroughly treated in the scientific literature. Quasi-variational in-

equalities were introduced by Bensoussan et al. (see [6,7]) in connec-

tion with the study of the impulse control problems. A thorough study

of these probems can be found in [5,20]. In the last decades the theory

of quasi-variational inequalities attracts considerable interest of scien-

tists. This theory develops powerful mathematical models which unify

important concepts in applied mathematics, like systems of nonlinear

equations, optimality conditions for optimization problems, game and

equilibrium problems (see, for instance [2-4,8,10,13,15,17-19,21-26]).

The existence and approximation theories for quasi-variational in-

equalities require that a variational inequality and a fixed point prob-

lem should be solved simultaneously. Consequently, many solution

techniques for variational inequalities have not been adapted for quasi-

variational inequalities, and there are many questions to be answered.

Milojica Jaćimović, Nevena Mijajlović
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The paper is organized as follows. In the second section, we intro-

duce the problem of quasi-variational inequality and recall the main

known results that will be used in the next sections. In the third

section, we present some known variants of the projection gradient-

type methods and their generalizations. In the last section, iterative

and continuous generalizations of projection gradient-type method are

proposed. In the same section, we also present a convergence analysis

of these methods.

2. PRELIMINARIES

We start this section by recalling some notions and results which

will be useful within this paper.

Definition. Let C be a nonepmty susbset of the real Hilbert space

H. The mapping F : H → H is said to be

(a) monotone on C, if for every x, y ∈ C it holds

�F (y)− F (x), y − x� ≥ 0;

(b) pseudo-monotone on C, if for every x, y ∈ C it holds

�F (x), y − x� ≥ 0 ⇒ �F (y), y − x� ≥ 0;

(c) strongly monotone on C with µ > 0, if for every x, y ∈ C it

holds

�F (y)− F (x), y − x� ≥ µ�x− y�2;

(d) strongly pseudo-monotone on C with µ > 0, if for every x, y ∈

C it holds

�F (x), y − x� ≥ 0 ⇒ �F (y), y − x� ≥ µ�x− y�2;

(e) Lipschitz continuous with Lipschitz constant L > 0, if for every

x, y ∈ C it holds

�F (y) − F (x)� ≤ L�y − x�.

Generalized Gradient Methods for Quasi-variational Inequalities
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The constant µ ≥ 0 from (c) (or (d)) is a parameter of strong

monotonicity (strong pseudo-monotonicity) of operator F , and L from

(a) is a parameter of Lipschitz continuity. If µ = 0, then F is a

monotone (pseudo-monotone) operator. From the definition it is clear

that µ ≤ L.

Let us note that for each point x ∈ H, there exists a unique point

in C, denoted by PC(x), such that

�x− PC(x)� ≤ �x− y� ∀y ∈ C.

The mapping PC : H → H is called projection of H onto C and is

characterized by the following two properties:

PC(x) ∈ C

and

�x− PC(x),PC (x)− y� ≥ 0 ∀y ∈ C, (2.1)

and if C is a hyperplane, then (2.1) becomes an equality. It is known

that PC(x) is a singleton set if C is nonempty closed and convex. In

this case, PC is Lipschitz continuous with constant L = 1.

In what follows, we will use known fixed point formulation for the

solution of quasi-variational inequality: x∗ ∈ C(x∗) is a solution of

problem (1.1) if and only if for any α > 0 it holds that

x∗ = PC(x∗)[x∗ − αF (x∗)]. (2.2)

The following result gives sufficient conditions for the existence of

unique solution of quasi-variational inequality (1.1).

Theorem 1. [24] If the map F is Lipschitz continuous and strongly

monotone on H with constants L and µ > 0, respectively, and C is a

set-valued mapping with nonempty closed and convex values such that

�PC(x)(z)−PC(y)(z)� ≤ l�x−y�, l+
√

1− µ2/L2 < 1, ∀ x, y, z ∈ H.

(2.3)

then the problem (1.1) has a unique solution.

Milojica Jaćimović, Nevena Mijajlović
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Nesterov and Scrimali (see [21]) proved that in (2.3) is sufficient

to require l < µ
L
.

