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Abstract

The study of group actions is now widely established in all areas of mathemat-
ics mainly from two aspects. The study of the orbit spaces of group actions from 
the point of view of topology, algebra, geometry, combinatorics shows up to be im-
portant in series of problems in mathematics and mathematical physics. On the oth-
er hand, the presence of a group action on a topological, algebraic, geometrical or 
combinatorics object and study of features of that action leads in many cases to es-
sential results about an initial object. In this paper we review some of results about 
compact torus actions on smooth manifolds. A special attention is devoted to the re-
sults on the canonical action of the compact torus on compact homogeneous spac-
es of positive Euler characteristic. It is mainly related to the theory of unitary cob-
ordisms of these spaces as well as to the construction of the combinatorial-smooth 
models for their orbit spaces.
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1. INTRODUCTION

The idea of a group G acting on a set of elements X dates back to Galois and
his breakthrough in development of abstract algebra in the 1830s. The well known
Erlangen program of Klein established this idea forty years later in the case when X

denotes the set of points and G a group of isometries, and proved to be fundamental
for development of geometry. In the sequent development of almost all fields of
mathematics the idea of a group action has shown to bring as well the breakthrough
results and open new directions for development.

The study of torus actions on topological spaces is one of the most current is-
sues in equivariant topology. The specific problems related to torus actions arise in
many fields of mathematics and mathematical physics and many publications have
been devoted to various aspects of this topic. Topological approach to this issue is
presented in famous monograph of G. Bredone [9], in monograph of Audin [3] it is
presented an approach to this subject from the point of view of symplectic geometry,
while an algebro-geometrical point of view is given through several fundamental
research papers and monographs such as works of Danilov [23], Oda [45], Ful-
ton [27], Ewald [26]. In recent monograph Toric topology by Buchstaber and
Panov [12] it is presented a comprehensive overview of the previous as well as
modern results on this subject.

The orbit spaces of various torus actions may have very rich combinatorial struc-
ture. In many cases the study of combinatorics of an orbit space is an efficient way
in understanding an initial torus action and the vise versa holds as well. The study
of equivariant topology of torus actions very often was leading to topological proofs
of some highly non-trivial results in algebraic topology and combinatorics. For ex-
ample, in the paper of Davis and Januskiewitz [24] as well as in the series of papers
by Buchstaber and Panov, it has been developed the theory of quasitoric manifolds
M2n with an effective action of the torus T n. In this case the orbit space M2n/T n

is homeomorphic to a simple convex polytope P and the cohomology ring for M2n

is determined by the combinatorics of the polytope P . In addition, the initial mani-
fold M2n can be reconstructed by this polytope as so called characteristic function
which assigns to any point from M2n its stabilizer for this action.

On the other hand, in the case of a group action with isolated fixed points various
algebro-topological invariants of an initial manifold can be expressed in terms of
the local data for the action at the fixed points. For example, this can be done for
the complex cobordism classes of manifolds with such a torus action due to the
achievement of Novikov [44], as well as for the general characteristic classes and
in that context various cobordism classes on compact homogeneous spaces using,
at the first place, the results of Borel-Hirzebruch [7], [8].
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In this paper, we review some of the achievements which demonstrate the power
of the techniques of toric topology in studying some fundamental questions of al-
gebraic topology such as description of complex cobordism classes and Hirzebruch
genera on manifolds with torus action, in particular homogeneous space. We also
outline the theory of (2n, k)-manifolds recently developed by Buchstaber-Terzić
in [20], in which the tools for an effective description of equivariant structure of
such manifolds as well as the structure of their orbit spaces are proposed. The class
of these manifolds includes all well known classes of manifold with nicely behaved
torus actions and their generalizations.

2. UNITARY COBORDISMS

Cobordisms are one of the central objects of study in geometric topology and
algebraic topology. In geometric topology cobordisms are closely connected to
Morse theory and surgery theory, while in algebraic topology, cobordisms theories
are fundamental cohomology theories and categories of cobordisms are the basic
objects in topological quantum filed theory.

Two stable complex smooth, closed manifolds Mn
1 and Mn

2 are said to be (co)bordant
if there is a manifold with boundary W n+1 such that ∂W n+1 = Mn

1 �Mn
2 . Complex

bordism classes form the complex bordism ring ΩU
∗ = ΩU

∗ (pt) with respect to the
disjoint union and product. It is the result of Milnor- Novikov [42], [43] that

ΩU
∗
∼= Z[a1, a2, . . .], deg ai = 2i.

Toric methods have wide applications in complex cobordism theory. The well
known question in complex cobordism theory is to describe the multiplicative gen-
erators for the complex cobordism ring ΩU

∗ and the manifolds with nice proper-
ties which represent corresponding bordism classes. From the point of view of
toric topology such nice manifolds are manifolds with well behaving torus actions
which preserve a stable complex structure. It is known that the Milnor surfaces
Hij , 0 ≤ i ≤ j give the mostly known generators for the complex cobordism ring
ΩU

∗ , [42], but there is no action on Milnor surfaces making them into quasitoric
manifolds, [11]. In this context we also point to Milnor’s theorem, which states
that any bordism class in ΩU

n with n > 0 contains a nonsingular algebraic variety
not necessarily being connected, [42]. Milnor surfaces are nonsingular algebraic
varieties, but it is still left to find nonsingular algebraic representative for −[Hij],
see [49]. Related to this we mention the following question raised by Hirzebruch in
the late 1950’s: describe the set of bordism classes in ΩU

∗ which can be represented
by connected nonsingular algebraic varieties. This question is still open even in
complex dimension 2.
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The mostly well behaved torus actions are on toric and quasitoric manifolds. A
family of toric manifolds Bij , 0 ≤ i ≤ j which multiplicatively generate complex
cobordism ring ΩU

∗ is constructed by Buchstaber - Ray in [14]. It implies that any
complex cobordism class contains a disjoint union of toric manifolds. Related to
the Hirzebruch’s question, connected representatives in cobordism classes can not
be found among toric manifolds due to certain topological obstructions [12]. In the
class of quasitoric manifolds this is possible to do due to the result of Buchstaber-
Panov-Ray [13], which states that for n > 2 every complex cobordism class con-
tains a quasitoric manifold, necessarily connected, whose stably complex structure
is compatible with the action of the torus. In other words any stable complex mani-
fold is cobordant to a manifold with nicely behaving torus action.

We recall that the generators in ΩU
∗ can be detected by the characteristic numbers.

For a complex k-vector bundle over a manifold M it is formally defined the total
Chern class by

c(ξ) = 1 + c1(ξ) + . . .+ ck(ξ),

where ci(ξ) = σi(x1, . . . , xk) is the i-the elementary symmetric function in formal
variables x1, . . . , xk. These variables have a geometric meaning in the following
sense: if ξ = ξ1 ⊕ · · · ⊕ ξk for line bundles ξ1, . . . , ξk, then xj = c1(ξj), 1 ≤ j ≤ k

is the first Chern class of ξj . Let us consider the polynomial Pn(x1, . . . , xk) =

xn
1 + . . . + xn

k and write it in terms of elementary symmetric functions, that is,
Pn(x1, . . . , xk) = σn(σ1(x1, . . . , xk), . . . , σk(x1, . . . , xk)). Substituting the Chern
classes ci(ξ) for the elementary symmetric functions σi we obtain some character-
istic class

sn(ξ) = Pn(c1(ξ), . . . , ck(ξ)).

It turns out that this characteristic class plays an important role in detecting the
polynomial generators of the complex cobordism ring due to the following re-
sult [42], [43]. A stable complex structure cτ on a manifold M2n is a real iso-
morphism cτ : τ(M2n) ⊕ R2l → ξ, where ξ is a complex vector bundle over M2n.
The structure cτ said to be an almost complex structure if l = 0. Let

sn[M
2n] = sn(ξ)〈M2n〉 ∈ Z,

where ξ is as above and 〈M2n〉 ∈ H2n(M
2n) is the fundamental class for M2n.

Theorem 1. A bordism class [M ] ∈ ΩU
2n represents a polynomial generator in the

ring ΩU
∗ if and only if

sn[M ] =

{
±1 if n �= pk − 1 for any prime p

±p if n = pk − 1 for some prime p

The number sn[M2n] is sometimes called the magic number of a manifold M2n.
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3. UNIVERSAL TORIC GENUS

The paper [44] of S. P. Novikov opened a new stage in the development of the
cobordism theory by proposing a method for the description of the fixed points
for actions of groups on manifolds, based on the formal group law for geometric
cobordisms. It quickly stimulated active research work on cobordisms of manifolds
with group actions. One branch of this direction is the theory of equivariant genera
for stable complex manifolds equipped with compatible actions of the torus T k,
which was introduced by Buchstaber-Ray in [15] and developed in detail in [13].
This theory is based on the notion of universal toric genus, which represents an
equivariant analogue of an universal Hirzebruch genus. A universal toric genus is
a genus defined on a class of stable complex T k-manifolds and taking values in
the complex cobordism ring U∗(BT k) of the classifying space of the torus T k. We
recall shortly its definition for a manifold M2n endowed with a tangentially stable
complex structure cτ and a smooth action θ of the torus T k. A stable complex
structure is said to be compatible with an action θ if the transformation given by

r(t) : ξ
c−1
τ→ τ(M2n)⊕ R2l dθ(t)⊕I→ τ(M2n)⊕ R2l cτ→ ξ

is a complex transformation for any t ∈ T k. The Borel construction gives the
fibration

M2n → ET k ×Tk M2n → p→ BT k,

whose tangent bundle along the fibers is naturally endowed with the stable com-
plex structure, where ET k and BT k stand for the universal, respectively classifying
space of the torus T k. Consider now the Gysin homomorphism

p! : U
∗(ET k ×Tk M2n) → U∗(BT k),

where U∗(X) denotes the theory of unitary cobordisms of the space X , that is the
generalized cohomology theory of X with values in ΩU

∗ . The universal toric genus
of the triple (M2n, cτ , θ) is defined by

Φ(M2n, cτ , θ) = p!(1).

