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Proving maximum principles using tent method

Abstract

We present the tent theory that gives a powerful tool for proving a
variety of maximum principles. New, shorter and simpler proofs of the
main theorems of this theory are given. The efficiency of tent method is
demonstrated in the proof of Mayer’s optimal control problem with the
class of piecewise continuous controls.
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1. Introduction

The tent method, developed by V.G. Boltyanski in his works published
during 1972-1975, is a powerful tool in proving necessary conditions in the
theory of extremal problems. In the first place this concerns theorems of
the Pontryagin Maximum Principle type, which give necessary conditions for
optimal control problems. In [4] and [5] Boltyanski gives a complete survey of
his investigations related to the tent theory.

In [11] the survey of the tent theory is presented. New, shorter and simpler
proofs of the main theorems are given. Using the tent method, in [12] and
[13] maximum principles for the optimal control problems on bounded and on
unbounded intervals with the class of measurable controls are proved.

In this article we present the tent theory with some modifications compared
to [11]. We apply the tent method to prove maximum principle for the optimal
control problem with the class of piecewise continuous controls.

The prerequisites for understanding this article are: basic courses in math-
ematical analysis and linear algebra, main facts about convex sets (which can
be found in the first two chapters of [16]), Brouwer’s fixed point theorem and
the theory of ordinary differential equations [1, section 2.5].

In Section 1 we present some facts about convex sets in Euclidean spaces.
Section 3 is concerned with duality of convex cones. These two sections are
given here for the completeness sake. The results given there are known and
can be found in [9] and [8].

*This work is supported by the Ministry of Science of Serbia, Grant 144014.
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The base of tent theory is the theorem on separability of convex cones. In
Section 2 we generalize the notion of separability of a finite family of convex
cones to the notion of separability of a finite family of convex sets. In Section 4
we give a new proof of the theorem on separability of a finite family of convex
cones, which is shorter and simpler than the old one (see |2| and [5]).

In Section 5 the notions of the tent and of the local tent are introduced in
an equivalent, but slightly different form than those introduced by Boltyanski.
A new proof of the main theorem in tent theory, shorter and simpler than
those in |3] and [5], is given. In this proof we use only Brouwer’s fixed point
theorem, while in the old proofs a much more complicated topological tool was
used.

In Section 6 we apply the tent method to prove maximum principle for
the optimal control problem with the class of piecewise continuous controls.
Mayer’ s problem is considered. Since Bolza’s problem can be reduced to
Mayer’s problem, the obtained result is of general nature.

In his more recent works (see [6] and [7]), Boltyanski modified the tent
theory in order to obtain a method for solving extremal problems in the infinite
dimensional case. However, our experience in applications of the "old" finite
dimensional tent theory in proving different maximum principles is a very
satisfactory one. This is the reason why we concentrate our attention on it.

2. Relative interior of a convex set

Let C' be a convex set in Euclidean space X. The affine hull of a set C' is
the smallest flat, in the inclusion sense, in which C' is contained. It is denoted
by aff C'. The relative interior of a set C'is defined by

ric = intaﬁ‘c C.

Theorem 2.1. The relative interior of a convex set C in Fuclidean space
X 18 a convex nonempty set.

Proof. The convexity of the set ri C follows from the fact that the interior
of a convex set is convex too. Let ag € C' and let a; —ag, as —ag, . . ., as — ag be
the maximal subset of linearly independent vectors of the set C'—ag. A simplex
S with vertices at points ag, a1, as, ..., as is a subset of C' and obviously it has
a nonempty interior with respect to aff C'. It follows that ri C' # ().

The immediate consequence of the preceding theorem is
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Theorem 2.2. Let C be a convex set in Fuclidean space X. Then

11C' = coreyg o C.

It follows that a € riC' if and only if every line [, containing the point a
and having at least one more common point with the set C, contains an open
segment s, such that a € s C C.

Theorem 2.3. Let C;, 1 = 1,2,...,m, be convex sets in Euclidean space
X.If
m Il Cl 7£ (2)7
i=1
then . .
a) aff [ C; = [aff C;,
i=1 i=1

m

i=1

i=1

Proof. From ", C; C (.-, aff C; it follows that

affﬁCi - ﬁafFCi.
i=1 i=1

Suppose z € (-, riC;. Let [ be a line satisfying the condition z € [ C
N, aff C;. There exist open segments s; C [, ¢ = 1,2,...m, such that = €
s; € C;. Then s = (), s; is an open segment on the line [ satisfying v € s C
N, Ci. Tt follows that [ C aff ()", C;. Since (), aff C; is the union of lines
laying in it and passing through x, then

affﬁC’i ) ﬁaffC’i.
i=1 i=1

Thus the proof of a) is completed. From previous considerations it also follows
that x € ri()_, C;, and since x is an arbitrary point from (), ri C;, then

m m
i=1 i=1
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Let a € (2, 11 C;. For z e ri()-, C; there exists a point u € (.-, C; such
that « € [a,u). Since a € riC; and v € C; then x € riCy, i = 1,2,...,m, and
therefore € (2, ri C;. It follows that

m m
i=1 i=1

The proof of b) is completed.