Let us mention that assumption (2.3) is a kind of strengthening of

the contraction property for multifunction C(x). An example of such

mapping is given in the following theorem:

Theorem 2. [21] Let function c : H → H be Lipschitz continuous

with Lipschitz constant l and set C0 be a closed convex set. Then

C(x) := c(x) + C0

satisfies (2.3) with the same value of l.

This case of quasi-variational inequalities is most often discussed

in the literature and it is known as the moving set.

3. PROJECTION GRADIENT METHODS AND

GENERALIZATIONS

In this section, we present iterative and continuous projection gra-

dient methods and its generalizations.

Using the fixed point formulation (2.2), the following method for

solving problem (1.1) is used.

Algorithm 3.1

Data: x0 ∈ H and α > 0.

Step 0: Set k = 0.

Step 1: If xk = PC(xk)[xk − αF (xk)] stop.

Step 2: Set xk+1 = PC(xk)[xk − αF (xk)] and k ← k + 1; go to

Step 1.

Nesterov and Scrimali have proved convergence of this algorithm,

(see [21]). Consequently, for a given quasi-variational inequality with a

strong monotone and Lipschitz continuous mapping F , provided that

the constants L and µ are available, and for optimal stepsize α = µ
L2 ,

the sequence (xk) defined iteratively by

xk+1 = PC(xk)[xk − αF (xk)] (3.1)

Generalized Gradient Methods for Quasi-variational Inequalities
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converges to the unique solution of the quasi-variational inequality, for

any x0 in H.

One can apply similar analysis to a variable-step projection scheme

in which the step size α is allowed to vary from one iteration to the

next. This extends iteration (3.1) which is a constant-step projec-

tion scheme. The resulting variable-step algorithm is not a line-search

method, however, because the step size αk is not determined by a line

search routine.

Algorithm 3.2

Data: x0 ∈ H.

Step 0: Set k = 0.

Step 1: Choose αk > 0. Set xk+1 = PC(xk)[xk − αkF (xk)].

Step 2: If xk+1 = xk stop.

Step 3: Set k ← k + 1; go to Step 1.

The choice of the sequence of scalars (αk) may be crucial for the

success of Algorithm 3.2.

It is interesting to construct a continuous variant of this method.

For given x0 ∈ H, we construct trajectory that start at an arbitrary

point x0 ∈ H, and during the time converge to the solution of (1.1):

x′(t) + x(t) = PC(x(t))[x(t)− αF (x(t))], x(0) = x0.

The proof of convergence was exposed in [13].

To speed up the convergence, we can use more generalized variant

of the previous method:

x′(t) = −a(t)x(t) + a(t)PC(x(t))[x(t)− α(t)F (x(t))], x(0) = x0.

(3.2)

Here a(t) > 0 and α(t) > 0 are parameters of the method. The

existence and uniqueness of the trajectory x ∈ C1([0,+∞),H) gen-

erated by (3.2) has been established as a consequence of the global

CauchyпїЅLipschitz Theorem and by making use of the Lipschitz con-

tinuity of F (see [11]).
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In this paper we prove the convergence of the trajectory generated

by (3.2) in the case of moving set.

Iterative variant of proposed continuous method (3.2) has a form:

Algorithm 3.3

Data: x0 ∈ H.

Step 0: Set k = 0.

Step 1: Choose 0 < hk ≤ 1. Compute

xk+1 = (1− hk)xk + hkPC(xk)[xk − αkF (xk)], (3.3)

Step 2: If xk+1 = xk stop.

Step 3: Set k ← k + 1 and go to Step 1.

Parameters 0 < hk ≤ 1 and αk > 0 can be chosen on different ways.

In the next paragraph, we prove the convergence of this method in the

case of moving set.

Let us remark that fixed point formulation (2.2) of problem (1.1)

can be written in the form

u = PC(x)[x− αF (x)],

x = PC(u)[u− αF (u)].

This formulation enables to suggest and analyze the following two-

step method for solving quasi-variational inequality (1.1).

Algorithm 3.4

Data: x0 ∈ H and α > 0.

Step 0: Set k = 0.

Step 1: If xk = PC(xk)[xk − αF (xk)] stop.