Recall that U∗(BT k) = ΩU
∗ [[u1, . . . , uk]] is the algebra of formal power series over

ΩU
∗ . The following expression for the universal toric genus is due to Buchstaber-

Ray [15]:

(1) Φ(M2n, cτ , θ) = [M2n] +
∑
|ω|>0

[Gω(M
2n]uω,

where ω = (i1, . . . , ik) and uω = ui1
1 · · · uik

k . The expression [M2n] denotes the
complex cobordism class of (M2n, cτ ), while Gω is certain stable complex manifold
obtained as the total space of the fibration with the fiber M2n.
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In the case when all fixed points for T k-action on M2n are isolated, it is proved
in [13], [15] that the universal toric genus for (M2n, cτ , θ) can be localized, that is
expressed in terms of the local data at the fixed points for the action θ related to
cτ . Let P denotes the set of fixed points and {Λj(p), 1 ≤ j ≤ n}, Λj(p) ∈ Zk be
the set of weight vectors of the representation of T k at the tangent space TpM

2n

related to the stable complex structure cτ for p ∈ P . Further, let [Λj(p)] is defined
by the power series of the formal group low in complex cobordisms, see [16]. The
localization theorem states:

Theorem 2. If all fixed points for the action θ are isolated then

Φ(M2n, cτ , θ) =
∑
p∈P

sign(p)
n∏

j=1

1

[Λj(p)](u)
,

where sign(p) denotes the sign of a fixed point p related to the stable complex struc-
ture cτ .

To obtain a formula from which one can derive more explicit results, it can be em-
ployed the notion of Chern-Dold character following [10]. The Chern-Dold char-
acter of a topological space X in the theory of unitary cobordisms U∗ is a ring
homomorphism

chU : U∗(X) → H∗(X,Ω∗
U ⊗Q).

Since the Chern-Dold character splits into the composition chU : U∗(X) → H∗(X,Ω∗
U(Z)) →

H∗(X,Ω∗
U ⊗ Q), it can be considered as a ring homomorphisms chU : U∗(X) →

H∗(X,Ω∗
U(Z)), where Ω∗

U(Z) is a subring of Ω∗
U⊗Q given by Ω∗

U(Z) = Z[b1, . . . , bn, . . .]
for bn = 1

n+1
[CP n]. Being multiplicative transformation of cohomology theories, it

is then given by the series

chUu = h(x) =
x

f(x)
, f(x) = 1 +

∞∑
i=1

aix
i for ai ∈ Ω2i

U (Z)

Here u = cU1 (η) ∈ U2(CP∞) and x = cH1 (η) ∈ H2(CP∞,Z) denote the first
cobordism, respectively cohomology Chern class of the universal complex line bun-
dle η → CP∞.

From the construction of the Chern-Dold character it follows

chU [M
2n] = [M2n] =

∑
‖ω‖=n

sω([M
2n])aω,

where ω = (i1, . . . , in), ‖ω‖ =
n∑

l=1

lil and aω = ai11 · · · ainn . The numbers sω(τ(M2n)

are the cohomology characteristic numbers for M2n and they correspond to the
tangent characteristic classes for M2n.
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U⊗Q given by Ω∗
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U(Z) = Z[b1, . . . , bn, . . .]
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n+1
[CP n]. Being multiplicative transformation of cohomology theories, it
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x
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i for ai ∈ Ω2i
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Applying the Chern-Dold character to the universal toric genus in the case when
localization formula holds, one obtains

(2) [M2n] +
∑
|ω|>0

[Gω(M
2n](chUu)

ω =
∑
p∈P

sign(p)
n∏

j=1

f(〈Λj(p),x〉)
〈Λj(p),x〉

,

where chUu = (chUu1, . . . , chUuk), chUui = xi

f(xi)
, ω = (ω1, . . . , ωk), |ω| =

ω1 + . . . + ωk and x = (x1, . . . , xk) and 〈Λj(p),x〉 =
k∑

l=1

Λl
j(p)xl for Λj(p) =

(Λ1
1(p), . . . ,Λ

k
j (p)).

This equality leads to the expression for the complex cobordism class of [M2n]:

Proposition 1. The coefficient for tn in the series in tn

∑
p∈P

sign(p)
n∏

j=1

f(t〈Λj(p),x〉)
〈Λj(p),x〉

represents the complex cobordism class [M2n], while the coefficient in tl for 0 ≤
l ≤ n− 1 is equal to zero.

Now set tj(p) = 〈Λj(p),x〉, 1 ≤ j ≤ n and set

n∏
j=1

f(tj) = 1 +
∑
ω

fω(t1, . . . , tn)a
ω.

Together with (2) we obtain an explicit formula for cohomology characteristic
numbers:

Theorem 3. For any ω = (i1, . . . , in) such that ‖ω‖ =
n∑

l=1

l · il = n it holds

sω[M
2n] =

∑
p∈P

sign(p) · fω(t1(p), . . . , tn(p))
t1(p) · · · tn(p)

.

In particular, this implies that the characteristic number sn[M2n], which as we
already said, plays significant role in determining polynomial generators of the ring
ΩU

∗ can be expressed by:

Corollary 1.

s(0,...,0,1)[M
2n] = sn[M

2n] =
∑
p∈P

sign(p)

n∑
j=1

tnj (p)

t1(p) · · · tn(p)
.
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3.1. Application to homogeneous spaces of positive Euler characteristic. We
consider homogeneous spaces G/H of positive Euler characteristic, meaning that
G and H have the common maximal torus T k, and we assume G/H to be endowed
with an G - invariant almost complex structure J . For the background on necessary
Lie theory of compact homogeneous spaces we refer to [7], [8]. The following
holds:

• The fixed points for the canonical T k-action on G/H are given by the set
WG ·H , where WG is the Weyl group for G. Consequently, the number of
fixed points is equal to the Euler characteristic χ(G/H) = |G|

|H| .
• If α1, . . . , αn are the complementary roots for G related to H , then any

invariant almost complex structure on G/H can be uniquely described by
the root system Λ1 = ε1α1, . . . ,Λn = εnαn, where εi = ±1 depending on
certain orientation issue. The roots {Λk} are called the roots of an almost
complex structure J .

• The weights of the canonical T k-action on G/H at the fixed point p = e

are given by the roots of the invariant almost complex structure J , that is by
Λ1, . . . ,Λn.

• The weights at a fixed point w·H for w ∈ WG are given by the action of w on
the complementary roots for G related to H , that is by w(Λ1), . . . ,w(Λn).

• The sing of any fixed point for the canonical T k-action on G/H related to
an invariant almost complex structure is +1.

Consequently, for the cobordism class and cohomology characteristic numbers
the following holds:

Theorem 4. The cobordism class for (G/H, J) is given as the coefficient for tn in
the series in t

∑
w∈WG/WH

n∏
j=1

f(t〈w(Λj),x〉)
〈w(Λj),x〉

Theorem 5. The cohomology characteristic numbers for (G/H, J) are given by

sω(τ(M
2n)) =

∑
w∈WG/WH

w(
fω(t1, . . . , tn)

t1 · · · tn
),

where tj = 〈Λj,x〉, 1 ≤ j ≤ n. Consequently,

Corollary 2.

sn(G/H, J) =
∑

w∈WG/WH

w
(

n∑
j=1

tnj

t1 · · · tn
)
.



181Torus Actions in Topology

Remark 1. Homogeneous spaces G/H for which rkH < rkG or what is equivalent
to saying that Euler characteristic for G/H is zero, are not interesting from the
point of view of equivariant cobordism theory, as they are equivariantly cobordant
to zero [17].

Employing some additional techniques, like divided difference operators, in [16]
and [17] are computed the characteristic numbers and cobordism classes of some
important classes of homogeneous spaces.

3.1.1. Complex flag manifolds. A flag in Cn is a sequence of increasing subspaces
0 = V0 ⊂ Vn1 ⊂ Vn2 ⊂ . . . ⊂ Vnk

= Vn = Cn, where dimVni
= ni. For a fixed

sequence of integers n1, . . . , nk = n the set of all such flags is a manifold Fn1,...,nk
.