Theorem 2.4. Let X and Y be Euclidean spaces, let A € L(X;Y') and let
C' be a conver set in X. Then

a) aff AC' = Aaff C,

b) ri AC = AriC.

Proof. From AC C Aaff C if follows that
alf AC C Aaff C.

Suppose = € riC, y = Ax. Let ¢ be a line in Y satisfying the condition
y € ¢ C Aaff C. Then there exists a line p in X such that x € p C aff C' and
Ap = ¢q. On the line p there exists an open segment s such that x € s C C.
The open segment As on the line ¢ satisfies y € As C AC. Tt follows that
q C aff AC. Since Aaff C'is the union of lines laying in it and passing through
y, then
aff AC O Aaff C.

Thus the proof of a) is completed. From previous considerations it also follows
that y € ri AC, and since y is an arbitrary point from AriC, then

rnmnAC D AriC.

Let a € 1riC, b= Aa € AC. Suppose y € ri AC. Then there exists a point
v € AC such that y € [b,v). Let u € C be a point which satisfies the condition
Au = v. Since Ala,u) = [b,v), then there exists a point = € [a,u) for which
Az =y. Since a € riC and u € C, then x € riC, and therefore y € AriC. It
follows that
riAC C AriC.

The proof of b) is completed.

Theorem 2.5. Let X and Y be Euclidean spaces, let A € L(X;Y') and let
C be a conver set in'Y . If the operator A is surjective, then

a) aff A71C'= A1 aff C,
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b) riA~IC' = A~ triC.
Proof. From A7'C C A~'aff C it follows that
aff A7'C C A~ taff C.

Suppose z € A7 1iC, y = Az. Let p be a line in X satisfying the condition
repC A taff C. If Ap = {y}, then obviously p C A~'C. Let Ap = ¢, where
g is a line in Y. Since y € ¢ C aff C' and y € riC, then there exists an open
segment s on the line p such that z € s C A7'C (i.e. y € As C C). It follows
(in both cases) that p C aff A™'C. Since A~*aff C' is the union of lines laying
in it and passing through x, then

aff A71C D A7t aff C.

Thus the proof of a) is completed. From previous considerations it also follows
that x € 1i A7'C, and since x is an arbitrary point from A=!riC, then

nAC D A riC.

Let a € A7'riC. Suppose € 1i A71C. Then there exists a point u €
A7C such that = € [a,u). Since Az € [Aa, Au), Aa € 1iC and Au € C, then
Ar €1iC,ie. x € A7'riC. It follows that

nA-'C C A,
The proof of b) is completed.

Theorem 2.6. Let X; be Euclidean spaces and let C; C X; be conver sets,
1=1,2,...,m. Then
m

@ﬁﬂ@—ﬁﬁq
i=1 1=1

m

mﬂﬁazﬂnq
i=1

i=1
Proof. According to Theorems 2.3 and 2.5 we have:

affﬁCZ- = aff ﬁ PZ-_ICZ' = ﬁ aff fji_lci = ﬁ Pi_l affCZ- = ﬁaﬂ“C’Z
i=1 i=1 1=1 i=1 i=1

rlﬁCl =i ﬁ PflCz- = ﬁrl PJICZ‘ = ﬁ 1Dl-71 I'lCl = ﬁrlCz
i=1 i=1 1=1 i=1 i=1

(P, i=1,2,...,m, are projections of X; x Xy x ... x X, onto X;.)
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3. Separability of convex sets

Let C;, i =1,2,...,m, be convex sets in Euclidean space X. These convex
sets are said to be separable if there exists a hyperplane which separates one
of the them from the intersection of remaining ones.

A flat in a vector space is a set obtained by translation of some subspace.
The translation is not unique, but the subspace is uniquely determined. This
subspace is called the direction of the flat.

Theorem 3.1. Convex sets C;, i = 1,2,...,m, in Euclidean space X are
not separable if and only if the following conditions are satisfied:

a) ﬂriC’i #0,

i=1

b) Y; + ﬂYJ =X, 1=1,2,...,m, where Y; is the direction of the affine

J#
hull of the set C;, i =1,2,...,m.

Proof. Let H be a hyperplane which separates sets C,, and ﬂ;’:ll C; and
let a) be fulfilled. Since

m—1 m—1 m
riC,, Nri ﬂ C,=r1iC,nN m 1iC; = ﬂriCi + 10,
i=1 =1 i=1

then )
CnCH, ()CiCH,
i=1

and therefore

m—1 m—1
aff C,, C H, ﬁ(ﬂ%ﬁjﬁ@gﬂ
=1 =1

It follows that .
Y+ ()Y #X.
j=1

Suppose that the condition a) is not satisfied. Let k£ be a natural number

satisfying
k-1

k
ﬂm@%@ ﬂn@:@
i=1

i=1
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Non empty convex sets ri Cy and ri ﬂi.:ll C; = ﬂi:ll ri C; are disjoint and there-
fore there exists a hyperplane H separating them. The hyperplane H separates
C), and ﬂ#k C;.