Step 2: Choose ak > 0 and bk > 0. Compute

uk = (1− bk)xk + bkPC(xk)[xk − αF (xk)], (3.4)

xk+1 = (1− ak)xk + akPC(uk)[uk − αF (uk)], (3.5)

set k ← k + 1 and go to Step 1.

Here, 0 < ak ≤ 1, 0 ≤ bk ≤ 1 for all k ≥ 0 and α > 0 are

parameters of method.

Generalized Gradient Methods for Quasi-variational Inequalities
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In the case of bk ≡ 0, algorithm 3.4 turn into algorithm 3.3. This

method was suggested by Mijajlović at al. in 2018 (see [18]).

Shehu et al. (see [26]) have proposed a generalized gradient-type

method with intertial extrapolation step:

Algorithm 3.5

Data: Select arbitrary starting points x0, x1 ∈ H.

Step 0: Set k = 1.

Step 1: Choose θk > 0 and ak > 0. Set

yk = xk + θk(xk − xk−1)

xk+1 = (1− ak)yk + akPC(yk)[yk − αF (yk)].

Step 2: If xk+1 = xk stop.

Step 3: Set k ← k + 1 and go to Step 1.

Here (θk) and (ak) are sequences satisfying different sets of condi-

tions. Authors have proved the strong convergence of Algorithm 3.5

in the particular case.

Korpelevich (see [16]) combined two neighboring iterations to pro-

vide a new projection method for finding saddle points which was

called the extragradient method. Antipin at al. (see [4]) have proved

the convergence of extragradient method for solving quasi-variational

inequalities:

Algorithm 3.6

Data: x0 ∈ H and α > 0.

Step 0: Set k = 0.

Step 1: If xk = PC(xk)[xk − αF (xk)] stop.

Step 2: Compute

x̄k = PC(xk)[xk − αF (xk)],

xk+1 = PC(xk)[xk − αF (x̄k)],

set k ← k + 1 and go to Step 1.
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4. MAIN RESULTS

Generalized continuous method (3.2) in case of moving set is de-

scribed by the following dynamical system

x′(t)

a(t)
+x(t) = c(x(t))+PC0

[x(t)−c(x(t))−α(t)F (x(t))], t ≥ 0, (4.1)

where x(0) = x0 is initial point and 0 < a(t) ≤ 1, α(t) > 0 are

parameters of the method.

In what follows we will investigate the asymptotic behavior of the

trajectory generated by dynamical system (4.1).

Theorem 3. Let H be a Hilbert space, C0 ⊂ H be nonempty, closed,

and convex, c : H → H be l−Lipschitz continuous, and C : H → 2H

be a set-valued map such that C(x) := c(x) + C0, for every x ∈ H.

Assume that for µ > 0 and L > 0, the map F : H → H satisfies the

following condition:

�F (u)−F (v)�2+µL�u−v�2 ≤ (L+µ)�F (u)−F (v), u−v�, ∀u, v ∈ H.

(4.2)

Parameters a(t) ∈ C([0,+∞)) and α(t) > 0 satisfy

l <
2µ

3L
, 2L2 + 4µ2L2 − 1 > 0, α1 ≤ α(t) ≤ α2,

α1 = 4(µ − lL)− 4A,

α2 = min

{

4µ− 4lL+ 4A,
8µ2

L+ µ

}

∫

∞

0
a(t)dt = +∞,

where A =
√

(µ− lL)2 − 1
4 l

2L2.

Then, for every initial approximation x0 ∈ H, trajectory x(t) gen-

erated by (4.1) converges to the unique solution x∗ ∈ C(x∗) of problem

(1.1) with the following rate:

�x(t)− x∗� ≤ exp

{

−A2

∫ t

0
a(ξ)dξ

}

�x0 − x∗�.

Generalized Gradient Methods for Quasi-variational Inequalities



82  
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Proof. First of all, note that condition (4.2) implies that F

is µ−strongly monotone and L−Lipschitz continuous (see [27], page

211). Indeed, setting w = �F (u)− F (v)� in (4.2), we have

w2 − (L+ µ)�u− v�w + Lµ�u− v�2 ≤ 0.

Then, this inequality is satisfied for

w1 ≤ w ≤ w2,

where w1 = µ�u− v� and w2 = L�u− v�, i.e.