The flags corresponding to the sequence 1, 2, . . . , n are called complete flags and
F1,2...,n is called the full flag manifold. The unitary group U(n) acts transitively
on F1,2,...,n with the stabilizer T n, so the full flag manifold can be represented as a
homogeneous space, that is F1,2...,n = U(n)/T n. It follows from [8] that U(n)/T n

admits 2m, m = n(n−1)
2

invariant almost complex structures and only two of them,
conjugate to each other, are integrable, that is they are invariant complex struc-
ture. Applying the above theory, it is derived in [16] that the cobordism classes of
U(n)/T n for the invariant complex structure are given by

[U(n)/T n] =
∑
σ∈Sn

sign(σ)Pσ(δ)(a1, . . . , an, . . .),

where Sn is the symmetric group, while the polynomials Pσ(δ)(a1, . . . , an, . . .), δ =
(n− 1, n− 2, . . . , 1, 0) are defined by

∏
1≤i<j≤n

f(t(xi − xj)) = 1 +
∑
|ξ|>0

Pξ(a1, . . . , an, . . .)t
|ξ|xξ,

for ξ = (j1, . . . , jn) ∈ Zn
≥0 and |ξ| =

n∑
q=1

jq. In addition, the top characteristic

number is:

sm(U(n)/T n = 0, for n > 3, m =
n(n− 1)

2
, s3(U(3)/T 3) = −6.

3.1.2. Complex Grassmann manifolds. A complex Grassmann manifold Gq+l,l con-
sists of all l-dimensional complex subspaces in Cq+l, where the integers q, l ≥
1. In particular for l = 1 we have that Gq+1,1 = CP q is the complex projec-
tive spaces. The unitary group U(q + l) acts transitively on Gq+l,l with stabi-
lizer U(q) × U(l), so Gk+l,l can be represented as a homogeneous space, that is
Gq+l,l = U(q + l)/U(q) × U(l). Being irreducible homogeneous space it follows
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from Borel-Hirzebruch that Grassmannian Gq+l,l admits, up to equivalence, one
invariant complex structure. It is proved in [16] that

[Gq+l,l] =
1

q!l!

∑
σ∈Sq+l

sign(σ)Q(q+l,l)σ(δ)(a1, . . . , aql),

for δ = (q + l − 1, q + l − 2, . . . , 0), and the polynomials Q(q+l,l)σ(δ)(a1, . . . , aql)

are defined by

∆q∆q+1,q+l

∏
1≤i≤q//q+1≤j≤q+l

f(t(xi−xj)) =
∑

|ξ|≥ (q+l)2−(q+l)
2

Q(q+l,l)ξ(a1, . . . , an, . . .)t
|ξ|− (q+l)2−(q+l)

2 xξ,

for ∆p,q =
∏

p≤i<j≤q

(xi − xj), ∆n = ∆n,1 and ξ is as in the previous example.

The top characteristic number is given by

slq(Gq+l,l) =
∑

σ∈Sq+l/(Sq×Sl)

σ
(∑(xi − xj)

lq

∏
(xi − xj)

)
.

Moreover, it is proved in [17] that

slq(Gq+l,l) = 0 for q, l ≥ 3.

For q = l = 2 we obatin s4(G4,2) = −20, while for l = 2, q = 3 we obtain
s3(G5,2) = 70.

3.1.3. Generalized Grassmann manifolds. The cobordism classes and character-
istic numbers of generalized Grassmann manifolds Gq1+q2+...qk,q1,...,qk−1

are also
calculated in [17]. These manifolds can be represented as homogeneous spaces,
that is Gq1+q2+...qk,q1,...,qk−1

= U(q1 + . . . + qk)/U(q1) × . . . × U(qk). A general-
ized Grassmann manifold has 2

k(k−1)
2 invariant almost complex structures. Let J

be an invariant almost complex structure defined by the roots εij(xi − xj), where
q1 + . . .+ ql−1 +1 ≤ i ≤ q1 + . . .+ ql and q1 + . . .+ ql +1 ≤ j ≤ q1 + . . .+ qk for
1 ≤ l ≤ k− 1, and εij = ±1. The cobordism class of Gq1+...+qk,q1,...,qk−1

is given as
the coefficient for tm, m =

∑
1≤i<j≤k

qiqj in the series in t:

λ

q1! · · · qk!
L
(
∆q1 ×∆q1+1,q1+q2 × . . .×∆q1+...+qk−1+1,q1+...+qk

∏
f(tεij(xi − xj))

)
,

where λ =
∏

εij , ∆p,q =
∏

p≤i<j≤q

(xi − xj) and L denotes divided difference opera-

tor. The operator L is defined by Lxξ = 1
∆n

∑
σ∈Sn

sign(σ)σ(xξ), for ξ = (j1, . . . , jn)

and xξ = xj1
1 · · · xjn
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It implies that

sm(Gq1+...+qk,q1,...,qk−1
) = 0 for k ≥ 3, where m =

∑
1≤i<j≤k

qiqj.

4. HIRZEBRUCH GENERA

The Hirzebruch genera have been introduced in algebraic geometry and became
widely known due to the famous Atiyah-Singer theorem on index of differential
operators of manifolds. They had evolved out of the classical concept of genus of
a surface which dates back to Riemann [47]. A genus is an invariant for certain
classes of manifolds expressed in terms of characteristic classes of the tangent bun-
dle, which might be equipped with a stable complex structure, with values in a ring
R and it satisfies two properties. The first one is additivity, which means that a
genus of the disjoint union of two manifolds is equal to the sum of same genera
and the second is multiplicativity, which means that a genus of the product of two
manifolds is the product of the same genera. A beautiful explanation of the concept
of genus is given by Hirzebruch and Kreck in [34]. The Hirzebruch genera play
fundamental role in complex cobordism theory and its applications.

Le us recall the notion of a Hirzebruch genus. Assume we are given a power
series f(x) = x + f1x

2 + f2x
3 + ... ∈ R ⊗ Q[[x]], where R is a commutative ring

with unit. It is common as well to assume that R is torsion-free due to the beautiful
Hirzebruch correspondence that follows. The formal series

n∏
i=1

ui

f(ui)

is a symmetric function in variables u1, . . . , un, so it can be represented in the
form Lf (σ1, . . . , σn) for the elementary symmetric functions σ1, . . . , σn in variables
u1, . . . , un. The Hirzebruch genus Lf (M

2n) of a stable complex manifold M2n is
defined to be the value of Lf (c1, . . . , cn) on the fundamental class 〈M2n〉, where ci
are the Chern classes of the corresponding complex vector bundle ξ over M2n. A
Hirzebruch genus is a multiplicative invariant of a stable complex manifold, that is,
it defines the ring homomorphism Lf : ΩU

∗ → R ⊗ Q. The vice verse is also true:
for any ring homomorphism φ : ΩU

∗ → R⊗Q, there exists a series f ∈ R⊗Q[[u]],
such that f(0) = 0, f ′

(0) = 1 and φ = Lf . The formal power series f is called
the logarithm of φ. Among Hirzebruch genera in the focus of study, due to their
importance in different areas of mathematics and mathematical physics, are classi-
cal genera such as the Todd genus, the signature and the arithmetic genus, as well
as the modern genera such as an elliptic genus, the Krichever genus and the general
Krichever genus.
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For example, may be the best known genus is the signature of a 2n-dimensional
manifold, which is defined to be the signature of the intersection form of its coho-
mology algebra for even n, while it is equal to zero for odd n. It is known that
the signature is an essentially important topological invariant of a four-manifold,
for example, together with the rank it classifies the rational homotopy type [51] of
a four-manifold. The signature can be defined as the L-genus, whose logarithm is
given by the power series

f(u) = u+
u3

3
+

u5

5
+ . . . = tanh−1(u).

We further assume, without loss of generality that R is an Q-algebra. Any
Hirzebruch genus Lf : ΩU

∗ → R has T k-equivariant extension LTk

f : ΩU :T k

∗ →
R[[u1, . . . , uk]] defined by

LTk

f = Lf ◦ Φ,

where ΩU :T k

∗ denotes the cobordism classes of T k-equivariant stable complex man-
ifolds and Φ is the universal toric genus. In this way the Hirzebruch genera give the
class of toric genera. It follows from (1) that

LTk

f (M, cτ ) = Lf (M) +
∑
|ω|>0

Lf (Gω)u
ω.

We present some of the results from [16], [17] on some Hirzebruch genera on com-
pact homogeneous spaces of positive Euler characteristic.

4.1. The Hirzebruch χy-genus. The Hirzebruch χy-genus is defined in [33] by
the series

fy(u) =
u(1 + ye−u(1+y))

1− e−u(1+y)
.

For y = 0 it gives the famous Todd genus, while for y = 1 it gives the signature.
It is proved in [46] that the Hirzebruch χy - genus of a quasitoric manifold can be

expressed in terms of combinatorial data of a manifold, that is in terms of the signs
and the indexes of the vertices for the simple polytope, which corresponds to the
orbit space of the torus action on a manifold.