Suppose that the condition a) is satisfied and that

m—1

Yot (Y #X.
j=1

There exists a hypersubspace Y containing Y,, and ﬂ;n:_ll Y;. The hyperplane
H, which is parallel to Y and which intersects ﬂ;n:l C}. contains aff C, and

aff ﬂ?:ll C;. This hyperplane separates sets C,, and ﬂf:ll C;.

Lemma 3.1. Let Y;, i+ = 1,2,...,m, be subspaces of Fuclidean space X.
The following conditions are equivalent:

a) i+ V=X, i=12..m,
J#i

b) > (Vi =,
i=1 ji
c) ﬂ(:ci—kY,»), forany x; € X,1=1,2,...,m,

7

d) Y +Z=X" whereY =[[Yi and Z = {(z,2,...,2) € X" | 2 € X}.
i=1

Proof. We shall prove by induction on m that a) implies b). For m = 2,
the conditions a) and b) are equal. Suppose that the statement is true for
some integer m — 1, m > 2. Now we prove that the statement is true for
m. Suppose that subspaces Y;, i = 1,2,...,m, of Euclidean space X satisfy
condition a). Subspaces Z; =Y;NY,,, i = 1,2,...,m — 1, of Euclidean space
Y, satisfy condition a):

m—1 m—1 m
Zit+ () Z=YinYu+ (Y NY,=YinY, +[Y; =
g o =1

=|Yi+

-

Rgren

Y | NY,,=XNY, =Y,.

O
W
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By induction hypothesis we obtain

1.e.

m—1 m
=%
= 5
Now we have
m m m—1 m m—1 m—1
SAn=S AR N =v Nr=x
i=1 77;1 i=1 ]];1 j=1 j=1

Suppose that b) is fulfilled. Than we have

ENOITED la RN ol o ab e

j#i k=1 otk j#i k=1 j#k

wherefrom it follows that a) holds.

Suppose that a) holds. Let x; € X, i = 1,2,...,m. Each vector z;, i =
1,2,...,m, can be represented as x; = y; + 2;, where y; € Y; and z; € ﬂ#in.
Put 2 =21 +2 + ...+ 2, Then z —a; = z#ﬂj —y; € Y;, and therefore
ze€wx;+ Y, i=1,2,....,m. It follows that ¢) is fulfilled.

Suppose that c) holds. Let z € X. From c¢) we obtain

(ZE—i—Yi)ﬁﬂY}?é@, i=1,2,...,m.
J#

It follows that there exist vectors y; € Y; and z; € ﬂ#i Y; such that z +y; = 2.
Since z = —y; + z;, we have that z € Yi + (1, Y;. So, a) is fulfilled.

Suppose that ¢) holds. Let (21, 2a,...,2,) € X™. Since the set [, (x; +Y;)
is nonempty, there exists z € X such that z € z;+Y;, i =1,2,...,m. It follows
that x; can be represented as x; = y;+2, where y; € Y;, foreacht=1,2,... ,m.
Therefore (21,29, ..., Tm) = (Y1,Y2, - Ym) + (2,2,...,2) €Y + Z. Tt follows
that Y +Z = X™, i.e. that d) holds.

Suppose that d) holds. Let z; € X, i =1,2,...,m. Since (z1,22,...,2,) €
Y + Z, there exist vectors y; € Y;, i = 1,2,...,m, and z € X, such that
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=y +2, 1=1,2,...,m. It follows that the vector z belongs to each of the
sets z; +Y;, i =1,2,...,m. Therefore the set (,(z; +Y;) is nonempty, i.e. c)
is fulfilled.

Theorem 3.2. Convex sets C;, i = 1,2,...,m, in Buclidean space X are
not separable if and only if sets C = [, C; and Z = {(z,2,...,2) € X™ |
z € X} are not separable.

Proof. The condition a) of Theorem 3.1 for the sets C;, i = 1,2,..
equivalent to

.,m, 18

riCﬁriZ:HriCiﬂZ%V),
i—1

and this is in fact the condition a) of Theorem 3.1 for the sets C' and Z.
According to Theorem 2.6 we conclude that Y is the direction of the set C.
Having this fact in mind and using the preceding lemma we obtain that the

condition b) of Theorem 3.1 for the sets C;, ¢ = 1,2,...,m, is equivalent to
the condition b) of Theorem 3.1 for the sets C' and Z. From previous facts
and from Theorem 3.1 it follows that sets C;, © = 1,2,...,m, are separable if
and only if C' and Z are separable.