µ�u− v� ≤ �F (u)− F (v)� ≤ L�u− v�. (4.3)

It follows form (4.3) that F is Lipschitz continuous with the constant

L. From (4.2) and (4.3), we get

µ(µ+ L)�u− v�2 = µ2�u− v�2 + µL�u− v�2

≤ �F (u) − F (v)�2 + µL�u− v�2

≤ (L+ µ)�F (u)− F (v), u − v�,

confirming that F is strongly monotone with the constant µ.

Hence, conditions from Theorem 1 are satisfied, so the unique so-

lution x∗ ∈ C(x∗) of problem (1.1) exists.

From the definition of the trajectory x(t), we conclude that x′(t)
a(t) +

x(t) − c(x(t)) belongs to the set C0. Having in mind that x∗ is a

solution of quasi-variational inequality, we have that (1.1) is valid for

y = x′(t)
a(t) + x(t)− c(x(t)) + c(x∗) ∈ C(x∗):

α(t)

〈

F (x∗),
x′(t)

a(t)
+ x(t)− c(x(t)) + c(x∗)− x∗

〉

≥ 0, (4.4)

for all α(t) > 0.

Due to the variational characterization of the projection in (4.1),

we have
〈

x′(t)

a(t)
+ α(t)F (x(t)), z −

x′(t)

a(t)
− x(t) + c(x(t))

〉

≥ 0, t ≥ 0,

Milojica Jaćimović, Nevena Mijajlović
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which is valid for all z ∈ C0. For the choice z = x∗ − c(x∗) ∈ C0, it

implies

〈

x′(t)

a(t)
+ α(t)F (x(t)), x∗ −

x′(t)

a(t)
− x(t) + c(x(t)) − c(x∗)

〉

≥ 0, t ≥ 0.

(4.5)

Combining (4.4) and (4.5), we obtain

〈

x′(t)

a(t)
,
x′(t)

a(t)
+ x(t) + c(x∗)− c(x(t)) − x∗

〉

≤ α(t)

〈

F (x(t))− F (x∗), x∗ −
x′(t)

a(t)
− x(t) + c(x(t) − c(x∗))

〉

,

and then rearranging the above inequality as follows, we get

〈

x′(t)

a(t)
,
x′(t)

a(t)

〉

+

〈

x′(t)

a(t)
, x(t)− x∗

〉

+

〈

x′(t)

a(t)
, c(x∗)− c(x(t))

〉

≤ α(t)

〈

F (x(t))− F (x∗),−
x′(t)

a(t)

〉

+α(t)�F (x(t)) − F (x∗), x∗ − x(t)�

+α(t)�F (x(t)) − F (x∗), c(x(t) − c(x∗))�, t ≥ 0. (4.6)

We will now estimate the terms appearing in (4.6) as follows:

〈

x′(t)

a(t)
,
x′(t)

a(t)

〉

=
1

a2(t)
�x′(t)�2,

and
〈

x′(t)

a(t)
, x(t) − x∗

〉

=
1

2a(t)

d

dt
�x(t)− x∗�

2.

Using Young inequality and l−Lipschitz continuity of c, we obtain

〈

x′(t)

a(t)
, c(x∗)− c(x(t))

〉

≥ −
1

a(t)
�x′(t)� · �c(x∗)− c(x(t))�

≥ −
1

2a2(t)L2
�x′(t)�2 −

L2

2
�c(x∗)− c(x(t))�2

≥ −
1

2a2(t)L2
�x′(t)�2 −

l2L2

2
�x(t)− x∗�

2,

Generalized Gradient Methods for Quasi-variational Inequalities
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α(t)

〈

F (x(t)) − F (x∗),−
x′(t)

a(t)

〉

≤
α2(t)

8µ2
�F (x(t)) − F (x∗)�

2

+
2µ2

a2(t)
�x′(t)�2,

α(t) �F (x(t))− F (x∗), c(x(t)) − c(x∗)� ≤ α(t)Ll�x(t) − x∗�
2.