We proved in [17] the similar result for the Hirzebruch χy-genus of homogeneous
spaces G/H of positive Euler characteristic related to an arbitrary stable complex
structure cτ equivariant for the canonical action of the maximal torus, under as-
sumption that G/H admits and invariant almost complex structure J . The weights
at a fixed point w for the canonical action of the maximal torus T k on G/H related
to cτ are ε1(w)w(α1), . . . , εn(w)w(αn), where α1, . . . , αn are the complementary
roots for G related to H and εi(w) = ±1 for 1 ≤ i ≤ n, while the sign of w is given
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by sign(w) = ε ·
n∏

i=1

εi(w), where ε = ±1 depending on whether or not J and cτ

define the same orientation on τ(M2n).
Using Atiyah-Hirzebruch formula and theory of Lie algebras in [17] it is deduced:

Theorem 6. The Hirzebruch χy-genus for (G/H, cτ ) is given by

χy(G/H, cτ ) = ε ·
∑

w∈WG/WH

(−y)
1
2

n∑
i=1

(1−εi(w)si(w))
·

n∏
i=1

εi(w),

where si(w) denotes the sign of w(αi) regarding to a fix ordering on the canonical
coordinates on the Lie algebra tk for T k.

By putting y = 0 and y = 1 we obtain the Todd genus and the signature for
(G/H, cτ ) respectively:

Corollary 3.

Td(G/H, cτ ) = ε ·
∑

w∈WG/WH , εi(w)=si(w), 1≤i≤n

·
n∏

i=1

εi(w)

if the set {w ∈ Wg/WH , εi(w) = si(w), for all 1 ≤ i ≤ n} is nonempty. If this set
is empty then

Td(G/H, cτ ) = 0.

sign(G/H, cτ ) = ε ·
∑

w∈WG/WH

(−1)
1
2

n∑
i=1

(1−εi(w)si(w))
·

n∏
i=1

εi(w).

If cτ is an invariant almost complex structure J we have that ε = 1 and εi = 1

for any 1 ≤ i ≤ n, which according to [17] implies:

Corollary 4.

χy(G/H, J) =
∑

w∈WG/WH

(−y)
1
2

n∑
i=1

(1−si(w))
,

sign(G/H) =
∑

w∈WG/WH

(−1)
1
2

n∑
i=1

(1−si(w))
.

In addition, using the root theory of Lie algebras in [17] we proved:

Corollary 5. If J is integrable then Td(G/H, J) = 1, while for J non-integrable
Td(G/H, J) = 0.
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4.2. Rigidity of Hirzebruch genera. Given an action of the torus T k on a stable
complex manifold the well known question of rigidity immediately arises. A genus
Lf is said to be T k- rigid if LTk

f (M) = Lf (M). We note that it can be analogously
defined the notion of G-rigidity of a genus for manifolds with G-action in the sense
that Lf is G-rigid if an equivariant genus LG

f is independent of G, that is LG
f (M) =

Lf (M) for any G-manifold M . A genus is said to be rigid if is it G-rigid for any
compact connected group G. It is well known [2], [40] that if a genus is S1-rigid
then it is rigid, so also in the case of T k-action it is enough to consider just S1-
rigidity.

In the case when T k-action is with isolated fixed points, it is proved in [13] that
the conditions for T k-rigidity of a Hirzebruch genus Lf can be formulated in terms
of functional equations on signs and weights at fixed points.

Theorem 7. A genus Lf , where f is a series over a Q-algebra A, is T k-rigid if and
only if the functional equation

∑
x∈Fix(M)

sing(x)
n∏

j=1

1

f(ωj(x) · u)
= c,

is satisfied in A[[u1, . . . , uk]] for the constant c = Lf (M). Here ωj(x) are the
weight vectors for T k action related to cτ at a fixed point x.

4.3. T k-rigidity of some important genera on compact homogeneous spaces.
We consider compact homogeneous spaces G/H of positive Euler characteristic.
As we already pointed the weight vectors at the identity e = eH for an arbitrary
stable complex structure are, up to sign, given by the complementary roots for G
related to H , while the weight at the other fixed point we obtain by the action of
the quotient WG/WH on the weights at the identity, where WH , WH are the Weyl
groups for H,G respectively. This leads to the possibility of explicit application
of Theorem 7. We shortly present here the results from [17] on rigidity of some
important Hirzebruch genera on homogeneous spaces under consideration.

4.3.1. Rigidity of Krichever genus. Krichever genus was introduced in [41] and it
is also known as generalized elliptic genus. It is a Hirzebruch defined by the power
series

f(u) =
exp(µu)
B(u, v)

,

where B(u, v) is Baker-Akhiezer function defined by

B(u, v) = B(u, v;ω1, ω2) =
σ(u− v)

σ(u)σ(v)
eζ(v)u.
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Here σ(u) and ζ(u) are the Weierstrass sigma and zeta functions and ω1, ω2 are
half-periods of an elliptic curve Γ such that Imω2

ω1
> 0.

It is proved in [41] that the Krichever genus is S1-rigid on the class of SU-
manifolds with an equivariant circle action, where these are defined by the con-
dition that their first Chern class vanishes. We reproved in [17] this result for the
class of SU-homogeneous spaces of positive Euler characteristic appealing just on
Theorem 7 and Lie representation theory. More precisely, we proved the follow-
ing statement, which together with Liouville theorem [48] proves the rigidity of
Krichever genus in our case.

Theorem 8. If f is the power series which defines Krichever genus, then for any
homogeneous space G/H of positive Euler characteristic the function

∑
w∈WG/WH

n∏
j=1

1

f(w(αj · u))
,

has no poles, where αj are the roots of an arbitrary invariant almost complex SU-
structure on G/H .

As examples and remarks in [17] point, the assumption on invariant almost com-
plex structure to be a SU-structure is essential even in the class of homogeneous
spaces we consider.

4.3.2. Rigidity of the elliptic genus of level N. Appealing on [41] the elliptic genus
of level N can be defined as follows. On a elliptic curve Γ fix the points vsm of order
N:

vsm =
2s

N
ω1 +

2m

N
ω2, s,m = 0, 1, . . . , N − 1

and for ηl = ζ(ωl), l = 1, 2 put

µsm = −2s

N
η1 −

2m

N
η2 + ζ(vsm).

The elliptic genus of level N is a Hirzebruch genus defined by the series

fsm(u) =
exp(µsmu)

B(u, vsm)
.

The elliptic genus of level N is proved [32] to be S1-rigid on the class of S1-
equivariant stable complex manifolds whose first Chern class is divisible by N.
In [17] we reproved this results for compact homogeneous spaces of positive Euler
characteristics appealing just on Lie representation theory and Theorem 7.

Theorem 9. The elliptic genus of level N is T k -rigid on homogeneous spaces of
positive Euler characteristic endowed with the canonical action of the maximal
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torus T k and with an invariant almost complex structure whose sum of roots is
divisible by N.

4.3.3. Rigidity of a Hirzebruch genus defined by an odd series. We consider now
Hirzebruch genera defined by an odd power series. These genera include the sig-
nature which we already mentioned and which coincides with the L-genus de-
fined by an odd series f(u) = tanh(u), as well as another important example
such as Â-genus which is defined by an odd series f(u) = 2sinh(u

2
). More gen-

erally, an elliptic genus is defined by an odd power series f(u) = g−1(x) for
g(x) =

∫ x

0
dt√

1−2δt2+εt4
, where the coefficient ring R = C and δ2 �= ε �= 0. For

ε = δ = 0 the degenerate elliptic genus gives the signature, while for δ = −1
8

and
ε = 0 it gives Â-genus.

We proved in [17] that Lf for an odd power series f , is T k-rigid and equal to zero
on a large class of homogeneous spaces, being a stronger result than T k-rigidity. In
particular, it holds:

Theorem 10. Any Hirzebruch genus Lf defined by an odd series f is

• T n-rigid and equal to zero on U(n)/T n endowed with an arbitrary T n–
equivariant stable complex structure.

• T km-rigid and equal to zero on U(km)/(U(m))k endowed with an arbitrary
T km-equivariant stable complex structure for odd m.

Theorem 11. The elliptic genus and the Â-genus are equal to zero on:

• U(n)/T n related to an arbitrary T n-equivariant stable complex structure.
• U(km)/(U(m))k related to an arbitrary T km-equivariant stable complex

structure for odd m.

5. SOME IMPORTANT TORUS ACTIONS

An action of a group G on a set X is a map α : G × X → X denoted by
α(g, x) = g · x such that α(g1g2, x) = α(g1, g2 · x) and α(e, x) = x, where e is an
identity element in G. For x ∈ X by Gx = {g ∈ G|g · x = x} is usually denoted
its isotropy subgroup and its orbit by Gx ⊆ X . The sets G/Gx and Gx correspond
bijectively and Gy and Gx are conjugate in G for any y ∈ Gx. It naturally arises
projection map π : X → X/G, where X/G is the set of disjoint orbits. It may
happen, but not obligatory, that this projection has, in a sense, inverse map which
is called a section. This is the map s : X/G → X which is defined by choosing
some representative s(Gx) for each orbit, such that π(s(Gx)) = Gx. The section
s defines further a characteristic function λs : X/G → S(G) by λs(Gx) = Gs(Gx),
where S(G) stands for the set of all subgroups in G.
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On the other hand, given a characteristic function χ : Y → S(G) on an arbitrary
set Y , it is defined the set

D(λ) = (G× Y )/ ∼,

where the equivalence relation is given by (g1, y) ∼ (g2, y) whenever g−1
1 g2 ∈ λ(y).