Theorem 3.3. Convex sets C;, i = 1,2,...,m, in FBuclidean space X are
separable if sets ﬂz L Ci and N, Ci are separable.

Proof. Suppose that convex sets C;, i« = 1,2,...,m, are not separable.

Then the condition a) from Theorem 3.1 and the condition b) from Lemma
3.1 are satisfied. Since

k m

ﬂriC’i#@, ﬂ riC; # 0,
i=1 i=k+1
we have
k k m m
h(}C’z ﬂ riCy, 1l ﬂ C; = ﬂ ri Cj,
i=1 i=1 i=k+1 i=k+1
and so
rlﬂC Nri ﬂ Cy = ﬂl“lC #10.
i=k+1

Also we have

m

affﬂc ﬂaﬂFCi, aff ﬁ Ci= [ affCi.

i=1 i=k+1 i=k+1
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It follows that (), ¥; and (", 11 Y are directions of affine hulls of sets Ne, G
and (", ,; C;. Since

k m m m k. m
e S An Aveyan
i=1 i=k+1 7 i=k+1 =1 j=1
J j#i
and .
>+ =X Yi=X
i=k+1 j=1 i=1 j=1 i=1 j=1
JF#i J#i jFi
we have
k m
(1Yi+ (] ¥i=X
i=1 i=k+1
According to Theorem 3.1, the sets ﬂle C; and (2, ; C; are not separable.

Examples: Let 2} = X*\ {0}, ¢ =1,2,...,m, be linear functionals.
1. Halfspaces

Ki={reX|zjz <0}, i=12,...,m,

are not separable if and only if

m

mintKi:ﬁ{mGX\xfﬂc<0}#®.

i=1 i=1
2. Hyperplanes
Ki:{xEX|$;<x:O}:kerx;" i1=1,2,...,m,

are not separable if and only if linear functionals x}, i = 1,2,...,m, are
linearly independent.
3. Cones
Ki={reX|z;z <0}, i=12,...,k,
Ki={reX|ziz=0}, i=k+1,....,m,
are not separable if and only if linear functionals x7, © = k+1,...,m, are
linearly independent and

k

m k m
ﬂintKiﬂ m Ki:m{zGX\z;‘z<0}ﬂ ﬂ {reX|ziz=0} #0.

i=1 i=k+1 i=1 i=k+1
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4. Dual cones

We shall only consider cones with vertex at zero. Let K be a cone in
Euclidean space X. Its dual cone is defined in the following way:

K*={z"e X" | (Vx € K)z*x < 0}.

Theorem 4.1. Let K, K1, K>, ..., K,, be cones in Euclidean space X.
Then:
a) K* is a closed conver cone,
b) K** = cconv K,
c) KlCKgﬁK*DKé‘,

d) (UK) :ﬂK

e) if cones K;, i = 1 2,...,m, are convex and closed, then
(ﬂ K) =d) K.
i=1 i=1

Proof. a) K* can be represented as the intersection of closed halfspaces:

= ﬂ{az* € X" | z*x <0}.
zeK

b) Let z € K. Every z* € K* satisfies 2*x < 0. Therefore x € K**. It
follows that K C K**, and this together with a) gives

cconv K C K™,

Let x & cconv K. The point x and the set cconv K can be strictly separated.
Therefore there exists 2* € K* such that x*x > 0. It follows that x ¢ K**.
Hence

K** C cconv K.

¢) Suppose K; C K. Then

= ﬂ{x*EX*]a:*mﬁO}Q ﬂ{m*eX*\x*xSO}:K;

zeKy €K
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d)

(UKZ) = (N {reXx |zz<0t=){z"eX |22 <0} =

IEUKZ' i=1zeK;
e) Let cones K;, i = 1,2,...,m, be convex and closed. Then

K;=cconvK; =K i=12,...,m.

Therefore i § »
i=1 i=1 i=1
= CconVUKi* = chKf.
i=1 i=1
Examples:
1. If

K={reX|z'z <0},
where x* € X*, x* # 0, then

K* = {\z" | A >0}

2. If
K={zxeX|z'x =0} =kera",

where x* € X*, x* # 0, then

K*={\" | \€ R}

5. Separability of convex cones

A
i=1

Theorem 5.1. Conver cones K;, i =1,2,...,m, in Euclidean space X are
separable if and only if there exist linear functionals x7 € K, 1 =1,2,...,m,
such that at least one of them is different from zero and that > .-, xF =0,

i=1"1

Proof. According to Theorem 3.2, cones K;, i = 1,2,...,m, are separable
if and only if the cone K and the subspace Z of X™ are separable. The cone
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K and the subspace Z are separable if and only if there exists a functional
r* € X™ such that 2* # 0, 2* € K* and 2* € Z+. If 2* € X™*, then there
exist functionals z; € X* ¢ = 1,2,...,m, such that z*z = Y " aja;, for
T = (x1,T9,...,T,) € X™. It is easy to see that

1. * # 0 if and only if 27 # 0 for at least one of i = 1,2,...m;

2.z e K*ifand only if 7 € K fori=1,2,...m;

3. z* € Z+ if and only if ;" | 27 = 0.
The proof is completed.