By substituting the above two equalities and three inequalities into

(4.6), we obtain

1

a2(t)
�x′(t)�2 +

1

2a(t)

d

dt
�x(t)− x∗�

2 −
1

2a2(t)L2
�x′(t)�2

−
l2L2

2
�x(t)− x∗�

2 ≤
α2(t)

8µ2
�F (x(t)) − F (x∗)�

2

+
2µ2

a2(t)
�x′(t)�2 + α(t)Ll�x(t) − x∗�

2

+α(t) �F (x(t)) − F (x∗), x∗ − x(t)� ,

which implies that

1

2L2a2(t)

(

2L2 + 4µ2L2 − 1
)

�x′(t)�2 +
1

2a(t)

d

dt
�x(t) − x∗�

2

≤

(

α(t)lL+
l2L2

2

)

�x(t)− x∗�
2 +

α2(t)

8µ2
�F (x(t)) − F (x∗)�

2

+α(t) �F (x(t))− F (x∗), x∗ − x(t)� , (4.7)

Setting u = x(t) and v = x∗ into (4.2) leads to the following inequality

�F (x(t)) − F (x∗)�
2 ≤ (L+ µ)�F (x(t)) − F (x∗), x(t) − x∗�

−Lµ�x(t)− x∗�
2

and, as a result, we deduce

1

2L2a2(t)

(

2L2 + 4µ2L2 − 1
)

�x′(t)�2 +
1

2a(t)

d

dt
�x(t) − x∗�

2

Milojica Jaćimović, Nevena Mijajlović
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≤

(

α(t)lL+
l2L2

2
−

α2(t)L

8µ

)

�x(t)− x∗�
2

+

(

α2(t)

8µ2
(L+ µ)− α(t)

)

�F (x(t))− F (x∗), x(t)− x∗�

Taking into account conditions of the theorem, we conclude that α(t) <
8µ2

L+µ
, and with condition of strong monotonocity of F , we get

1

2L2a2(t)

(

2L2 + 4µ2L2 − 1
)

�x′(t)�2 +
1

2a(t)

d

dt
�x(t) − x∗�

2

≤

(

α(t)lL+
l2L2

2
+

α2(t)

8
− α(t)µ

)

�x(t)− x∗�
2

Finally, we have

d

dt
�x(t)− x∗�

2 ≤ 2a(t)

(

α(t)lL+
l2L2

2
+

α2(t)

8
− α(t)µ

)

�x(t)− x∗�
2.

It turns out that the function B(α) = αlL+ l2L2

2 + α2

8 −αµ is negative

on the set α1 ≤ α(t) ≤ α2 and attains the minimum value on this set

at the point

ᾱ = 4(µ− lL)

and the optimal value is

B(ᾱ) = −2

(

µ−
3

2
lL

)(

µ−
1

2
lL

)

= −2A2 < 0.

From here, taking into account x(0) = x0, we obtain

�x(t)− x∗� ≤ exp

{

−A2

∫ t

0
a(ξ)dξ

}

�x0 − x∗�,

Since
∫

∞

0 a(ξ)dξ = +∞ we have that trajectory x(t) generated by

(4.1) converges to the unique solution x∗, which completes the proof.

⊡

Now, we will describe an iterative variant of the proposed contin-

uous method.
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Method (3.3) from Algorithm 3.3 can be written as

xk+1 − xk
hk

+ xk = PC(xk)(xk − αF (xk)),

i.e. in the case of the moving set we have

xk+1 − xk
hk

+ xk − c(xk) = PC0
(xk − c(xk)− αkF (xk)). (4.8)

We will prove the convergence of this method under new conditions,

which offer wider possibilities of the choice of parameters of the method.

Assume that there exists a unique solution of the quasi-variational

inequality (1.1), and denote it with x∗ ∈ C(x∗) = c(x∗)+C0. From the

definition of the sequence (xk), we have that each
xk+1−xk

hk
+xk−c(xk)

belongs to the set C0. Having in mind that x∗ is a solution of the given

quasi-variational inequality, we have that is valid for y =
xk+1−xk

hk

+

xk − c(xk) + c(x∗) ∈ c(x∗) + C0 = C(x∗) ::

〈

F (x∗),
xk+1 − xk

hk
+ xk − c(xk)− x∗ + c(x∗)

〉

≥ 0. (4.9)

From (4.8) we conclude that
xk+1−xk

hk
+ xk − c(xk) is a projection of a

certain element on the set C0. Consequentely, we can write (4.8) as a

variational inequality

〈

xk+1 − xk
hk

+ αkF (xk), z −
xk+1 − xk

hk
− xk + c(xk)

〉

≥ 0,

which is valid for all z ∈ C0. So, it is valid for z = x∗ − c(x∗) ∈ C0

and we get

〈

xk+1 − xk
hk

+ αkF (xk), x∗ − c(x∗)−
xk+1 − xk

hk
− xk + c(xk)

〉

≥ 0.