In this way D(λ) is equipped with an action of G by g · [h, y] = [gh, y]. The orbits
are the subsets {[g, y] : g ∈ G} and the quotient map is the projection on the second
factor π : D(λ) → Y , while the canonical section is given by s(y) = [1, y] for any
y ∈ Y .

It can be easily verified that the constructions D(λ) and λs are inverse to each
other, thus they establish a correspondence between characteristic functions and
sets with a G-action having a section.

In order to put this into topological context one proceeds by assuming that α
is a continuous action of a topological group G on a topological space X . Then
each isotropy subgroup is closed, so the characteristic map λs : X/G → S(G)

takes values in the poset of closed subgroups and it is continuous with respect to the
lower topology on S(G).

In the case of compact torus action, that is when G = T , we will see that, due to
existence of a section, the above correspondence holds for toric and quasitoric man-
ifolds. This further leads to the remarkable combinatorial description of algebraic
topology of these manifolds. For higher complexity actions, such section does not
exist any more and we present the theory of (2n, k)-manifolds which develops the
tools and techniques for study of such manifolds.

5.1. Toric manifolds. Let C∗ denotes the multiplicative group of complex num-
bers. The product (C∗)n of n copies of C∗ is known as the algebraic torus following
the line that the compact torus T n is the product of n copies of the circle. The ex-
pression T n = {(e2πiϕ1 , . . . , e2πiϕn) ∈ Cn, ϕ1, . . . , ϕn ∈ R} gives the subgroup
embedding of T n in (C∗)n.

Def 1. A toric variety over C is a n-dimensional normal variety X containing (C∗)n

as a Zariski open set in such a way that the natural action of (C∗)n on itself extends
to an action of (C∗)n on X .

It follows that (C∗)n acts on X with a dense orbit. A compact, smooth toric
variety are nowadays, in particular in topology, called a toric manifold. In spite of
their relatively simple definition toric manifolds have many remarkable features and
applications. One of the most beautiful features of a toric manifold is that its many
subtle properties can be expressed in the language of combinatorics and convex
geometry.
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The basic combinatorial object associated to a toric variety is a fan. Let Rn be
the Euclidean space and Zn ⊂ Rn an integral lattice. A rational convex polyhedral
cone σ in Rn is a cone spanned by the finite set of vectors l1, . . . , ls ∈ Zn, that is
σ = {r1l1 + . . . + rsls ∈ Rn, ri ≥ 0}, which does not contain line through the
origin. A fan Σ in Rn is a non-empty collection of rational convex polyhedral cones
in Rn which is closed under taking faces, that is a face of any cone is again cone in
Σ, and it is closed under intersection, that is the intersection of two cones in Σ is a
face of each. A fan Σ is said to be complete if the union of all fans from Σ covers
entire space Rn, and non-singular if every cone of dimension k in Σ is spanned by
k integer vectors which form a part of a basis in Zn.

A fundamental result in the theory of toric varieties states that the category of
toric varieties is equivalent to the category of fans, that is there is a bijective cor-
respondence X → ΣX see [51], [52]. A toric variety X is compact if and only if
its corresponding fan ΣX is complete, and X is smooth if and only if ΣX is non-
singular. Thus, a toric variety X is a toric manifold if and only if ΣX is a smooth
and non-singular.

Toric varieties can be as well defined from convex polytopes. Recall that a convex
polytope P is a bounded convex polyhedron, where a polyhedron is defined by the
intersection of finitely many half-spaces in some Rn, that is P = {x ∈ Rn :

〈li,x〉 ≥ ai, i = 1, . . . ,m}. where li ∈ (Rn)∗ are some linear function and ai ∈ R,
1 ≤ i ≤ m. Assume we are given a convex n-polytope P n with vertices in integer
lattice Zn ⊂ Rn. Then the vectors li can be chosen integer and primitive, and the
numbers ai can be chosen integer. In this case li is normal to the facet Fi ⊂ P n and
is pointing inside the polytope P n. Define the complete fan Σ(P ) whose cones are
generated by those sets of normal vectors li1 , . . . , lik whose corresponding facets
Fi1 , . . . , Fik have non-empty intersection in P n . This fan is called the normal fan
of P n.

Consider the toric variety MΣ(P ) corresponding to the fan Σ(P ) and define MP =

MΣ(P ). The underlying topological space of the toric variety MP can be identified
with the following quotient space:

MP = T n × P n/∼,

where (t1, p)∼(t2, q) if and only if p = q and t1t
−1
2 ∈ T (q).

The orbit space MP/T
n identifies with P n and T (q) is a subtorus in T n which is

given by the stabilizer of the points in MP which project to the point q. Note that if
q is a vertex then T (q) = T n, while T n = {e} if q belongs to the interior of P n.

Ex 1. Consider the complex projective space CP n = {(z0 : . . . : zn), zi ∈ C} with
the linear action of (C∗)n given by (t1, . . . , tn) · (z0 : . . . : zn) = (z0 : t1z1 : . . . :

tnzn). It is obvious that (C∗)n ⊂ CP n is a dense open subset. A fan defining CP n
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consists of the cones spanned by all proper subsets of the vectors e1, . . . , en,−e1 −
. . .− en in Rn. The toric manifold CP n arises from the polytope P = ∆n, which is
the standard n-simplex in Rn, that is CP n = X∆n .

A fan Σ defines the simplicial complex KΣ whose vertex set is {1, . . . ,m} and
{i1, . . . , ik} ⊂ {1, . . . ,m} is a simplex in KΣ if and only if li1 , . . . , lik span a cone
of Σ. Now, write the primitive integer vectors along the rays of Σ in the standard
basis of Zn, that is li = (l1i, . . . , lni), i = 1, . . . ,m and assign to each vector li an
independent variable vi. The Stanley - Reisner ring of a simplicial complex KΣ is
the quotient ring

R(KΣ) = R[v1, . . . , vm]/IKΣ
,

where IKΣ
is the homogeneous ideal generated by all free-square monomials vσ =

vi1vi2 · · · vis , i1 < i2 . . . < is such that σ = {i1, . . . , is} is not a simplex of KΣ.
Define the linear forms

θi = li1v1 + . . .+ limvm ∈ Z[v1, . . . , vm], 1 ≤ i ≤ n.

Denote by JΣ the ideal in Z[v1, . . . , vm] spanned by these linear forms. The follow-
ing was proved in [23], [35]:

Theorem 12. The integral cohomology ring of MΣ is given by

H∗(MΣ.Z) = Z[v1, . . . , vm]/(IKΣ
+ JΣ),

where dim vi = 2 for 1 ≤ i ≤ m.

5.2. Quasitoric manifolds. A quasitoric manifold is, in a sense, a topological
counterpart to a toric manifold in algebraic geometry, that is a topological ana-
logue of a nonsingular projective toric variety of algebraic geometry. The notion
of quasitoric manifolds was introduced by Davis-Januskiewitz in [24], while for
detail elaboration with updates on current development we refer to the books by
Buchstaber-Panov [11], [12].

A quasitoric manifold is a closed smooth manifold M2n of real dimension 2n

with a smooth action of the compact torus T n such that

(1) T n-action is locally standard, that is M2n has a standard atlas, meaning that
any chart is given by a triple (Uα, uα, ϕα), where Uα is an open T n-invariant
subset in M2n, ϕα is an automorphism of T n and uα : Uα → Vα ⊂ Cn is an
ϕα-equivariant homeomorphism for some standardly T n-invariant set Wα,
that is uα(t · x) = ϕα(t) · uα(x) for any t ∈ T n and x ∈ Uα.

(2) there is a continuous projection map µ : M2n → P n, where P n is a simple
convex polytope, whose fibers are T n-orbits.
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Property (1) implies that the orbit space M2n/T n is a manifold with corners,
and property (2) implies that this orbit space is diffeomorphic, as a manifold with
corners, to the simple polytope P n. The definition also implies that µ maps every
p-dimensional orbit to a point in the relative interior

◦
F of a p-dimensional face

F of P n and that the preimage µ−1(x) is a p-dimensional orbit for any x ∈
◦
F .

Thus, the T n - action is free on µ−1(
◦
P n), while the vertices correspond by µ to

the fixed point of T n-action on M2n. Moreover, for any face F of P n all points
from MF = µ−1(

◦
F ) have the same stabilizer. The projection map µ is commonly

called (almost) moment map, following the notation from algebraic and symplectic
geometry.

Ex 2. The complex projective space CP n with the action of T n given in Example 1
is a quasitoric manifold over the simplex ∆n. The moment map µ : CP n → ∆n is
given by

(z0 : . . . : zn) →
1

n∑
i=0

|zi|2
(|z0|2, . . . , |zn|2).

Remark 2. Projective toric manifolds provide examples of quasitoric manifolds,
while there are quasitoric manifolds which are not toric manifolds. For example,
the connected sum CP 2#CP 2 is a quasitoric manifold with an appropriate action
of T 2, but it is not a toric manifold because it does not admit any almost complex
structure.