6. Tents and local tents

Let X be Euclidean space, let M C X, let a € M and let K be a convex
cone in X. The cone K is said to be a tent of the set M at the point « if there
exists a continuous function ¢ : K — M such that ¢(0) = a and ¢'(0) = I.

Remark. Usually, in the definition of the strong derivative of a function
f:D —Y at the point a € D, it is assumed that a is the interior point of the
set D. We shall not require this assumption in this section. Theorems related
to the derivative which we shall use (a theorem on the derivative of a sum of
functions, a theorem on the derivative of a composition of functions...) hold
without the assumption that a function is defined in the neighborhood of a
point in which we consider the derivative.

Let X be Euclidean space, let M C X, let a € M and let K be a convex
cone in X. Suppose that there exist a neighborhood of zero U and a continuous
function ¢ : K NU — M such that (0) = a and ¥'(0) = I. We can assume
that U = B[0,r]. Let 7 : K — K NU be defined by

r , zreKnNnU
W(@“)Z{ M e e K\U

The function ¢ = ¢ o : K — M satisfies conditions ¢(0) = a and ¢'(0) = I.
So K is a tent of the set M at the point a.

Let X be Euclidean space, let M C X, let a € M and let K be a convex
cone in X. The cone K is said to be a local tent of the set M at the point a if
for each point x € ri K there exists a tent K, C K of the set M at the point
a, such that = € ri K, and aff K, = aff K.

Theorem 6.1. Let X and Y be Euclidean spaces, let M C X and let K be
a local tent of the set M at the point a. Further, let f : M — Y be a continuous
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function, differentiable at the point a. Then f'(a)K is the local tent of the set
f(M) at the point f(a).

Proof. Suppose
yerfla)K = f'(a)ri K.

There exists a point « € ri K such that f'(a)x = y. Let K, C K be a tent of the
set M at the point a, which satisfies conditions x € ri K, and aff K, = aff K;
suppose ¢ : K, — M is continuous, ¢(0) = a and ¢'(0) = I. Since

ye flla)yriK, =rif'(a)K,,

then there exist linearly independent vectors y; € f'(a)K,, i = 1,2,...,m,
generating the convex cone K, such that y € ri K, and aff K, = aff f'(a)K, =
aff f'(a)K. Suppose vectors x; € K., i = 1,2,...,m, satisfy f'(a)z; = y;,
i =1,2,...,m. Let A: K, — K, be the linear operator determined by
Ay; = x;,1=1,2,...,m. The function ) = fopo A maps K, into f(M), it is
continuous, differentiable at zero and satisfies ¢(0) = f(a) and ¢/(0) = I.

Theorem 6.2. Let M;, i = 1,2,...,m, be subsets of Euclidean space X,
let o, M; = {a} and let K;, i = 1,2,...,m, be their local tents at the point
a. If at least one of the cones K;, i = 1,2,...,m, is not a flat, then they are
separable.

Proof. Without loss of generality we shall suppose that a = 0.

Suppose cones K;, 7 = 1,2,...,m, are not separable. According to Theorem
3.1 and to the definition of the local tent we conclude that it is enough to con-
sider the case when K are tents of the sets M; at the point 0,2 =1,2,...,m.

Put

M =My x My x ... x M,

K=K xKyx...x K,,
Z={(z,z,....,0) e X" |z e X}

K is a convex cone in X™ and K is not a flat. Z is a subspace of the Euclidean
space X™ M NZ = {0}. Let ¢; : K; — M; be continuous functions satisfying
©i(0) = 0 and ¢}(0) = I. The function ¢ : K — M defined by

(p(l’l,J}Q, sty xm) = (@1(3:1)7 902(x2)7 cety Spm(xm))

is continuous and satisfies conditions ¢(0) = 0 and ¢'(0) = I. It follows that
K is a tent of the set M at the point 0.



Proving maximum principles using tent method 123

According to Theorem 3.2 the cone K and the subspace Z are not separable.
According to Theorem 3.1 there exist a point zyg € Z Nri K and a subspace
Y C aff K, such that Y+Z = X™. Obviously 2o € Y.