(4.10)

Multiplying (4.9) by αk and adding to (4.10), we obtain

∥

∥

∥

∥

xk+1 − xk
hk

∥

∥

∥

∥

2

+

〈

xk+1 − xk
hk

, xk − x∗

〉

Milojica Jaćimović, Nevena Mijajlović
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+

〈

xk+1 − xk
hk

, c(x∗)− c(xk)

〉

≤ αk �F (xk)− F (x∗), x∗ − xk�+ αk �F (xk)− F (x∗), c(xk)− c(x∗)�

+αk

〈

F (xk)− F (x∗),−
xk+1 − xk

hk

〉

. (4.11)

Now, we will estimate the terms from this inequality:

〈

xk+1 − xk
hk

, xk − x∗

〉

= hk

〈

xk+1 − xk
hk

,
xk − x∗

hk

〉

=
hk
2

(

∥

∥

∥

∥

xk+1 − x∗
hk

∥

∥

∥

∥

2

−

∥

∥

∥

∥

xk − x∗
hk

∥

∥

∥

∥

2

−

∥

∥

∥

∥

xk+1 − xk
hk

∥

∥

∥

∥

2
)

.(4.12)

Assuming that c is l−Lipschitz continuous, we get

〈

xk+1 − xk
hk

, c(x∗)− c(xk)

〉

≥ −
1

4

∥

∥

∥

∥

xk+1 − xk
hk

∥

∥

∥

∥

2

− l2 �xk − x∗�
2 .

(4.13)

We will also assume that F satisfies (4.2). So, F is µ−strongly mono-

tone and L−Lipschitz continuous and we have

αk �F (xk)− F (x∗), c(xk)− c(x∗)� ≤
α2
k

2
�F (xk)−F (x∗)�

2+
l2

2
�xk−x∗�

2

(4.14)

and

αk

〈

F (xk)− F (x∗),
xk − xk+1

hk

〉

≤ α2
k�F (xk)− F (x∗)�

2 +
1

4

∥

∥

∥

∥

xk+1 − xk
hk

∥

∥

∥

∥

2

. (4.15)

Putting (4.12),(4.13),(4.14) and (4.15) in (4.11), we obtain

(1− hk)

∥

∥

∥

∥

xk+1 − xk
hk

∥

∥

∥

∥

2

+
1

hk
�xk+1 − x∗�

2

≤

(

1

hk
+ 3l2

)

�xk − x∗�
2 + 3α2

k�F (xk)− F (x∗)�
2

−2αk�F (xk)− F (x∗), xk − x∗� (4.16)
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Setting u = xk and v = x∗ into (4.2) leads to the following inequality

�F (xk)− F (x∗), xk − x∗� ≥
1

L+ µ
�F (xk)− F (x∗)�

2 +
Lµ

L+ µ
�xk − x∗�

2

and as a result of (4.16), we deduce

(1− hk)

∥

∥

∥

∥

xk+1 − xk
hk

∥

∥

∥

∥

2

+
1

hk
�xk+1 − x∗�

2

≤

(

1

hk
+ 3l2 − 2αk

Lµ

L+ µ

)

�xk − x∗�
2

+αk

(

3αk −
2

L+ µ

)

�F (xk)− F (x∗)�
2 (4.17)

Let us first assume that αk ≤ 2
3(L+µ) . Since F is strongly monotone

and

�F (xk)− F (x∗)� ≥ µ�xk − x∗�,

we get

(1− hk)

∥

∥

∥

∥

xk+1 − xk
hk

∥

∥

∥

∥

2

+
1

hk
�xk+1 − x∗�

2

≤

(

1

hk
+ 3l2 + 3α2

kµ
2 − 2αkµ

)

�xk − x∗�
2.