A quasitoric manifold can be completely recovered using the combinatorics of the
polytope P n and the characteristic function. We recall this beautiful construction.
Let {F1, . . . , Fm} be the set of all facets of P n. The stationary subgroups T (Fi) of
these facets are one-dimensional tori in T n, so they can be represented by T (Fi) =

{(e2πiλ1iφ, . . . , e2πiλniφ), ϕ ∈ R} for a fixed vector λi = (λ1i, . . . , λni) ∈ Zn. The
vectors λi, 1 ≤ i ≤ m satisfy important condition: if intersection Fi1 ∩ . . . ∩ Fin is
a vertex of P n, then the vectors λi1 , . . . , λin form a basis in Zn.

The characteristic map l : {Fi} → S(T n), where S(T n) is the set of all con-
nected subgroups of the torus T n defined by l(Fi) = T (Fi), can be described using
characteristic matrix Λ whose columns are the vectors λi, 1 ≤ i ≤ m. It is the result
of Davis-Januszkiewicz [24] that the matrix Λ together with the combinatorics of
the polytope P n determine the cohomology of M2n.

Let F denotes the partially ordered set of all faces of P n. The points from
µ−1(F ), for any F ∈ F have the same stabilizer. It implies that the characteristic
map l extends to the map l : F → S(T n), which to each F = Fi1 ∩ . . .∩Fik ∈ F as-
signs the stationary subgroup of the set µ−1(F ), that is T (Fi1)× . . .×T (Fik) ⊂ T n.
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The map l : F → S(T n) is completely determined by the matrix Λ. A qua-
sitoric manifold can be recovered, up to diffeomorphism, using the characteristic
pair (P n,Λ), that is

M2n ∼= (T n × P n)/∼,

where (t1, p)∼(t2, q) if and only if p = q and t1t
−1
2 ∈ Λ(F (p)), where F (p) is the

smallest face of the polytope P n which contains p. This is proved in [24], using the
observation that for a quasitoric manifold M2n there is the section s : P n → M2n

defined by s(x) = 1 · x and that P n is a contractible topological space.
It is proved in [24] that the cohomology ring of a quasitoric manifold has the same

structure as the cohomology ring of a nonsingular compact toric variety. Hence, it
is generated by the two-dimensional classes classes which satisfy two type of rela-
tions: monomial relations coming from the face ring of the corresponding simple
polytope P and linear relations coming from the characteristic matrix.

Theorem 13. (1) The integral homology groups of a quasitoric manifold M2n =

(P n,Λ) vanish in odd dimensions, so they are free abelian groups in even
dimensions. Their Betti numbers are given by

b2i(M) = hi(P
n),

where hi(P
n), i = 0, . . . , are the components of the h-vector of P n.

(2) The integral cohomology ring of M2n is given by

H∗(M2n,Z) = Z[v1, . . . , vm]/I,

where vi are two-dimensional cohomology classes and I is the ideal gener-
ated by the elements of the following two types:

– vi1 · · · vik whenever Fi1 ∩ · · ·∩Fik = ∅ – the Stanley-Reisner relations;
– the linear forms ti = λi1v1 + . . .+ λimvm, 1 ≤ i ≤ n.

Ex 3. Let us consider the quasitoric manifold M4 over the hexagon, whose charac-
teristic matrix is given on the picture by assigning to each edge the corresponding
vector:

According to Theorem 13 we obtain

H∗(M4,Z) = Z[v1, . . . , v6]/I,

where I is generated by the polynomials:
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• v1v3, v1v4, v1v5, v2v4, v2v5, v2v6, v3v5, v3v6, v4v6,

• −v1 + v2 − v4 + v5,−v1 + v3 − v4 + v6.

5.3. Torus actions of complexity one. In the previous cases of toric and quasitoric
manifolds we considered nicely behaved effective actions of the torus T n on a man-
ifold M2n of the dimension 2n, that is the dimension of the acting torus is equal half
of the dimension of a manifold. It is naturally to try to generalize this and to con-
sider similar effective actions of the torus T k on M2n for any k ≤ n. It arises to be
important here the number d = n− k which is commonly called the complexity of
the action and it generalizes the notion of complexity of algebraic torus (C∗)k - ac-
tion from algebraic geometry and symplectic geometry. While, as we demonstrated,
the actions of complexity zero are well studied establishing remarkable combina-
torial results, it turns out that the study of torus actions of the complexity d ≥ 1

is much harder problem. The study of actions of complexity d ≥ 2 are generally
assumed in the literature to be quite difficult problem. Still, actions of complexity
one have, in a sense, intermediate positions, since there already have been studied
from different point of views and some nice results have been achieved.

In algebraic geometry the actions of complexity one of general algebraic groups
are studied by many authors [51], [2], [31], [30]. In particular, the classification of
such an actions is given by Timashëv in [52]

Symplectic toric manifolds are known to be classified by their moment map im-
age [25]. Complexity one symplectic torus actions on symplectic manifolds, and
among them the Hamiltonian ones, are also well studied, related results can be
found in the series of papers by Karshon-Tolman, [37], [38], [39]. In particular,
they proved that if the action of the torus T n−1 on a compact connected symplectic
manifold M2n is of complexity one, then there exists a connected closed oriented
surface Σ such that the orbit space M2n/T is homeomorphic to the quotient of the
space ∆×Σ by some appropriate equivalence relation, where ∆ is the correspond-
ing moment polytope. Moreover, if T n−1-action on M2n has isolated fixed points
then Σ is the sphere S2. Recall that a complexity one symplectic torus action on a
compact symplectic manifold is Hamiltonian if and only if it has a fixed point, so
the orbit space of a Hamiltonian symplectic manifold M2n by the complexity one
torus action is of the form

M2n/T ∼= (∆× S2)/∼,

by some appropriate relation ∼, see [39]. In particular, if a complexity one action is
Hamiltonian and in general position, they proved that M2n/T n−1 is homeomorphic
to the sphere Sn+1.

An independent study of complexity one torus actions from the point of view of
topology has been done by Ayzenberg [4], [5], [6]. For example, the orbit space
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M2n/T n−1 of a smooth, closed, connected, orientable manifold by complexity one
torus action in general position, is proved to be a closed topological manifold. If
one omits the condition that an action is in general position, then the orbit space is
a closed topological manifold with corners.

Ex 4. Some well studied homogeneous examples of complexity one canonical torus
actions are:

• T 4-action on the complex Grassmann manifold G4,2 = U(4)/U(2)×U(2), [38], [19];
• T n-action on the complete complex flag manifold F3 = U(3)/T 3, [20], [4];
• T 3-action on the quaternionic projective plane HP 2 = Sp(3)/Sp(1) ×
Sp(2), [4];

• T 2-action on the sphere S6 = G2/U(3), [4].

In particular, it is proved in [4] that HP 2/T 3 ∼= S5 and that S6/T 2 ∼= S4.

6. THEORY OF (2n, k)-MANIFOLDS

As we saw in the previous sections, a toric or quasitoric manifold is modeled on
the product T n×P n, meaning that to any point of such a manifold it can be assigned
two coordinates (t, x), that is an angle coordinate and moment map coordinate. It
turns out that this is very distinctive feature of these manifolds with zero complexity
torus action.

If we go wider and consider for example very important class of manifolds such
as homogeneous spaces G/H , then the canonical action of the compact torus T

of G on M = G/H has, in general, complexity d ≥ 1 and, intuitively, it is not
difficult to observe that such two-coordinate description of points from G/H , even
locally, is not possible. This is also due to the observation that in this case the orbit
space M/T is not a polytope any more, in fact it turns out its description to be a hard
problem. Moreover, it can be proved, that even for some fundamental homogeneous
spaces, such as Grassmann manifolds, a section from the corresponding moment
map polytope to the initial space does not exist.

In the series of papers by Buchtaber-Terzić, the problem of smooth, effective T k -
action on a smooth, closed, oriented manifold M2n of an arbitrary complexity d ≥ 0

has been studied. This study started with the papers [18], [19] where the canonical
action of the torus T n on a complex Grassmann manifold Gn,k = U(n)/U(k) ×
U(n − k) is studied. In particular, the corresponding orbit spaces are explicitly
described for n = 4 and n = 5. Afterwards, the general theory of (2n, k)-manifolds
has been developed in [20]. Then, in sequent papers [21] and [22], a very explicit
model for the orbit space Gn,2/T

n was constructed and it was established a beautiful
connection between this model and the well known construction Gn,2//(C∗)n from
algebraic geometry known as the Chow quotient.
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action on a smooth, closed, oriented manifold M2n of an arbitrary complexity d ≥ 0

has been studied. This study started with the papers [18], [19] where the canonical
action of the torus T n on a complex Grassmann manifold Gn,k = U(n)/U(k) ×
U(n − k) is studied. In particular, the corresponding orbit spaces are explicitly
described for n = 4 and n = 5. Afterwards, the general theory of (2n, k)-manifolds
has been developed in [20]. Then, in sequent papers [21] and [22], a very explicit
model for the orbit space Gn,2/T

n was constructed and it was established a beautiful
connection between this model and the well known construction Gn,2//(C∗)n from
algebraic geometry known as the Chow quotient.