Let P : X™ — Y be the projection operator parallel to the subspace Z.
Let B = B|0,r] be a closed ball in Y satisfying zo + B C K. Further, let €, 0
and A be positive numbers satisfying:

r

GS Mol - 1 €< 17
P11 + [=0ll)

ve K o] <= llelr) -zl < ez,
B )
-zl
The function f: B — Y defined by

is continuous. From

1)1 = |3 Pols + 20 = PO +0)|

< IPIe(Ay +20)) = Ay + =0)]

1
< SIPIeXlly + zoll < [[Plle(r + [lzofl) < v

it follows that f(B) C B. According to the Brouwer’s fixed point theorem,
there exists yo € B such that f(yo) = vo, i.e. ©(Ayo + 20)) € Z. Let xy =
¢(A\yo + 2)). From

lzo = Alyo + z0) [l < €l[Alyo + 20)ll < [ A(yo + 20)l]

it follows that xy # 0. Since o € MNZ = {0}, then xy = 0. Contradiction!
Examples:

1. Let f: D — R be a differentiable function at the point a. If f(a) =0
and f'(a) # 0, then
K={xeX| fl(a)r <0}

is a local tent of the set

M={zeD| f(z) <0}U{a}
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at the point a.

Proof. Without loss of generality we can suppose that a = 0. Let z €
int K, i.e. let f/(0)z < 0. Suppose B is a closed ball with the center z laying in
the int K. The function f'(0)z/||z|| is continuous on B and takes on it negative
values only. Therefore there exists an € > 0 such that f'(0)z < —¢l|z|| for every
x € B. This inequality holds also on the convex cone K, generated by the ball
B. Let U C D be a neighborhood of zero such that

[f(z) = f(0)z| <ellz|, xe€U\{0}.
Then we have
F@) < F(O)x + o] < —elle] + ellal] = 0.

forx € K,NU, x # 0. It follows that K, "U C M.
2. Let f: D — R be a strictly differentiable function at the point a. If
fla) =0 and f'(a) # 0, then
K={ze€X| f(a)r =0} = ker f'(a)
s a tent of the set
M={se D] fz) =0}
at the point a.

Proof. The function g(x,y) = f(a+x+y) is defined in the neighborhood of
the point (0, 0) and satisfies all assumptions from the implicit function theorem
(see §2.3 in |1]). Therefore there exist a neighborhood U of 0, a continuous
function v : U — X and a number C satisfying

fla+x+~(x) =0,

Iy (@) < Clif(a+ )],

for every x € U. The function ¢ : KNU — M, defined by p(x) = a+z+~(x)
is continuous and satisfies conditions ¢(0) = a and ¢'(0) = I.

b

7. Mayer’s problem of optimal control

Let U be a topological space, let G be an open set in R x R™ and let W be
an open set in R x R™ x R x R". Moreover, let f(t,z,u): X x U — R" and
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I(to, o, t1,21) : W — R™! be continuous functions. The coordinate functions
of [ are denoted by /;, e =0,1,....m

The set of processes P is defined in the following way
P = {($('),U('),t0,t1) € Ol([to,t1]7Rn) X C’({to,tl], U) X RxR ’

(to, .I'(t()), tl, I’(tl)) S W}

We denote by C'([to,t1], ") and C([to,t1],U) the class of piecewise smooth
functions mapping the interval [to, t1] into the phase space R™ and the class of
piecewise continuous functions mapping the interval [ty,¢;] into the control set
U, respectively.

Mayer’s problem of optimal control is the following extremal problem on
the set of processes P:

lo(to,l‘(to),tl,m'(tl)) — mf, ll( (to) tl, <t1)> S 0 for i = ]., ey ]{7,
(t07 (to) tl, ( )):Ofor12k+1,,m
x(t) = f(t,x(t),u(t)) for all t € T,

where T is the set of points from the interval [to,¢;], in which the control
function u(-) is continuous.

The process (&(-), (), Lo, 1) is optimal in the strong sense if it is admissible
and if there exists an € > 0 such that

lo(to, x(to), t1, x(t1)) > lo(to, 2(fo), 1, 2(f1))
for each admissible process (z(-), u(-), to, t1), satisfying
’to — £0|, ‘tl — 1?1| <€,

() — 2(2)]| < ¢ for every t € [fo, £1] N [to, t1].

Theorem 7.1. Suppose f(t,x,u) has continuous derivative according to
the variable x and l(tg, xo,t1,21) is continuously differentiable. If the pro-
cess (&(+),0(-),to,t1) is optimal in the strong sense, then there erist A =
(Ao, Ay -y Am) € R™Yand a piecewise smooth function p(-) : [to, t1] — R™,
satisfying the following conditions:

0. A0,

L.A>0fori=01,...,k
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2. Mli(to, #(fo), by, &(6)) = 0 fori=1,...,k,

3. p(t) = —p(t) fo(t, (t), (1)) for all t € T,

4. p(to) = My (o, & (f0), 11, (1)),

5. (f) = =M, (fo, 2(F0). 1, 2(F1)),

6. p(fo) f(fo, £(fo), i(fo)) = — Ay, (fo, (o), 11, 2 (1))

7. p(t) f(E, 2(F), a(ty)) = My, (Fo, 2(Fo) 1, 2 (F1)),

8. ﬁA(t)f(t,:i’(t), w(t)) < p(t)f(t,z(t),u) for all t € T u e U,

where T is the set of points from the interval [to, 1] in which the control func-
tion u(+) is continuous.