Having in mind 0 < hk ≤ 1, coefficient 1− hk is positive, so ignoring

the first term in the previous inequality we have

�xk+1 − x∗�
2 ≤

(

1 + 3l2hk + 3α2
kµ

2hk − 2hkαkµ
)

�xk − x∗�
2.

We choose αk such that

1

3µ

(

1−
√

1− 9l2
)

< αk <
1

3µ

(

1 +
√

1− 9l2
)

, k ≥ 0, (4.18)

which is equivalent to

Ak = 2αkµ− 3l2 − 3α2
kµ

2 > 0,
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and we also have Ak ≤ A∗ =
(

2
3 + 3l2

)

> 0, for ᾱ = 1
3µ . Therefore, if

l2 < 4µL
9(L+µ)2

≤ 1
9 , then

1

3µ

(

1−
√

1− 9l2
)

<
2

3(L+ µ)
<

1

3µ

(

1 +
√

1− 9l2
)

.

On the other hand, if αk ≥ 2
3(L+µ)2

, than again using (4.17) and

Lipschitz continuity of F we get

(1− hk)

∥

∥

∥

∥

xk+1 − xk
hk

∥

∥

∥

∥

2

+
1

hk
�xk+1 − x∗�

2

≤

(

1

hk
+ 3l2 + 3α2

kL
2 − 2αkL

)

�xk − x∗�
2.

Similarly as above, we note that 3l2 + 3α2
kL

2 − 2αkL < 0, if and only

if

1

3L

(

1−
√

1− 9l2
)

< αk <
1

3L

(

1 +
√

1− 9l2
)

, k ≥ 0, (4.19)

and consequently, assuming that

l2 <
4µL

9(L+ µ)2
,

we can show that

1

3L

(

1−
√

1− 9l2
)

<
2

3(L+ µ)
<

1

3L

(

1 +
√

1− 9l2
)

.

Summarizing, we get

�xk+1 − x∗�
2 ≤ (1− hkAk)�xk − x∗�

2,

where for

t1 := 1−
√

1− 9l2,

t2 := 1 +
√

1− 9l2,

we have

Ak =

{

αkµ(2− 3αkµ)− 3l2, for t1
3µ < αk ≤ 2

3(L+µ)

αkL(2− 3αkL)− 3l2, for 2
3(L+µ) < αk < t2

3L

.
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It turns out that the function Ak attains the maximum value on the

set
t1
3µ

< αk <
t2
3L

at the point α∗ =
2

3(L+µ) and the optimal value is

1− hk

(

4Lµ

3(L+ µ)2
− 3l2

)

.

Hence, we get

�xk+1 − x∗�
2 ≤

k
∏

i=0

(

1− hk

(

4Lµ

3(L+ µ)2
− 3l2

))

�x0 − x∗�
2.

Hence, the sequence (xk) converges to the unique solution x∗ of (1.1).

∞
∑

k=0

hk = +∞. (4.20)

By these, the following theorem is proven:

Theorem 4. Let H be a Hilbert space, C0 ⊂ H be nonempty, closed,

and convex, c : H → H be l−Lipschitz continuous, and C : H → 2H

be a set-valued map such that C(x) := c(x) + C0, for every x ∈ H.

Assume that for µ > 0 and L > 0, the map F : H → H satisfies the

following condition:

�F (u)−F (v)�2+µL�u−v�2 ≤ (L+µ)�F (u)−F (v), u−v�, ∀u, v ∈ H.

Parameters αk and 0 < hk ≤ 1, for all k ≥ 0 satisfies (4.18), (4.19)

and (4.20). Then (xk) generated by (4.8), converges to the unique

solution of (1.1).
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CONCLUSION

In this paper, we have studied continuous and iterative variants

of some generalizations of the gradient projection method for solving

quasi-variational inequalities. We have studied the conditions under

which the approximate solution obtained from the continuous and it-

erative methods converge to the exact solution. We have also obtained

the estimates of the rate of convergence of the proposed methods. Re-

sults obtained in this paper may inspire further research in this area.

The implementation and the comparison of these methods with other

technique are an interesting problems for future study.
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