M2n/T n−1 of a smooth, closed, connected, orientable manifold by complexity one
torus action in general position, is proved to be a closed topological manifold. If
one omits the condition that an action is in general position, then the orbit space is
a closed topological manifold with corners.

Ex 4. Some well studied homogeneous examples of complexity one canonical torus
actions are:

• T 4-action on the complex Grassmann manifold G4,2 = U(4)/U(2)×U(2), [38], [19];
• T n-action on the complete complex flag manifold F3 = U(3)/T 3, [20], [4];
• T 3-action on the quaternionic projective plane HP 2 = Sp(3)/Sp(1) ×
Sp(2), [4];

• T 2-action on the sphere S6 = G2/U(3), [4].

In particular, it is proved in [4] that HP 2/T 3 ∼= S5 and that S6/T 2 ∼= S4.

6. THEORY OF (2n, k)-MANIFOLDS

As we saw in the previous sections, a toric or quasitoric manifold is modeled on
the product T n×P n, meaning that to any point of such a manifold it can be assigned
two coordinates (t, x), that is an angle coordinate and moment map coordinate. It
turns out that this is very distinctive feature of these manifolds with zero complexity
torus action.

If we go wider and consider for example very important class of manifolds such
as homogeneous spaces G/H , then the canonical action of the compact torus T

of G on M = G/H has, in general, complexity d ≥ 1 and, intuitively, it is not
difficult to observe that such two-coordinate description of points from G/H , even
locally, is not possible. This is also due to the observation that in this case the orbit
space M/T is not a polytope any more, in fact it turns out its description to be a hard
problem. Moreover, it can be proved, that even for some fundamental homogeneous
spaces, such as Grassmann manifolds, a section from the corresponding moment
map polytope to the initial space does not exist.

In the series of papers by Buchtaber-Terzić, the problem of smooth, effective T k -
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We shortly present the results of these papers in the remaining part of the text,
referring to them for all necessary notions and proofs.

The motivation to study the canonical T n - action on a complex Grassmann man-
ifold Gn,k came to us from the papers of Gel’fand-Serganova [29] and Goresky-
MacPherson [28] in which some fundamental results on (C∗)n-action on Gn,k are
proved.

We recall first that the standard moment map µn,k : Gn,k → ∆n,k ⊂ Rn is defined
by

µn,k(L) =
1∑

|P J(L)|2
∑

|P J(L)|2ΛJ ,

where P J(L) are the Plücker coordinates for L, ΛJ ∈ Rn, (ΛJ)i = 1 for i ∈ J ,
while (ΛJ)i = 0 for i /∈ J and J ⊂ {1, . . . , n}, ‖J‖ = k. Its image is a convex
(n− 1)-polytope, which is the convex hull over all vertices ΛJ , so it belongs to the
hyperplane x1 + . . . + xn = k. This polytope is known as the hypersimplex and it
is denoted by ∆n,k.

The moment map µ is T n-invariant, where Rn is endowed with the trivial T n-
action, meaning that it induces the map µ̂ : Gn,k/T

n → ∆n,k.
On the other hand the Plücker coordinates define an atlas on Gn,k whose charts

are defined by

MJ = {L ∈ Gn,k : P
J(L) �= 0}, J ⊂ {1, . . . , n}, ‖J‖ = k.

We denote by YJ = Gn,k\MJ . The strata Wσ on Gn,k, σ ⊂ {J ⊂ {1, . . . , n}, |J | =
k} we define to be non-empty subsets of the form:

(3) Wσ = (
⋂
J∈σ

MJ) ∩ (
⋂
J /∈σ

YJ).

The strata are T n-invariant, pairwise disjoint and their union is entire Gn,k, that is
they give a stratification of Gn,k in a classical sense. In [19] we proved:

Theorem 14. For a stratum Wσ it holds:

• µ(Wσ) =
◦
P σ, that is an interior of the polytope which is obtained as the

convex hull over the vertices ΛJ , J ∈ σ,
• The map µ̂ : Wσ/T

n →
◦
P σ is a fiber bundle with a fiber Fσ being an alge-

braic manifold.

Remark 3. Note that the strata defined in this way coincide with the strata as defined
by Gel’fand-Serganova in [29].

A polytope P ⊂ ∆n,k such that P = Pσ for some stratum Wσ is called an
admissible polytope. We denote by Fσ the homeomorphic type of a fiber space for
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the fiber bundle µ̂ : Wσ/T
n →

◦
P σ and call it the space of parameters of the stratum

Wσ.

Ex 5. The set of admissible polytopes of a quasitoric manifold consists of a simple
polytope P and is faces. In addition, the space of parameters for any strata is a
point.

There are relatively a lot strata on any Grassmannian Gn,k whose space of param-
eters is not a point, as even low-dimensional examples G4,2 and G5,2 demonstrate.
This means that even the orbit space of a stratum is not homeomorphic to a polytope
in general, that is the parameter coordinate in the orbit space of a stratum arises as
well.

Since
◦
P σ is a contractible space, from Theorem 14 it follows

Wσ/T
n ∼=

◦
P σ ×Fσ.

In this way we obtain that

(4) Gn,k/T
n =

⋃
σ

Wσ/T
n =

⋃
σ

◦
P σ ×Fσ.

In order to describe the orbit space Gn,k/T
n one should find an ambient space for

the pieces
◦
P σ ×Fσ by which it would be possible to describe their gluing, that is

to describe the topology on their union which will give the orbit space Gn,k/T
n. In

resolving this problem the main stratum has an extremely important role.
The main stratum W is defined as the intersection of all charts, that is W =⋂
J MJ . It is an open, dense set in Gn,k, so its compactification gives entire Grass-

mannian Gn,k. It implies that W/T n ∼=
◦
∆n,k ×F is a dense set in Gn,k/T

n, where
F is the space of parameters of W . Therefore, the above mentioned problem of
finding an ambient space for topological realization of union (4) is equivalent to
find, in a sense, a suitable compactification for

◦
∆n,k ×F . This problem naturally

reduces to finding a suitable compactification for F . For such compactification F
for F we said to be a universal space of parameters for the T n - action on Gn,k.
Before we proceed with formal definitions and constructions let us formulate some
results obtained for the Grassmannians G4,2 and G5,2 using the presented approach,
see [18], [19].

Theorem 15. The universal space of parameters for G4,2 is CP 1 ∼= S2 and the
orbit space G4,2/T

4 is homeomorphic to ∆4,2 × CP 1 quotiened by the relation
(x, c1) ∼ (y, c2) if and only if x = y ∈ ∂∆4,2, that is

G4,2/T
4 ∼= S4.
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Theorem 16. The universal space of parameters for G5,2 is the del Pezzo surface
of degree 5, which is obtained as the blow up of the surface F = {((c1 : c

′
1), (c2 :

c
′
2), (c3 : c

′
3)) ∈ (CP 1)3|c1c

′
2c3 = c

′
1c2c

1
3} at the point ((1 : 1), (1 : 1), (1 : 1)).

The orbit space G5,2/T
5 is homotopy equivalent to the space which is obtained

by attaching the disc D8 to the four suspension Σ4RP 2 by the generator of the
homotopy group π7(Σ

4RP 2).

Generalizing the notions and construction for the Grassmann manifolds, it is de-
veloped in [20] the theory of (2n, k)-manifolds. The structural data for such a
manifold are specified through the system of axioms and, afterwards, it is obtained
the model for the orbit space M2n/T k in terms of these structural data.

Let M2n be a smooth, closed, oriented manifold M2n endowed with a smooth,
effective action θ of the torus T k, 1 ≤ k ≤ n, such that the stabilizer of any point is
a connected subgroup of T k. In addition, it is assumed an existence of a smooth θ-
equivariant map µ : M2n → Rk, whose image is a k-dimensional convex polytope
P k. The map µ is called the almost moment map of the given T k-action on M2n.

The triple (M2n, θ, µ) is called a (2n, k)-manifold, if it satisfies the following set
of axioms.

Axiom 1. There is a smooth atlas A = {(Mi, αi)}i∈I , where Mi is an open, dense,
T k-invariant subset in M2n, which contains exactly one fixed point xi with
αi(xi) = (0, . . . , 0) and xi �= xj for i �= j.

Using this axiom one can, at this step, define the strata Wσ by (14).

Axiom 2. The almost moment map µ is a bijection between the set of T k-fixed points
{xi} and the set of vertices of the polytope P k.

Axiom 3. The characteristic function χ : M2n → S(T k), which to each point x ∈
M2n assigns its stabilizer Tx ⊂ T k regarding to the given T k-action, is
constant on any stratum Wσ, that is Tx = Tσ for any x ∈ Wσ.

Axiom 4. The almost moment map µ maps a stratum Wσ onto
◦
P σ, where Pσ =

convhull{ΛJ , J ∈ σ} and it induces the fiber bundle µ̂σ : Wσ/T
σ →

◦
P σ,

where dimPσ = dimT σ and T σ = T k/Tσ.