Proof. Put &y = #(ty), 21 = @(f;). Without loss of generality we
can assume that ly(to, Zo,t1,21) = 0. If lo(to, T, t1,21) # 0, we can put
lo(to,[lﬁ'o,tl,l']) — lo(to,i’o,tl,i'l) instead of the function lo(to,xo,tl,.fl). We
can also assume that all constraints are active, i.e. that l;(to, Zo,t1,21) = 0,
i = 1,...,k If lj(to, Zo,t1,21) < O for some j, 1 < j < k, then we can
replace the set W by an open subset containing the point (}fo,:%o,tl,:fcl) on
which the function [;(to, xo, t1, 21) is negative, and we can put A\; = 0 and drop
the corresponding constraint from further considerations. Condition 2 will be
satisfied.

If for some j, 0 < j < m, we have l;(fo, Zo,t1,21) = 0, the assertion of our
theorem holds. It is enough to take 5\]- =1, 5\1 =0fori=#j,i=01,...,m,
and p(-) = 0. Further on, we assume that I;(to, 2o, t1,%1) #0,i=10,1,...,m

Convex cones

K; = {(to, xo,tl,wl) € RxR"<x Rx R" | l;(fo, .’%0,51, .Ci'l)(to,xo,tl,xl) < 0},
fori=0,1,...,k,

Ki - {(th $07t17$1) S R X Rn X R X Rn ’ l;(g())i.()aila il)(t(]a 'I"Oytl)xl) - 0}7
fort=k+1,...,m
are local tents of the sets

Mo = {(to, mo, t1,21) € W | lo(to, mo, t1,21) < 0} U{(to, o, f1,21)},

Mi = {(to,ﬂfo,thl’l) S w ’ li(to,xo,tl,Il) S 0}, 1= 1, . .,k‘,

Mi = {(t07$07t17x1) eWw ’ li(t07x07t17$1) = 0}, i=k + 1a sy,
at the point (o, 29,11, %1) (see Section 6).

Let M C W be the set of ordered quadruples (to, z(to),t1,x(t1)), where
(x(+),u(-), to,t1) are processes satisfying the differential equation

#(t) = f(t,x(t), u(t)),
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such that
’to — to‘, ‘tl — tl‘ < €,

|2(t) — 2(t)|| < € for every t € [to, 1] N [to, t1].

Lemma 7.1. Let R(t,7) be the resolvent of the differential equation

#(t) = folt, 2(t), a(t))x(t).

The convex cone K in R x R™ x R x R", generated by vectors

+(0,0,1, f(b, &(0r), a(F1))),

+(1,0,0, =R(t1, o) f (fo, 2(fo), u(to))),

(0, 20,0, R(t1, to)x0), ©o € R”,

(0,0,0, R(ty, 7)(f (1, &(7),u) — f(r,2(7), (7)), forall T € T, u € U,
s a local tent of the set M at the point (fo, o, 11, 7).

This lemma will be proved later.

The intersection of the sets M, M;, + = 0,1,...,m, contains one point
only: (to,#o,1,21). Convex cones K, K;, i = 0,1,...,m, are their local tents
at that point. The cone Kj is not a flat. According to Theorem 6.2, convex
cones K, K;, 1 =0,1,...,m, are separable. According to Theorem 5.1, there
exist linear functionals 27 € K7, i = 0 1,...,m, such that at least one of them
is different from zero and — Zl 0I5 € K* We have 27 = \l(Lo, &0, F1,21),
i =0,1,...,m, where /\Z > 0fori=0,1,....k (see examples in section 4).

The vector A= (Ao, M, ... , Am) € R™1* gatisfies the conditions 0 and 1. Since
—/\l’(fo,fco,il,:%l) € K, then

(1) Aty (Fo, 2o, 11, 1) + Mo, (Fo, o, b1, 81) f (B, &(Er), a(fr)) = 0,

(2) N 0<t xoﬂtla ) — 5\lacl(AO $07£17§31)R(£1, Ao)f(Ao,fU(AOLﬂ(AO)) =0,

(3 )X w0 (fo, B0, 11, 1) + My, (Fo, 20, 11, #1) R(E1, B9) = 0,

(4) Mg, (fo, 20, 1, 1) R(E, 7) (f (1, 2(7),u) — f(,2(7), (7)) > 0, for all T €

T, u € U .
Define the piecewise smooth function p(-) : [to, 1] — R™ by
P(t) = =Ny, (20, 31)R(E1, 1),

Obviously it satisfies the conditions 3 and 5. Conditions 4, 6, 7 i 8 are equiv-
alent to (3), (2), (1) i (4).
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Proof of Lemma 7.1. It is enough to prove that, for any finite family
of pairs (7j,u;) € T'x U, j =1,...,q, the convex cone in R x R" x R x R"
generated by vectors (0, zo, 0, R(t1,t0)xo), xo € R",

+£(1,0,0, =R(1, o) f (fo, 2(f0), u(to))),

i(ov 07 17 f(th ‘%(t1>7 a“l)))a

(00,0, R(t1, ) (f (75, &(75), uy) — f(75,8(75),45(73))), G =1, q,
is the local tent of the set M at the point (fo, 2o, t1,21).

Extend the control 4(-) onto the whole set of real numbers by u(t) = u(to)
for t <ty and u(t) = a(ty) for t > t;. There exist a closed interval I, containing

~

[to, t1] in its interior, and an extension of Z(-) defined on I satisfying
i(t) = f(t,z(t),a(t)) for all t € I.

We can suppose that o <7 <75 < - <7, < 1. Let a = (a1, 09,..., )
be a g-tuple of non negative real numbers, o = Y ;. If aq,00,...,a, are
sufficiently small, then the following intervals

Li=[rj+jo,m+jo+a;), j=12...4¢
are disjoint, and all of them lie in I. The control u(-) : I — U, defined by

wwz{ﬂ@ , teI\UI,

U , tEIj

we shall call the needle variation of the control u(-).
It can be proved that:
a) If [to—to|, ||zo—20||, a1, 2, . . ., oy are sufficiently small, then the problem

(t) = f(t,x(t),u(t)), =x(to) = xo

has a solution on the interval I, denoted by (¢, t, g, ).

b) If ty — to, 20 — o, 1, Q. .., — 04, then x(t, to, 29, o) uniformly
converges to Z(t) on 1.

Let x(t,7,£) be the maximal solution of the differential equation

and let x;(t, 7,£) be maximal solutions of differential equations

(t) = f(z(t),u;), j=1,2,...,q
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If [t, — t1], [to — fol, l|lzo — Zoll, 1,2, ..., qq are sufficiently small, then the
function z(ty, ¢y, xo, ) can be represented as the composition of the following
sequence of functions:

x(7m1 + lo, to, o),

.iEl(Tl + 1o+ ay, 7 + 1o, ')7
(o + 20,11 + lo + aq, -),

z4(1y + qo + oy, Ty + q0, ),
x(ty, 7, + qo + oy, ).

We can conclude that the function x(¢1, to, 2o, @) can be continuously extended
in some open neighborhood of the point (¢, to, Zo,0), so that the extension is
differentiable at (¢4, to, Z9,0). Partial derivatives of this extension are given by:

9 . S
8737(t1,t07 To,0) = f(to, (o), u(to))
1
67055(51,507550,0) = —R(t1,t0) f (o, 2(to), 0(to))
O v, o, 30, 0) = R(ir, o)
axox 1, Lo, Zo, - 1,40),
o . - . . . . .
ﬂw(hatm%ao) = R(ty, 7)) [f (15, 2(75), uz) — [ (75, 2(75), 0(75))],
j

where R(t,7) is the resolvent of the equation

#(t) = fo(t, 2(t), a(t))x(t).

First three formulas arise from (1, %, Zo, @)|a=o = 2(t1, 0, To), and the last
one we can derive from

l‘(tAl,tAo,io,O,...,O,Oéj,o,...,O) =
= x(t, 7+ ( + Doy, 2j(r + ( + Dy, 75 + jag, 2(1j + joy, to, £o))),

in the following way:

ooa{hy o, 20,0) = ~ (i1, )1 (73, 8(r;), () G+ 1)+
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FR (b, 75) [ (g, 2 (), wy) (G 4 1) = (75, 8(m5),05) - 5 + [ (75, 2(75), (7)) - ] =
= R(ty, m)[f (5, &(7)), ug) — f(75,2(75), a(75))].

There exists § > 0 such that (¢, to, xo, ) — (to, xo, t1, x(t1, to, o, @)) maps
Rx RxR"x[0,+00)?NB((t, 0,20, 0),d) into M. The same function maps the
point (£, %y, &9, 0) to the point ({y, Lo, L1, 41). Obviously R x R x R™ x [0, +-00)4
is a tent of the set R x R x R™ x [0,4+00)? N B((ty,ty, Z9,0),8) at the point
(to, #0,1,41). The cone R x R x R™ x [0, 400)? is generated by vectors

(£1,0,0,0),

(0,+1,0,0),
(07071'0,0), To € Rn>
(0,0,0,¢;), j=1,2,....q.

The derivative of the considered function at the point (f,,y,o,0) maps the
cone R X R x R™ x [0,4+00)? into the cone described in the formulation this
lemma. According to Theorem 6.1, this cone is a local tent of the set M at
the point (Igo, .’i'(], tAl, .@1)
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