A polytope P ⊂ P k whose interior can be obtained as the image of a stratum
by the moment map, is referred to as an admissible polytope. Since P = Pσ is
a contractible space, this axiom implies that there exists a trivialization, that is a
homeomorphism hσ : Wσ/T

σ →
◦
P σ ×Fσ. It induces the projection ξσ : Wσ/T

σ →
Fσ. Thus, for any cσ ∈ Fσ, we can define the subspace Wσ[ξσ, cσ] of Wσ called the
leaf, by

Wσ[ξσ, cσ] = (π−1
σ ◦ ξ−1

σ )(cσ),

where πσ : Wσ → Wσ/T
σ is a projection.
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Axiom 5. Any leaf Wσ[ξσ, cσ] in Wσ is a smooth submanifold in M2n and the induced

map µξσ ,cσ : Wσ[ξσ, cσ] →
◦
P σ is a smooth fiber bundle, then the boundary

∂Wσ[ξσ, cσ] is the union of leafs Wσ̄[ξσ̄, cσ̄] for exactly one cσ̄ ∈ Fσ̄, where
Pσ̄ runs through some admissible faces of Pσ and the map ησ,σ̄ : Fσ → Fσ̄

obtained in this way is a continuous map.
Denote by C(M2n, P ) the complex of admissible polytopes, meaning that we

consider the formal union of admissible polytopes. We have canonical projection
π̂ : M2n → C(M2n, P k) and it can be proved that there exists the canonical map
f : M2n → C(M2n, P k) such that µ = π̂◦f . A topology on C(M2n, P k) is defined
to be the quotient topology related to the map f . Now, consider the space

E(M2n, T k) = {(x, y) ∈ C(M2n, P k)×M2n : x ∈ Pσ, y ∈ Wσ, π̂(x) = µ(y)}.

It can be proved that E(M 2n, T k) is a compact Hausdorff topological space, which is
homeomorphic to M2n. This implies that the orbit space E(M2n, T k)/T k regarding
to the naturally defined torus action is also compact Hausdorff topological space
homeomorphic to M2n/T n.

Axiom 6. There exists a compactification F for F called the universal space of pa-
rameters and there exist topological spaces F̃σ called virtual spaces of pa-
rameters such that:
(1) F̃ = F ,

⋃
σ

F̃σ = F and F̃σ ⊂ F̃σ̄ for any σ̄ ⊂ σ such that Pσ̄ is a face

of Pσ;
(2) there is a continuous projection pσ : F̃σ → Fσ such that pσ̄ ◦ iσ,σ̄ =

ησ,σ̄ ◦ pσ for any σ, where iσ,σ̄ is an inclusion given by the previous
item.

(3) the map H : E =
⋃
σ

Pσ×F̃σ → E(M2n, T k)/T n defined by H(xσ, c̃σ) =

(xσ, pσ(c̃σ)) is a continuous map, where the topology on E is induced
by the embedding E → C(M2n, P k)×F .

Using these axioms, a model for the orbit space M2n/T k is constructed in [20]
and it gives an effective tool for the description of M2n/T k in terms of the three
fundamental ingredients consisting of moment map coordinate, toral coordinate and
parameter coordinate. Our main statement can be now formulated as follows:

Theorem 17. The quotient space of the space E by the map H is homeomorphic to
the orbit space M2n/T k.

The theory of (2n, k)-manifolds covers all previously considered manifolds and
much more. In [20] it is proved that the following manifolds satisfy Axioms 1-6.

• Quasitoric manifolds M2n are (2n, n)-manifolds;
• Complex Grassmann manifolds Gn,k are (2k(n− k), n− 1)-manifolds;
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• The full complex flag manifolds Fn are (n(n − 1), n − 1)-manifolds. In
particular, F3/T

3 ∼= S4.

The results of the papers [29], [28] and [36] suggest that the Grassmann man-
ifolds Gn,2 should be additionally studied taking into account their specific. This
specific firstly shows up through the fact that the strata for Gn,2 glue nicely together,
that is the boundary of a stratum is the union of strata. For the other Grassmann
manifolds this is not the case as Gel’fang-Serganova example shows [29], [20].

Hence, the Grassmann manifolds Gn,2 are further in detail considered in [21],
where it is proved that previously constructed model can be significantly simplified,
that is, it is constructed simpler and much nicer model for the orbit space Gn,2/T

n.
This is done by proving that the admissible polytopes, as well as the chamber de-
composition they induce on ∆n,2, can be described using a suitable arrangement of
hyperplanes in Rn−1. The final result can be formulated as follows:

Theorem 18. There exists continuous surjection G : ∆n,2 × Fn → Gn,2/T
n such

that Gn,2/T
n is homeomorphic to the quotient space of ∆n,2 × Fn by the map G,

where Fn is the universal space of parameters for the canonical T n-action on Gn,2.

Thus, in this case, the model space Un = ∆n,2 ×Fn for Gn,2/T
n is, in a sense, a

manifold with corners. In addition, the universal space of parameters Fn is explic-
itly described in [22] and this description purely comes from the equivariant topol-
ogy of the Grassmannians Gn,2 using remarkable construction from algebraic ge-
ometry known as the wonderful compactification. We obtained that Fn is a smooth,
compact manifold for which we proved to be diffeomorphic to the famous Deligne-
Mumford compactification M0,n of the moduli space M0,n of genus zero curves
with n marked distinct points. The later one is proved in [36] to be diffeomorphic
to the Chow quotient Gn,2//(C∗)n as defined in algebraic geometry.

In conclusion, the theory of (2n, k)-manifolds opens many new directions and
provides the tools for their development. Some of these directions which are nowa-
days very current in equivariant topology and combinatorial topology would be
adjustment of GKM theory to the set up of the theory of (2n, k)-manifolds or estab-
lishing connection between combinatorial subdivision of a convex polytope, which
comes from a (2n, k)-manifold, and general polytope theory, in particular theory of
hyperplane arrangements.
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TORUSNA DEJSTVA U TOPOLOGIJI

IZVOD. Izučavanje dejstva grupa je danas široko prisutno u svim oblastima
matematike i to uglavnom sa dva aspekta. Proučavanje prostora orbita dejstva
grupa sa stanovišta topologije, algebre, geometrije, kombinatorike se pokazuje
važnim u raznim problemima matematike i matematičke fizike. S druge strane,
prisustvo dejstva grupe na topološki, algebarski, geometrijski, kombinatorni
objekat i izučavanje osobina tog dejstva u velikom broju slučajeva vodi ka
značajnim rezultatima o samom objektu. U ovom radu dat je pregled nekih
rezultata koji se odnose na dejstvo kompaktnog torusa na glatke mnogostrukosti.
Posebna pažnja je posvećena rezultatima koji se odnose na kanonsko dejstvo
kompaktnog torusa na kompaktne homogene prostore pozitivne Ojlerove karak-
teristike. U prvom redu to se odnosi na teoriju unitarnih kobordizama ovih
prostora, kao i na konstrukciju kombinatorno-glatkih modela za njihov prostor
orbita.
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Sažetak

Izučavanje dejstva grupa je danas široko prisutno u svim oblastima matematike i 
to uglavnom sa dva aspekta. Proučavanje prostora orbita dejstva grupa sa stanovišta 
topologije, algebre, geometrije, kombinatorike se pokazuje važnim u raznim proble-
mima matematike i matematičke fizike. S druge strane, prisustvo dejstva grupe na 
topološki, algebarski, geometrijski, kombinatorni objekat i izučavanje osobina tog 
dejstva u velikom broju slučajeva vodi ka značajnim rezultatima o samom objektu. 
U ovom radu dat je pregled nekih rezultata koji se odnose na dejstvo kompaktnog 
torusa na glatke mnogostrukosti. Posebna pažnja je posvećena rezultatima koji se 
odnose na kanonsko dejstvo kompaktnog torusa na kompaktne homogene prosto-
re pozitivne Ojlerove karakteristike. U prvom redu to se odnosi na teoriju unitar-
nih kobordizama ovih prostora, kao i na konstrukciju kombinatorno-glatkih mode-
la za njihov prostor orbita.
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ON THE DEVELOPMENT OF THE VORTICITY  
HOT WIRE PROBES 

Abstract 

The development of the hot-wire vorticity probes, since the appearance of the first 
one- component vorticity meter till the most sophisticated multi-sensor probes, is 
presented. This process can be described as a series of efforts aimed to improve the 
probes capabilities and accuracy. It was a complex process, viewed as an elusive 
goal of turbulence researcher over a long period. It required sophisticated optimiza-
tion methods in order to avoid worsening one or more by improving the other pa-
rameters. The DNS (direct numerical simulation) database had and still have a great 
role in optimization of the probe size and geometry (number and position of the 
arrays and sensors) and uniqueness range. As a result of these efforts, we have probes 
that can reliably measure the cross-stream velocity gradients, necessary to define the 
vorticity components, with sufficient spatial resolution at least in laboratory condi-
tions. Unfortunately, we still do not have a probe capable of the streamwise velocity 
gradients measurement with sufficient accuracy. Probes designed for that porpoise 
still have unacceptable measurement error in the near wall regions of turbulent 
flows. Besides the great results in the probe geometry improvement and various de-
signs, presented in this paper, there is still a  number of technical parameters like 
sensor temperature, flow blockade, frequency response and fabrication methods that 
should be optimized.  
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